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A NEW CLASS OF LARGE NEIGHBORHOOD PATH-FOLLOWING
INTERIOR POINT ALGORITHMS FOR SEMIDEFINITE
OPTIMIZATION WITH O(y/nlog =<0 ITERATION
COMPLEXITY*
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Abstract. In this paper, we extend the Ai-Zhang direction to the class of semidefinite opti-
mization problems. We define a new wide neighborhood N (71, 72,7), and, as usual but with a small
change, we make use of the scaled Newton equations for symmetric search directions. After defin-
ing the “positive part” and the “negative part” of a symmetric matrix, we recommend solving the
Newton equation with its right-hand side replaced first by its positive part and then by its negative
part, respectively. In such a way, we obtain a decomposition of the classical Newton direction and
use different step lengths for each of them. Starting with a feasible point (X©,4°,5°) in N (11, 72,7),
the algorithm terminates in at most O(ny/Roon log(Tr(X?S%)/¢)) iterations, where koo is a param-
eter associated with the scaling matrix P and e is the required precision. To our best knowledge,
when the parameter 7 is a constant, this is the first large neighborhood path-following interior point
method (IPM) with the same complexity as small neighborhood path-following IPMs for semidefinite
optimization that use the Nesterov—Todd direction. In the case where 7 is chosen to be in the order
of v/n, our result coincides with the results for classical large neighborhood IPMs. Some preliminary
numerical results also confirm the efficiency of the algorithm.
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Notation.
RTL

Throughout the paper, we use the following notations:
The n-dimensional Euclidean space

R™*™  The set of all m x n matrices
8™  The set of all n x n symmetric matrices
8% The set of all n x n symmetric positive semidefinite matrices
", The set of all n x n symmetric positive definite matrices
Q > 0 Q@ is positive semidefinite, where Q € 8™
Q@ -0 Q@ is positive definite, where Q € 8™
Tr(Q) The trace of a matrix @ € R™*", i.e., Tr(Q) := Y i, Qui
Ai(Q) The eigenvalues of Q € S, i =1,2,...,n
Amin (@) The smallest eigenvalue of @ € S™
Amax(®Q) The largest eigenvalue of Q € S™
(Q) The diagonal matrix with all eigenvalues of @) as diagonal elements
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cond(Q) The condition number of @, defined as cond(Q) = Amax(Q)/Amin(Q)
QI The Euclidean norm for @ € R"*", i.e., ||Q|| = max, -1 [|Qu]|
Q| The Frobenius norm of @ € R™*", ie., ||Q|r = vTr(QTQ)
vec()) The vector obtained by stacking Q’s columns one by one

1. Introduction. Semidefinite optimization (SDO) problems yield a general-
ization of linear optimization (LO) problems. Since Alizadeh [3] explored various
applications of SDO in combinatorial optimization, SDO has been applied in many
areas, including control theory, probability, and signal processing [22].

Due to the success of interior point methods (IPMs) in solving LO, most IPM
variants were extended to SDO. The first IPMs for SDO were independently developed
by Alizadeh [3] and Nesterov and Nemirovskii [15]. Alizadeh [3] applied Ye’s potential
reduction idea to SDO and showed how variants of dual IPMs could be extended to
SDO. Almost at the same time, in their milestone book [15], Nesterov and Nemirovskii
proved that IPMs are able to solve general conic optimization problems, in particular
SDO problems, to € precision in polynomial time.

The difficulty to extend primal-dual path-following IPMs from LO to SDO lies in
acquiring a symmetric search direction. The Newton method applied to the central
path equation X.S = 7ul leads to the linear system

(1.1) XAS+AXS=rul — XS,

which generally results in nonsymmetric search directions. Over the years, people
suggested many strategies to deal with this problem. Alizadeh, Haeberly, and Overton
(AHO) [4] proposed to symmetrize both sides of (1.1). Alternatively, a similarity
transformation P(-)P~! could be applied to both sides of (1.1). This strategy was
first investigated by Monteiro [11] for P = X~1/2 and P = S/2. Tt turned out that
the resulting directions by this approach could be seen as two special cases of the class
of directions introduced earlier by Kojima, Shindoh, and Hara [10]. At the same time,
another motivation led Helmberg et al. [8] to the direction given by P = S /2 The
search directions given by P = X~%/2 and P = S'? are usually referred to as the
H..K..M directions. Nesterov and Todd [16, 17] introduced the so-called Nesterov—
Todd (NT) direction in their attempt to generalize primal-dual IPMs beyond SDO. In
[23], based on Monteiro’s idea, Zhang generalized all these aforementioned approaches
to a unified scheme parameterized by a nonsingular scaling matrix P. This family of
search directions is referred to as the Monterio—Zhang (MZ) family of search directions.

As in the case of LO, there is an intriguing fact about IPMs for SDO. Although
the theoretical complexity is worse, large neighborhood algorithms perform better
in practice than small neighborhood algorithms. Many efforts were spent to bridge
this gap. In [19], Peng, Roos, and Terlaky established a new paradigm based on
the class of the so-called self-regular functions. Under their new paradigm, large
neighborhood IPMs can come arbitrarily close to the best known iteration bounds of
small neighborhood IPMs. Later, based on Ai’s original paper [1], a result of interest
was given by Ai and Zhang [2] for linear complementarity problems (LCPs). Their
algorithm decomposes the classical Newton direction into two orthogonal ones and
proceeds in a wide neighborhood. It is proved that their algorithm stops after at
most O(y/nL) iterations, where n is the number of variables and L is the input data
length. This result yields the first large neighborhood path-following algorithm having
the same theoretical complexity as a small neighborhood path-following algorithm for
monotone LCPs, which include LO as a special case.

In this paper, we extend the Ai-Zhang scheme to SDO. We first define a new
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neighborhood N (71, 72,7), where 0 < 75 < 71 < 1 and 5 > 1 are given parameters.
This new neighborhood is proved to be a wide neighborhood itself. Not surprisingly,
the neighborhood defined by Ai and Zhang [2] is a simple case of our wide neighbor-
hood for LO. Another important ingredient of our algorithm is the decomposition of
the classical Newton direction into two separate ones. To make this point clear, let
us consider only LO, where (1.1) becomes

(1.2) TAs + sAx = Tue — xs.

Moving from (z, s) to (z+ aAx, s+ aAs), at each iteration we expect the duality gap
to decrease by

T s—(r+alz)T (s+als) = —a(z? As+sT Az) = —ae” (tpe—xs) = a(1-1)z’s > 0,

S

where the relation p = % is used. Further, we may also write

s 5T0) = Y mine — 10) 0 S (i 250)
Ep— Z[Tue — xs]; — QZ[TMG - ZUS]:F;

from which we see that the negative components of Tue — xs are responsible for

reducing the duality gap. On the other hand, the small components of z;s;, i.e.,

xis; < 72, indicate that the iterate is “close” to the boundary of the positive

orthant. For these coordinates, using (1.2) we have

zi(@)si(a) = (z; + alz;)(s; + als;)
= 2;8; + a(1;As; + siAx;) + o2 Ax;As;

27s 9
=x;8; + « (TT — a:lsz) + o Ax;As;.
Because the coefficient of the first order term of «, T‘T:S — x;8;, is bigger than zero,
then z;(a)s;(«) increases locally and pushes the iterate to the interior of the first
orthant, i.e., keeping the centrality. Ai and Zhang [2] suggested to treat negative and
positive components of Tue — xs separately to obtain a better iteration complexity
bound for large neighborhood IPMs. We generalize this idea to SDO and show that,
given a feasible starting point (X°,4°,5%) in N(m,7,n), our algorithm terminates

in at most O(n/koontlog w) iterations for SDO, where n is the dimension of
the problem, ko, is a parameter associated with the scaling matrix P, and € is the
required precision. In particular, when the parameter 7 is a fixed constant, our large
neighborhood path following algorithm has the same theoretical complexity as a small
neighborhood algorithm that uses NT scaling. Likewise, when 7 is chosen to be in the
order of y/n, this complexity coincides with the known results for the classical large
neighborhood algorithms.

We organize our paper as follows. In section 2, we introduce the primal-dual pair
of SDO problems and briefly explain how path-following IPMs work. In section 3,
we define the positive and negative parts of a symmetric matrix and prove some
of their intriguing properties. By using these new definitions, we introduce a new
neighborhood which is proved to be a large neighborhood. In section 4, we explain
the way to decompose the classical Newton direction and present the framework of our
algorithm. The convergence analysis and theoretical complexity bounds are presented
in section 5. Finally, we finish the paper with some conclusions and considerations
about future work.
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2. SDO problem. We consider the following SDO problem

min Tr(CX)
(P) subject to (s.t.) Tr(4;X)=b;, i=1,...,m,
X >0,

where C, X € 8", and A; € 8", i = 1,...,m, are linearly independent and b =
(by,...,bm)T € R™. We call problem (P) the primal form of SDO, and X is the
primal matrix variable.

Corresponding to every primal problem (P), there exists a dual problem (D):

max bTy

(D) st Y widi+S=C,
=1

S =0,
where y € R™, S € 8", and (y, S) is the dual variable.

The primal-dual feasible set is defined as
TI‘(AZX) = bi, 1= 1,...,m

F=X(X,y,5) eS8 xR™ xS} iy»A'—i—S:C ,

i=1
and the relative interior of the primal-dual feasible set is
TI“(AZX) = bi, 1= 1,...,m

FO={(X,y,8) eS8, xR™ x S Ui

Xy, 5) € Sy ++ Y widi+5=C
i=1
Under the assumptions that F° is nonempty and the matrices 4;, i =1,2,...,m, are
linearly independent, then X* and (y*, S*) are optimal if and only if they satisfy the
optimality conditions [6],

TI‘(AiX):bi, XEO, izl,...,m,

(2.1) > yidi+S5=0C, =0,
=1

XS=0.

Path-following IPMs follow the central path that is given as the set of solutions
of the perturbed optimality conditions

Tr(4;X)=0b;, X >0,i=1,...,m,

(2.2) > yidi+S=0C, 80,
=1
XS =ul,

rather than (2.1). It is proved [10, 15] that there is a unique solution (X (u), y(u), S(u))
to the central path equations (2.2) for any barrier parameter p > 0, assuming that F°
is nonempty and the coefficient matrices A;, i = 1,..., m, are linearly independent.
Moreover, the limit point (X*, y*, S*), as u goes to 0, is a primal-dual optimal solution
of the corresponding SDO problem.
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3. Neighborhood. Although path-following interior point algorithms follow the
central path while the barrier parameter u is decreasing to 0, they do not stay on the
central path exactly. All the iterates are merely required to reside in a neighborhood
of the central path, while steadily approaching the optimal set.

One of the popular neighborhoods is the so-called small neighborhood, defined as

n 1/2
Nie(0) = { (X,y,8) € FO||| X251 — ]| = [Z(st) - W] < Op,
=1

where 6 € (0,1) and pg := Tr(XS)/n is associated with the actual duality gap.
Another popular alternative is called the negative infinity neighborhood that is a large
neighborhood, defined as

N =) = {(X,1,5) € P Amin(XS) > vi1} ,

where v € (0,1).

Theoretically, IPMs based on the small neighborhood Ng(f), e.g., short step
algorithms, have a better iteration complexity bound than algorithms based on the
large neighborhood, e.g., large update algorithms. However, computational experience
reveals that large update IPMs usually perform better in practice than short step
algorithms.

In this paper we explore a variant of large neighborhood path-following IPMs
and prove that its iteration complexity is O(n,/koon log meOSO)), where n is the
dimension of the problem, ko, is a parameter associated with the scaling matrix P,
and € is the required precision. The new parameter n is used to define our new
neighborhood N (71, 72,7). In particular, when 7 is chosen to be a constant, our new

algorithm has the best complexity result O(y/nlog w)7 which coincides with
the complexity of short step IPMs when NT scaling is used.

In order to introduce our new algorithm, we need to investigate a new neighbor-
hood which combines the classical small and large neighborhoods. Before doing so,
we need to present some notations.

Let M be a symmetric real matrix, i.e., M € S™, with the spectral decomposition
M = QAQT =37 | Niqiql , where A is a diagonal matrix with all the eigenvalues of
M along its diagonal, @ is an orthonormal matrix, i.e., QQT = I, and each column g¢;
of @ is an eigenvector of M corresponding to the eigenvalue A\;. Then we define the
positive part M+ and the negative part M~ of M as

(3.1) M* =" Nagig) . M=) Nigiq) -
A 20 Ai<0

In particular, for a real number M € 8!, M = max{M,0} and M~ = min{M,0}.
Likewise, if M € 8" is a diagonal matrix, M+ and M~ could be constructed by simply
separating the nonnegative and nonpositive entries. Apparently, M = MT + M~
where M*, —M~ = 0.

It turns out that the positive and negative parts of a symmetric matrix have
many interesting properties. We present and verify some of them which play a crucial
role in the complexity analysis.

First, we show that the triangle inequality holds for the positive part.
ProroSITION 3.1. Assume U,V € 8™. Then we have

I+ V)]l < 0T+ VE|p < [UT ]+ V-
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Proof. The second inequality is straightforward. We show only the first one. Note
that

U=Ut+U" =U "+ Y N(U)gU)aU)T
A (0)<0
and

V=Vt+vo=vie Y ANWV)a(V)a(v)T.
Ai(V)<0
According to Theorem 8.1.5 in Golub and Van Loan [7], we obtain
NU+V)<NUT+VT)
for i = 1,...,n. Let Z denote the index set such that Z := { i | \;(U+ V) > 0}.
Then
1/2 1/2
< [Z NVl Ut + v,

i€l

[T+, = lz MN(U+V)

i€l

which completes the proof. ad

The next lemma reveals that a similarity transformation preserves the Frobenius
norm over the positive part of a symmetric matrix.

LEMMA 3.2. Let M € 8™ and W be a nonsingular matriz. Then we have

1M ][ = | W W=

Proof. The result is readily available from the similarity of M and
WMW 1L, d

The next lemma exhibits that the positive part of a symmetric matrix does not
exceed, in the sense of Frobenius norm, its positive part after a similarity transfor-
mation.

LEMMA 3.3. Suppose that W € R"™*"™ is a nonsingular matriz. Then, for any
M € 8™, we have

1
(3.2) |||, < 5 || vaw =+ w7
To prove this result, we need to first demonstrate an interesting fact about sym-
metric matrices.
LEMMA 3.4. Let M € 8™, and let \; and my; denote the ith eigenvalue and the
ith diagonal element of M, respectively. Then we have

Zz\fz Z mzzl

Ai>0 m;; >0

Proof. Recall the definitions of M+ and M~ as in (3.1), and let m;; and m;;
denote the (i,5) element for M+ and M ~, respectively. Note the fact that for any 4,

m; > 0 and m;; < 0; then we can define the set Z as

IZ{Z| Mmi; = m;g+m7>0}.

i =
For any i € Z, we have m}; > mf; +m;; > 0, since m;; < 0. Further, we obtain
(mi)? > (mf; +m;;)? for all i € T.
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The proof of the lemma follows by
2 - _
Z X = || M 2 Z(mI)Q 2 Z(mzt)Q = Z(mzt +my)? = Z mg. a
Xi>0 i=1 €T €T m;; >0

Now, we are ready to prove Lemma 3.3.

Proof of Lemma 3.3. We see that ||M+||§, = H[A(M)]*H; = 2\ (M)>0 A2(M).
Let us consider the right-hand side of (3.2). According to Schur’s triangularization
theorem, there exists a unitary matrix U such that U(W MW~ H)U* = AWMW ~1)+
N = A(M) + N, where U* is the Hermitian adjoint of U and N is a strictly upper
triangular matrix. From Lemma 3.2, we know that

sl ram =y < S vt grany =]

; |

F

1
=5 H [A(M) + N + A(M) + NT]+HF

N+ NT]F

s+ 2227
F
On the other hand, from Lemma 3.4 we conclude that
2
2 N4+ NTF

|| < |[[aon+ 255

F

which implies |M*||, < 3 [|[[WMW =L+ (WMW-HT]*||,.. O

Until now, we have adequate results on the positive and negative parts of symmet-
ric matrices so far. This will assist us in the analysis of convergence and complexity.
Next, we move to the definition of our new large neighborhood. Analogous to the
neighborhood introduced by Ai and Zhang [2], we define our neighborhood, using the
positive part in (3.1), as
(3.3)
N(Tl, T2,1) 5:/\/0:;(1—72)“{()(79, S) e FO H[Tlﬂgl - X1/25X1/2]+HF <n(m — 7'2)#9}7

wheren > 1and 0 < 7o <71 < 1.

The next proposition indicates that the neighborhood N'(71,72,7) is indeed a
large neighborhood.

PROPOSITION 3.5. If n>1 and 0 < 7o < 11 < 1, then we have

NL(Q—71) CN(m,72,m) CNL(1— 7).

Proof. From the definition of N'(71, 72, 7), it is obvious that N (71, 72,17) C N (1—
79). For the first inclusion, we need to prove that

Nt =) € {(X.,9) € FO: |[lrupgl = XM/2X 27| < m(m = )iy}
Given that for (X,y,S) € NZ(1 —71), one has
(34) mpgl — XY28X12 <0,

which implies [r1p,] — X1/2SX1/2]* = 0, leading to the inclusion relation. 0
Moreover, if the parameter 1 > 1/n, then the neighborhood N (71, T2, 1) is exactly
the negative infinity neighborhood NZ (1 — 72).
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PROPOSITION 3.6. Ifn > +/n and 0 < 75 <7 < 1, then we have
N(Tl,Tg, ’I]) = NO:)(]. - Tg).
Proof. To complete the proof, it is sufficient to show that for any (X,y,95) €
N (1 —72), we have
(3.5) No(1—m)C {(X,y, S)e FO. H[nugl - X1/25X1/2]+HF <n(m — Tg)ug} .

Because (X,y,S) € N (1 — 72), it follows that
Amnin (X12SXY2) = Ain (X S) > Tapug.
Therefore,
Amax([Tipgl = X2SXIT) < (11— 2)uy.
This implies

H[Tlﬂgf— Xl/zSXl/Q]JrHF < V(T = 72)ug,

which shows that (3.5) holds when 1 > \/n. O

4. Search direction. Given an iterate (X,y,.S), path-following IPMs generate
the next iterate by taking a Newton step to system (2.2). Let the target be a point
on the central path corresponding to p = 74, where 7 € [0,1] is called centering
parameter and pg = Tr(X.S)/n corresponds to the actual duality gap. To move from
the current point (X,y,S) toward the target on the central path, we wish we could
obtain a symmetric search direction from the following linear system:

Tr(A;AX) =0,

(4.1) > AyiAi+AS =0,
=1

AXS+ XAS =1pgl — X6S.

Although the second equality guarantees a symmetric AS, system (4.1) does not allow
a symmetric solution of AX. Various remedies have been proposed since the middle
of 1990s. The readers who are interested are referred to the paper [20] for a compre-
hensive discussion. We use the approach proposed by Zhang [23], who suggested to
replace the last equation in system (2.2) by

(4.2) Hp(XS) = pl,

where Hp(-) is a symmetrization transformation defined as

Hp(M) = % [PMP~! + (PMP 1T

for a given matrix M and a given nonsingular matrix P. In particular, if P = I,
then for any symmetric matrix M, H;(M) = M. In [23], Zhang observed that if P is
nonsingular, then

Hp(M)=pl & M = pl.
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Thus, the search direction is well defined by the following system:

(4.3a) Tr(A;AX) =0,
(4.3Db) D AyiAi+AS =0,
=1
(4.3c) Hp(AXS + XAS) = 7p,I — Hp(XS).

We refer to the directions derived from (4.3) as the Monteiro-Zhang (MZ) family.

In particular, when P = I, the direction obtained from (4.3) coincides with the

AHO direction [4]. If P = X~/2 or S'/2, then (4.3) gives the H..K..M directions

[8, 10, 11, 12]. Further, we obtain the NT direction when P = W];;«/z, where Wy is

the solution of the system Wy X Wy = S. Nesterov and Todd [16, 17] proved the

existence and uniqueness of such a solution as Wy = S~1/2(S1/2X §1/2)1/28-1/2,
In terms of Kronecker product®, (4.3c) can be expressed as

Evec(AX) + Fvec(AS) = vec(tpg,I — Hp(XS)),
where

1 1
(4.4) E:E(P_TS®P+P®P‘TS), F:§(PX®P‘T+P_T®PX).

Todd, Toh, and Titiincii [21] proved that system (4.3) has a unique solution for
any (X,y,5) € ST, x R™ x 87, and for the scaling matrix P satisfying PXSP~! €
S™. Actually, this still holds under some weaker conditions, as the authors pointed
out in [13]. Throughout this paper, we restrict the scaling matrix P to a specific class

(4.5) P(X,S):={P eS8}, | PXSP ' eS8},

where X, S5 € ST, . Apparently, P = X112, 812 and WJ{/; belong to this specific
class. Unfortunately, P = I does not. We should mention that this restriction on P is
common for large neighborhood path-following algorithms proposed in [14]. Moreover,
this restriction on P does not lose any generality, in terms of the solution set of system
(4.3), as Monteiro indicates in [12].

After obtaining the search direction, most classic large neighborhood path-following
algorithms do a linear search to decide how far they move along the search direction
in attempt to minimize the duality gap as much as possible within the neighbor-
hood N (1 — 72). The algorithms repeat such a process until the optimal solution is
identified.

In our new algorithm, we decompose the Newton direction into two separate parts
according to the positive and negative parts of Tusl — Hp(XS). Thus, we need to
solve the following two systems:

(4.6a) Tr(AAX_) =0,
(4.6b) i(Ayi)_Ai +AS. =0,
(4.6¢) I;;(AX_S + XAS_) = [rugl — Hp(XS)]™,

1For the definition and properties of Kronecker product, please refer to Horn and Johnson [9].
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and

(4.7a) Tr(AAX,) =0,

(4.7b) 3 (Ay;)+A4; + ASy =0,

(4.7¢) I;:EAXJrS + XASy) = [tu,d — Hp(XS)|T,

where P € P(X,S) and (AX_,Ay_, AS_) denotes the negative part of the search
direction, while (AX 4, Ayy, AS,) analogously denotes the positive part of the search
direction. Again, (4.6¢) and (4.7¢) could be written in Kronecker product form as

(4.8) Evec(AX_) + Fvec(AS_) = vec([ruy] — Hp(XS)]")
and

(4.9) Evec(AX,) + Fvec(AS,) = vec([ruyl — Hp(XS)|"),
respectively.

It is easy to see that systems (4.6) and (4.7) are also well defined and have a
unique solution because P € P(X,S). To get the best step lengths for both of the
directions, we expect to solve the following subproblem:

min Tr(X (o) S(a))
(4.10) st. (X(a),y(a),S(a)) € N(m1,72,7),
0<a_<1,0<a,<l,

where a@ = (a_, ay) denotes the step lengths along the direction (AX_, Ay_, AS_)
and (AX 4, Ay, AS,), respectively. Consequently, the new iterate is given by

(4.11)
(X (@), y(a),S(@)) == (X,y,5) + (AX(a), Ay(a), AS(av))

= (Xa Y, S) + Oé_(AX_, Ay—v AS—) + O[+(AX+, Ay—i—v AS-F)

We have already introduced the most important ingredients of the new algorithm:
a newly defined neighborhood N (71, 72,n) given by (3.3) and new search directions
based on systems (4.6) and (4.7). We present a generic framework as follows.

There are three comments we would like to address about the presented algo-
rithm. First of all, although we suggest solving problem (4.10) to decide the best
step lengths, solving this problem could be expensive. Hence, a “sufficient” duality
gap decrease obtained for low computational cost is preferred against the “maximal
possible” duality gap decrease for high computational cost. Moreover, it is also not
necessary to solve problem (4.10). Even if we do not use the optimal solution of prob-
lem (4.10) as the step lengths, we are still able to achieve polynomial convergence
as it is discussed in section 5. Second, in spite of the fact that two linear systems
(4.6) and (4.7) have to be solved, however, the additional cost is very marginal, since
both (4.6) and (4.7) have the same coefficient matrix. At each iteration, the algo-
rithm needs only to form and factorize the Schur matrix once, which together yield
the majority of the total running time. Then backsolving needs to be executed once,
simultaneously for two right-hand sides specified in (4.6) and (4.7). Third, it might
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ALGORITHM 1 PATH-FOLLOWING IPM BASED ON THE N(71,T2,7) NEIGHBORHOOD.

Input:
required precision € > 0;
neighborhood parameters n > 1,0 < » <7 < 1;
reference parameter 0 < 7 < 1;
an initial point (X°,4°, 5%) € N(71,79,7) with u§ = Tr(X°5°)/n;
while u’; > e do
(1)  Compute the scaling matrix P¥ € P(X*, S*).
(2) Compute the directions (AX*, Ay* AS*) by (4.6) and
(AXK Ayk ASE) by (4.7).
(3)  Find astep length vector a* = (a* ,a® ) > 0 giving a sufficient reduction
of the duality gap and assuring (X (o), y(a*), S(a*)) € N(71,72,7).
(4)  Set (XML yM+ GEH) = (X(aF),y(ak), S(a)).
(5)  Set pptt = Tr(X*1S¥1)/n and k :=k + 1.
end while

appear computationally expensive to obtain the negative and positive parts in (4.6)
and (4.7). However, if NT scaling is used, the strategy proposed by Todd, Toh, and
Tiitiineii [21] for computing the NT scaling matrix and the NT direction can help
us. The basic idea is to simultaneously scale X and S to diagonal matrices. In this
case, after scaling, the right-hand sides of (4.6¢) and (4.7¢) also become diagonal.
Then it is straightforward to decide the negative and positive parts. Our preliminary
numerical tests, which are available on request, also confirm that (4.6) and (4.7) can
be simultaneously solved without a significant increase of computational time.

5. Complexity analysis. In this part, we present the convergence and com-
plexity proofs for Algorithm 1. Recall that our algorithm is based on the MZ family;
we scale problems (P) and (D) as Monteiro and Todd proposed in [13] in order to ana-
lyze the algorithm in a unified way for the class of matrices P € P(X, S). In addition,
this scaling procedure simplifies the proofs of the main results. After demonstrat-
ing several technical lemmas, we present the most important result of polynomial
convergence at the end of this section.

5.1. Scaling procedure. We scale the primal and dual variables of problems
(P) and (D) in the form of

(5.1) X := PXP(3,5) = (y, P~15P7Y).

To keep consistency, we also have to apply the same scaling to the other data in (P)
and (D) as well; i.e.,

C:=P'CP™", (A,b):= (P 'A4P " b) fori=1,...,m.

As mentioned, we restrict the scaling matrix P € P(X,S) as defined by (4.5). It is
easy to see that for X, 5 € S, one has

(5.2) P(X,S):={PeS!, | PXSPtcS"}={PecS}, :XS=5X};

ie., X and S become commutable after scaling under P. The commutativity of XS
also implies that XS is symmetric if X and S are both symmetric. Further, the
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requirement on P also guarantees that X and S can be simultaneously diagonalized
(i.e., they have spectral decompositions with the same @) according to Proposition
4.2 in Monteiro and Zhang [14].

From now on, we use A to denote the diagonal matrix A = diag(A1, A2,..., An),
where \; for i = 1,...,n are the eigenvalues of XS with increasing order A; < Ag <

< Ap. We should emphasme that the matrices X5, SX, X5, SX, X1/25X1/2
and S1/2X S'/? have the same eigenvalues, since they are all similar to each other.

In the scaled space problems (P) and (D) are equivalent to the following pair of
problems:

min  Tr(CX)
(P) st. Te(A4X)=b;, i=1,....,m,
X =0,
and
max ETg

The search direction (AX, Ay, AS) based on system (4.6) and (4.7) corresponds to
the scaled direction (AX Ay, AS) defined as

(5.3) AX_=PAX_P, Ay_=Ay., AS_ =P 'AS_P
(5.4) AX, = PAX,P, Ay, =Ay,, AS,=P'AS, P

The directions (K)/(_, ANy_, Z-g_) and (AA)/(J” ANer, Z§+) are readily verified to be
solutions of the scaled Newton systems

(5.5a) Tr(A4,AX_) =0,
(5.5b) > (Ay)-Ai+ AS_ =
=1
(5.5¢) Hi(AX_S5+XAS_) = [rig] — XS],
and
(5.6a) Tr(A4;AX,) =0,
(5.6b) S (Ayi) 4 A+ A5y =0,
=1
(5.6¢) Hi(AX S+ XAS,) = [rig] — XS],

respectively. To simplify the notation, we use XS rather than H;(XS), since XS =
H;(XS) when the scaling matrix P € P(X,S). In terms of the Kronecker product,
(5.5¢) and (5.6¢) become

(5.7a) Evec(AX _) + Fvec(AS_) =vec([Tugl — XS],

(5.7b) Evec(AX ;) + Fvec(AS,) =vec([ru,I — XS]1),
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respectively, where

~ ~ ~ ~ 1 ~ ~
(5.8) E=-(S®I+I1I®)5), F:§(X®I+I®X).

DN =

After deciding the step lengths, the iterates are updated as follows:

(5.9) (X(a),§(a), S()) = (X,7,5) + (AX (), Ay(a), AS(a))
= (X,5.9) + o (AX_,Ay_,AS_ ) + o (AX;, Ay, AS,).

The next proposition formalizes the equivalence between the original and scaled
problems.

PROPOSITION 5.1. If (X,y,S) and (X,7,S) are related to each other as speci-
fied by (5.1) and (X (), y(e), S()) and (X(a),7(a), S(a)) are defined by (4.11) and
(5.9), respectively, then we have

1. (X,y,S) € F if and only if (X,7,S) is feasible for (P) and (D);

2. (X,y,S) € N(71,72,m) if and only zf()?, v, §) € /\7(71,7'2,77), where/\?(ﬁ,Tz,n)
is the neighborhood corresponding to (P) and (D);

3. X(a) = PX(a)P, jla) = y(a), S(a) = P7LS(a)P~L, and p(a) = fig(a),
where [ig() = Tr(X (2)S(a))/n.

5.2. Technical results. Before proceeding to the complexity result, we have to
prove some technical lemmas. Throughout this section we fix the reference parameter
tor=m andlet -

Al (AX_,Ay_,AS_)and (AX, Ay ,AS) be the solutions of (5.5) and (5.6),

respectively; - - - -

A2 AX(a) =a_AX_+ oy AX 4 and AS(a) :=a_AS_ + a3 AS,.

From the following lemma, we see that if the current iterate is feasible, then the
search directions are orthogonal.

LEMMA 5.2. Under A.1 and A.2, we have

Tr(AX (a)AS(a)) = 0.

Proof.  The proof is straightforward by using (5.5a), (5.5b), (5.6a), and
(5.6b). O
LEMMA 5.3. If P € P(X,S), then we have

(5.10) Tr(XAS_) + Tr(AX _S) = Tr([rjigI — XS] ),
and
(5.11) Tr(XAS,) + Tr(AX ) = Tr([rjigl — XS]H).

Proof. Using the fact that Tr(M) = Tr(H;(M)) for any matrix M € R™*" and
the systems of (5.5) and (5.6), the results are easily established. O

Intuitively, we wish to reduce the duality gap as much as possible in every it-
eration. The next result, however, shows that Algorithm 1 holds a lower bound for
duality gap reduction. This bound derives from feasibility considerations, as we will
see in later discussions.

LEMMA 5.4. Let (X,4,S) € F°. Then for every a := (a_,a.) € [0,1], we have

Tr(X (a)S(e)) = Tr(X S) + a_Tr([rfig] — X)) + ay Tr([rfigl — XS]*).
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Furthermore,

- - Tr([rji I — XS]~ Tr([r i, I — XS+ ~
,ug(a):ug+0‘— ([ 1:U’gn ] )+Oé+ ([ Lugn ] )Z(l—oz_),ug.

Proof. Using Lemmas 5.2 and 5.3, the first equality is easy to see. We now apply
it to prove the second one,

i, (a) = Tr(X (Z)S(a))
_ Tr(XS) o el — X5]) s Tr([rfigl — XS]*
> i, a Tr()?g)
= (1 - a—)ﬁga

where the inequality is due to the fact that X , S e ST implies
Tr([rfigl — XS]7) > Tr(—XS). O

The next lemma shows that the negative part of 717141 — XS is also bounded in
terms of the duality gap at the current iteration.
LEMMA 5.5. Let (X,9,S) € F°. Then

(5.12) Tr([rifigl — XS]7) < —(1 — 1) Tr(XS).
Proof. Recall that
[rifigl — XS]~ + [rufigl — XS|* = mfigl — XS.
Taking the trace of both sides, we have
Tr([rfigl — XS]7) = (11 — )Tr(XS) — Tr([rfigl — XS7) < —(1 —7)Tr(XS). O

The next results, Proposition 5.6 and Corollary 5.7, imply that Algorithm 1 re-
duces the duality gap steadily if the feasibility of the iterates can be preserved. From
now on, we introduce the notation 8 = (11 — 72)/71. Then we have § € (0,1) and
79 = (1 — B8)71. Further, let us denote

B ~
iyl - X5
. F
7) = max — 1
BTlﬂg

It follows that if (X,5) € J\N/(Zl,7'2~77), then 1 <% <nand 7 < y/n.
PROPOSITION 5.6. Let (X,y,S) € N(71,72,1). Then we have

~ ~ ~ nBmp
fig(r) < fig — o (L —71)pg + 0y \/ﬁg~
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Proof. Using Lemma 5.4, we see that

- ~ Tr([rfig I — XS]~ Tr([r1fi I — XS]+
,Ug(OZ):,Mg‘FOZ_ ([ Lugn ] )+Oé+ ([ Lugn ] )
=~ ~ X 1+
~ Tr(X S Wﬁwf—Xﬂ H
<fg—a_(1-m) (n )+a+\/ﬁ - i
- - NGTL I
Sﬂg_af(l_Tl)Mg""aJrn\/lT—lMga

where the first inequality is due to Lemma 5.5 and the Cauchy-Schwarz inequality
and the last inequality derives from the assumption that (X, 7, S) € N (11, 72, 7). |

When the parameters 71 and 3 are chosen appropriately and all the iterates reside
in the neighborhood N(11,72,7), we claim that the duality gap is decreasing at the
rate of O(1//n).

COROLLARY 5.7. Let ; < g, B < i, and ()N(,gﬁ) € /\N/'(Tl,Tg,n). If a_ =

ayfjz/BT11/n, then we have

fig(a) < <1 —ay

2ﬁ\/ﬁ)~
9\/ﬁ /'Lg'

Proof. From Proposition 5.6, it follows that

- _ - nBTIR
fig(@) < fig — a—(1 = T1)ag + oy NG !
5 BT,
< Hg 50(,/,69 + Q4 \/ﬁ !
5 =\ 10VBT .
= Hg — Q4 <§_ ﬁTl \/ﬁ Hg

__ Subsequently, we show how to ensure all the iterates in the neighborhood
N(11,72,m). Although we wish to decrease the duality gap as much as possible,
we still need to control the smallest eigenvalue of X (a)S(a) in order to stay in the
neighborhood N (71, 72,7). - -
LEMMA 5.8. Suppose P € P(X,S) and x(o) = XS + a_[rmipugl — XS +
ay[nipgl — XSt If (X,y,5) € N(m1,72,1m), then we have
(513) /\min(x(a)) > Tgﬁg + aJr(T]_ — Tg)ﬁg.
Proof. We first consider the situation when Amin (71 7tg] — X §) > 0 and note that
Amin () 18 & homogeneous concave function. Then we have
)\min(X(a)) = )‘min(jzg—’_ a4 [TlﬁgI - X§]+)
= Amin(XS + sy (nfigl — X8S))
= )\min((]- - OZ+)X§+ OéJrTlﬁgI)
>(1- o<+))\min()?§) + i Tifly
> (1 —aq)mpig + ayTifig
= Tofig + ot (11 — T2)fig.

The second inequality holds due to (X,7,5) € N(r1,72,7).
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When 701 — XS is negative semidefinite, i.e., [T1fig] — )?g]_ = Tifigl — XS
and [11 1] — X S]T = 0, we have

Amnin (X(@)) = Amin(XS + a[rifig] — X5]7)
= Amin (A + a— (111l — A))
> Amin(A + (T18g] — A))
= Tilg

Toflg + (71 — T2) g

> Tofig + g (T1 — T2)fig-

\%

Now let us consider the last case where 7y gl — XS is indefinite. Recall that the

eigenvalues of X 5 are ordered increasingly, i.e., Ay < --- < \,. Assume )\ is the first
eigenvalue of X S such that mijig — Ay <0, ie, Tifig — A1 > -+ > Tifig — Ap—1 > 0>
Tifbg — Ak = -+ > Tiflg — Ap. 1t is easy to see that

Amin(X(@)) = Anin(X S + a_[11]ig] — XS)7) + ay [rfig] — XS])
= Amin(A + 0‘—[7'1,‘7571 - A]_ + O‘+[7'1ﬁgl - A]+)
= min{)\l + Our(ﬁﬁg — )\1), A+ (Tlﬁg - /\k)}
> min{TQﬁg +ay (1 — TZ)ﬁga Tlﬁg}
> Toflg + (1 — T2)fig-
Taking all of the possible cases into account, we conclude that (5.13) is true. O
To follow the central path, we also need to make sure that the iterates remain in
the prescribed neighborhood of the central path. - .
LEMMA 5.9. Suppose P € P(X,S) and x(o) = XS + a_[ripgl — XS +
ay[npigl — XS If (X,5,S) € N(1,72,1), then we have

(5.14) [[m17ig ()] = x()] " || < (1 = ap )BT g ().
Proof. Assume that the eigenvalues of XS are ordered so that
Tiflg — A1 > Tiflg — Ag > -+ 2 Tiflg — Ag—1 > 02> Tiflg — A 2> -+ = Tiflg — Ap.

Now let us consider the diagonal elements of A + a_[r1fig] — A]™ + ay[ripgl — AT,
Fori=1,....k—1, i+ ai(nipg — ) = (1 —ay) i + aqpTifig, then
Tig(a) — (A = A) < g (o) — Pty fig — A
Tifig (@) = (Ai + g (Tafig — i) < Tajig(@) i (i + ay(nig = Ai))
g

~ 21— )y~ V),

Fori=k,...,n, N\ +047(T1ﬁg - )\1) >\ —l—Tlﬁg -\ = Tl/jg >0, then
Tihg(a) = (Ai + a—(Tafig — Ai)) < Tafig — Tifig = 0.

For convenience, let p(a) = [mifig()] — (A + a—[rifig] — A]™ + ay[rifgd — AJ7)]T.
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Therefore, together with Lemma 3.2, we have

lo@)]l < E;—(;“)u o) ||l — AV,
(5.15) = 'Eu(g )(1 —ay) H Tl — XS]t H

< (1= aq)nBripg(a).
Note that [|[71/ig()] — x(a)]T||» = [|¢()]| z; the proof is complete. O
The next two lemmas together bound the distance between the current iterate
and our reference point 744/ on the central path.

LEMMA 5.10. Let X,S € 8t,, P € P(X,5), X and S be defined by (5.1), and
E and F be defined by (5.8). Then

F

(5.16) H(ﬁE)’l/Qvec([ﬁﬁgI - )Z'§]*)H2 < Te(X3).

Proof. Using (5.8) and Proposition 4.2 of Monteiro and Zhang [14], we find the
spectral decompositions of E and F to be

E:%(§®I+I®§) —QK( (S)®I+1®AS)QE,

ﬁ:luz_—@fu@ic) —QK< (X)©1+10AX)QE,

where Qx = Q ® Q is an n? x n? orthogonal matrix. Furthermore, because X and
S commute, from Proposition 4.1 of Monteiro and Zhang [14], we have FE € SZZ 4
Then we have

(FE) ' =4Qx(A@ T+ I ® A+ A(X) @ A(S) + A(S) ® A(X))1Q%,

where the matrix in the middle is diagonal with the properties that the ((i —1)n-+4)th
component is 1/(4);) and the largest component is 1/(4A;). On the other hand,

vec(tifigl — )?g) = vec(rijig] — QAQT)
= (Q ® Q)vec(ripigl — A)
= Qrvec(mifig] — A),

where vec(7ifi,] — A) is an n*-vector with at most n nonzeros at the ((i — 1)n +i)th
entries which are equal to 7ty — A;. Finally, we have

H(ﬁE)—lﬂvec([nﬁgI—)Z'§]—)H2 — (vee([mfi I — X)) (EF)vec([rfi,l — X5
= i([ﬁﬁg — M7/
=3 (VA -nva] ")

which leads to inequality (5.16). O
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LEmMA 5.11. Let P € P(X,5), X and S be defined by (5.1), and E and F be
defined by (5.8). If (X,4,S) € N(11,72,n) and B < 1/4, then

s . 2
|(FE)2vee(iniiyl - X51%)||" < #26mii /3.
Proof. Note the fact that )\min(ﬁﬁ) = A1 > Tofig. Then one has

H(ﬁE)’l/zvec([ﬁﬁgI — )Z'g]*)Hz < H(FVE)A/?HQ Hvec([ﬁﬁgl - )Z'g]*)HQ
=By et - %517,

< 772527'1 ,Ug/(TZNg)

< ﬁQﬁTlﬂg/&

The last inequality follows from the fact that § < 1/4 implies Sy /12 < 1/3. O
We now apply Lemmas 5.10 and 5.11 to conclude the following result.
LEMMA 5.12. Let P € P(X,S) and G = E7'F. If (X,y,S) € N(71,72,1n) and
B <1/4, then
HG V2vec(AX (a H n HGl/Qvec(AS H 1 2TH(AX () AS(a))
< a2 Tr(XS) + 2 N2 BTifg /3.
Proof. From (5.7), we have
Evec(AX () + Fvec(AS()) = a_vec([rjig] — XS]7) + oy vec([rfigl — XS|*).

Applying Proposition 1.1 of Zhang [23] to this equality, we obtain
H( E)12Evec(AX (a) H + H (FE)~/?Fvec(AS(a) H + 2T (AX (a)AS(a))
= H(FE)’1/2[a,vec([TlﬁgI — XS]7) + ayvec([rifigl — XS]JF)]H2 .
The commutativity of E and F implies that
(ﬁE)—l/ZE — (E—lF) 1/2 _ G—1/2 (ﬁE)—l/zﬁ — (E 1F)1/2 Gl/2,
Hence, to complete the proof, it is sufficient to show that

. - . 2
H(FE)’1/2[a,vec([TlﬁgI — XS]7) + ayvec([rpigl — XS]] H
o 2 - 2
<a? H(FE)*1/2vec([TlﬁgI — XS]f)H + a2 H(FE)’lmvec((TlﬁgI — XS’]*)H
< a2 Te(X5) + 3% Ariiy /3,

where the last inequality can be derived from Lemmas 5.10 and 5.11. o
We now would like to explore a bound for the second order term AX () AS ().

LEMMA 5.13. Let P € P(X,S) and G = E-'F. IfB < 1/4, a— = ayhy/Bri/n
and (X,y,S) € N(71,72,7), then we have
(5.17)

HHI(E((@)E( H < Hvec (AX (« H Hvec (AS(a H cond( )a+ﬁzﬁrlﬁg.
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Proof. From the last inequality in Lemma 3.2 in Monteiro [11], we have
s, < [xssiol,
< [s¥col, J55,

= Hvec AX(a H Hvec (AS(«a ))H

Further because of Lemmas 5.2 and 4.6 in Monteiro and Zhang [14], it follows that

HHI(X)/((Q)BTS/’( H < Hvec (AX (« H Hvec AS(a ))H
< 7‘&;{1 (HG 12vec(AX (a) H —|—HG1/2vec AS(w H ) .

Substitute a— with ay7+/871/n and apply Lemma 5.12. Then we eventually obtain

| (3% @As@)|, < Cogd(G) (a%Tr(ﬁ);aiﬁzﬁﬁﬁg)

< cond(G) <a3_ﬁ257'1ﬁg + 0[3_7?2ﬂ7'1ﬁg>
- 2 3

2 R ~
=3 cond(G) a3 i? BT iy,

observing that Tr(XS) = Nflg. O

The next proposition provides a sufficient condition which guarantees that all the
iterates remain in the neighborhood N (71, 72, ).

PropPOSITION 5.14. Let (X,y,S) € N(r1,72,m), 11 < 4/9, B8 < 1/4, P €
P(X,S), and G = E7*F. If a_ = api\/Bri/n and ay < 1/(y/cond(G)A?), then

(X (), y(@), S(a)) € N(m1,72,7).

Proof. By Corollary 5.7 we have fiy(a) < fig. Further, using Lemma 5.8 and
the fact that Amin(+) is a homogeneous concave function on the space of symmetric
matrices, one has

Amin(H1 (X (@)S())) > Amin(H1(X S + a_[ri]ig] — XS]~ + ay[rijig] — XS]H))
+Amm<HI<&7<< )AS(a)))
> /\min( — HH] AX AS H

> Toflg +Oé+(71 — To)fig — HHI AX( )AS( ))HF7

where the second inequality follows from the fact that the absolute value of the small-
est eigenvalue of a symmetric matrix is less than or equal to its Euclidean norm and
the third inequality is due to the fact that the Euclidean norm of a symmetric matrix
is less than or equal to its Frobenius norm. These two results follow directly from
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Lemma 3.1 of Monteiro [11]. From Lemma 5.13 one can further derive that

- B g o
Amin(H1 (X (a)S(a))) = T2pig + oq (11 — T2) g — 3 cond(G)a 7* BT1fig

> Toflyg + oy BTifly — oy BTfly
= Tofiy

> Tafig(c)

> 0.

This reveals that X (a)S () is nonsingular and further implies that each of the factors
X(a) and S(«) are nonsingular as well. By using continuity, it follows that X(a) and
S(a) are also in S% ., since X, S 0. Then we claim that

(5.18) Amin (X (@) S(0)) > Amin (H1 (X () S())) > 7afig(a).
Since 5 < 1/4 and 7y < 4/9, from Lemma 5.4, we have

(5.19)  fig(a) > (1 —a )iy = (1 — apiy/Br/n)ig > (1= /Bri)iig > (2/3)iig:

From Lemma 3.3, we have

¥(a) = ||y (@) = X2(@)S(@ X2 (@]
< || 1o (rafig ()T = X2 (0) () X2/ ()] |

- H[HI(Tlﬁg(O‘)I_ )?(O‘)g(a))]JrHF'

F

Because X (a)S(a) = (X + a AX_ + a+§(+)(§+ a AS_ + a+B§+), we have

W) < |[[Hi(rifig@)] ~ X5 — a[rfiy] ~ X8)~ — a [riiy ] ~ X5]9)] | +
- F
r — — +
~Hi(AX (a)A5(a))]
- F
= iy ()1 = X8 — a_[rfigl — X8~ — oy [rfigl — )~(§]+] (e
- F

Hi(AX (0)AS(a))]

3

F

where the second inequality is from Pr0p051t10n 3.1.
Using the fact that H Hi( AX AS’ H HHI AX )AS’( ))HF and Lemma
5.9, we can prove

¥(0) < (1~ a)ifmfig(e) + | Hi (X (@)AS(@)]

Further, from Lemma 5.13 and inequality (5.19), one has

¥le) £ (1 - a)ifnfiy(0) + 5 /eond(Glad i

< (1= o )nBmifig(e) + /cond(G)ad7?Brifig(a).
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Since ay < 1/(y/cond(G)7*) and 77 > 1, we have \/cond(G)o2n?Brifig(a) <
a1 7)BT1 g (). Thus,

Y(a) < (1 —ay)ifripg(a) + arnBrifig(a)
= NBT1iig ()
< nBTfig(ar)
=n(r1 — 12)pg(a).

This, together with (5.18), implies that

(X(a), (), (@) € N(71,72,m).
Consequently, according to Proposition (5.1), one has
(X(a),y(a),S(a)) GN(TlvTQaTI)' o

5.3. Polynomial complexity. In this section we present our main complexity
result. The next theorem gives an iteration-complexity bound for Algorithm 1 in
terms of a parameter ko, defined as

(5.20) Koo = SUP {cond((Ek)—lﬁk) L k=0,1,... } .

Obviously, ks > 1.
THEOREM 5.15. Suppose that koo < 00, n>1,0< 1 <71 <4/9, and B < 1/4
are fived parameters. At each iteration, let P* € P(XF*,S¥). Then Algorithm 1 will

terminate in O(ny/koon log w) iterations with a solution Tr(XS) <.

Proof. In every iteration, let & = (1/B71/(koon) /M, 1/(\/Fof?)). By Proposition
5.14, we have

(X(a),y(a), S(a)) € N(71,72,m).

Furthermore, from Lemma 5.7, we also conclude that

iy(a) < <1_ﬂ>ﬁg< <1_ﬂ>ﬁg< <1_@)ﬁm
) 914/ cond(G)n 9n+/cond(G)n INEon )

from which the statement of the theorem follows. O

Theorem 5.15 allows us to derive various iteration complexities of Algorithm 1 in
terms of some specific aforementioned scaling matrices P.

COROLLARY 5.16. If the parameter n is a constant, then for Algorithm 1, when it
is based on the NT direction, the iteration-complexity bound is O(y/nlog Tr(XfOSO))
When the H..K..M scaling is used, then Algorithm 1 terminates in at most
O(nlo M) iterations.

2 €

COROLLARY 5.17. If the parameter n is in the order of \/n, then for Algo-

rithm 1, when it is based on the NT direction, the iteration-complexity bound is

O(nlog w) When the H..K..M scaling is used, then Algorithm 1 terminates
in at most O(n/?log Tr(XfOSO)) iterations.
Corollaries 5.16 and 5.17 are readily achieved if we notice that ko, = 1 for the

NT scaling and koo < n/7o for the H..K..M scaling.
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As we see, when 7 is a constant and the NT scaling is used, the Algorithm 1
achieves its best complexity bound which coincides with the best known complexity
of IPMs for SDO. When 7 is in the order of \/n, our complexity result is the same
as the one for classical large neighborhood IPMs, since we have shown in Proposition
3.6 that in that case our neighborhood N (71, 72, 7) is exactly the large neighborhood

N(l - 7'2).

6. Conclusions and further work. As discussed previously, this paper pro-
vides a new large neighborhood path-following algorithm with the same theoretical
complexity bound as the best short step path-following algorithm. Our preliminary
implementation and benchmark for pure SDO problems from SDPLIB [5] and DI-
MACS [18] also provide us with a promising evidence that our new algorithm may
also perform well in practice. With NT scaling, Algorithm 1 on average saves 1 or
2 iterations compared with SDPT3 without using the Mehrotra predictor-corrector
heuristic, while not increasing the total computational time. However, there are still
some unsettled issues for implementation. For example, sophisticated and efficient
strategies to choose step lengths deserve more work. Another issue of interest is how
to compute efficiently the positive and negative parts of the right-hand side in the
Newton equation when we do not use the N'T scaling. It is apparent that, due to the
high computational cost, explicitly computing them with eigenvalue decomposition is
not desirable. To develop computationally efficient implementation strategies for our
large neighborhood algorithm remains the subject of further research.

Because we were successful in combining Ai and Zhang’s work [2] for LO and our
work for SDO, a natural question to ask is whether this also applies to second order
cone optimization problems and further to general conic optimization. Lastly, we are
also curious about the relationship between the classical IPMs, the self-regular ITPMs,
and our new algorithm.
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associate editor for their constructive comments that helped us to improve the pre-
sentation of the paper.
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