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1. INTRODUCTION

Since the seminal work of Guerre, Perrigne, and Vuong (2000, GPV hereafter), the

nonparametric estimation of auction models has received enormous attention from both the

perspectives of econometric analysis and empirical applications. In this paper, we revisit

the first-price auction models and propose a novel estimation procedure for the valuation

quantile function. Our approach is appealing both computationally and theoretically. We

first construct a quantile estimator that is tuning-parameter-free and robust in the sense it is

consistent under weaker smoothness assumptions than typically imposed in the literature

(details later). Whenever the typical smoothness assumptions are satisfied, we can construct a

trimming-free and asymptotically normal second step estimator that achieves the optimal rate

of GPV. Furthermore, our estimator explicitly incorporates the restriction of the monotone

bidding strategy and is monotone in finite samples, which is important for empirical work

but not ensured by most of the existing estimators.

To better illustrate the features of our estimator, we begin by reviewing existing approaches

in the literature. We focus on the baseline case of homogeneous auctions and will show it

can be extended to incorporate auction specific characteristics in Section 2.3. We consider

the standard GPV setup of independent private value (IPV) first price auction. Their novel

approach is to transform the first-order condition for optimal bids and express a bidder’s

value as an explicit function of the submitted bid, the Probability Density Function (PDF)

and Cumulative Distribution Function (CDF) of bids:

v = s−1(b) ≡ b +
1

I − 1
G(b)
g(b)

, (1)

where b is the bid, I is the number of bidders, and G(·) and g(·) are the distribution and

density of bids, respectively. A two-step estimation method follows from this observation:

first construct a pseudo value for each bid and then apply kernel density estimation to the

sample of pseudo values. GPV establish the consistency of their estimator and the optimal

rate.
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Based on the insight of Haile, Hong, and Shum (2003), who considered a quantile-based-

test for the existence of common values, Marmer and Shneyerov (2012, MS hereafter) first

proposed to estimate the valuation distribution based on the quantile representation of the

first-order condition, that is, when the equilibrium bidding strategy is strictly monotone,

valuation quantile function Qv(·) can be expressed as

Qv(α) = Qb(α) +
1

I − 1
α

g(Qb(α))
, 0 ≤ α ≤ 1, (2)

where Qb(·) is the bid quantile function. Note that the right-hand side must be strictly

increasing in α, too. MS proposed to first estimate Qv(·) using plug-in estimators for

g(·) and Qb(·) and subsequently estimate the valuation density using the relationship

f (v) = 1/Q′v(Q−1
v (v)). MS show that their estimator is asymptotically normal and

achieves the optimal rate of GPV. Guerre and Sabbah (2012, GS) observed that the second

term on the right hand side of Equation (2) is a known linear function of α multiplied

by the quantile derivative and proposed an optimal local polynomial quantile estimator.

Gimenes and Guerre (2013) further explored the observation made by GS and proposed an

augmented-quantile regression to overcome the difficulty of incorporating many covariates.

In both estimators of GPV and MS, the bid density g(·) appears in the denominator

of the first step estimation; in MS, the derivative of the bid quantile also appears in the

denominator of the second step. In practice, trimming near the boundaries is needed but

can be troublesome as it is well known that there is no generic guidance. GS does not

require trimming but a choice of a bandwidth is needed. In addition, all quantile estimators

discussed above may not satisfy the monotonicity restriction imposed by the model.

In this paper, we propose to use the integrated quantile representation of the first order

condition to construct our estimator. We use V(·) to denote the integrated quantile function

of valuation. When the biding strategy is strictly monotone, there is

V(β) ≡
∫ β

0
Qv(α)dα =

I − 2
I − 1

∫ β

0
Qb(α)dα +

1
I − 1

Qb(β)β, 0 ≤ β ≤ 1. (3)
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Note that since Qv is strictly increasing, V is necessarily strictly convex and identical to its

greatest convex minorant (g.c.m.). The idea of using the integrated bid quantile and g.c.m.

(or least concave majorant, l.c.m.) in auctions first appeared in Liu and Vuong (2013). They

focus on testing the monotonicity of the inverse bidding strategy, which is equivalent to

the concavity of a known function of the quantile of winning bids. Based on this novel

reformation, they propose a test statistic that measures the distance between the sample

analog of this function and its l.c.m.. Liu and Luo (2015) also used the integrated quantile

function to test the equivalence of valuation distributions. In this paper, we further explore

the merits of using integrated quantile function and its g.c.m. for the estimation. First, the

sample analog of V(·), denoted by Vn(·), is easy to compute; it essentially requires little

more than sorting the observed bids. Neither bandwidth choice nor trimming is needed.

Second, we can naturally impose the monotonicity constraint in our estimation procedure by

using the g.c.m. of Vn(·) as an estimator for V(·), which we denote as V̂. Since Vn(·) is a

piece-wise linear function of β, V̂(·) can be very easily calculated and is also piece-wise

linear. Then we can estimate Qv(·) by taking the piece-wise derivatives of V̂(·). As we will

formally prove later, this estimator is cube-root-n consistent and requires weaker smoothness

on model primitive, that is, it only requires that F(·) be continuously differentiable as

opposed to twice continuous differentiability in GPV and MS. We refer it as our first step

estimator Q̂v(·). Note that Q̂v(·) is tuning-parameter-free. If indeed the model admits

enough smoothness, we can improve the convergence rate by considering a kernel smoothed

version q̂v(·) of Q̂v(·). We show that q̂v(·) is asymptotically normal and achieves GPV’s

optimal rate. Note that despite one needs to choose a bandwidth for q̂v(·) (for which we

propose an optimal bandwidth), there is no need for trimming.1

Another appealing feature of our estimator is that the monotonicity of bidding strategy is

imposed in a simple way through the calculation of g.c.m.. As a result, the estimates Q̂v(·)
and q̂v(·) are always increasing by construction. To the best of our knowledge, Henderson,

1See Hickman and Hubbard (2014) for a modified version of the GPV estimator which replaces trimming with
boundary correction.
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List, Millimet, Parmeter, and Price (2012, HLMPP hereafter) were the first to address

the imposition of monotonicity in first price auctions. They argued that nonparametric

estimators which naturally impose existing economic restrictions have empirical virtue.

HLMPP’s estimator achieves the desired monotonicity constraint by tilting the empirical

distribution of the data and requires repeated re-weighting of the sample. Bierens and

Song (2012)’s sieve approach implicitly imposes the monotonicity constraint, but it can be

computationally expensive. Our estimator imposes the monotonicity by taking the g.c.m. of

the integrated valuation quantile function. The g.c.m. of Vn(·) is easy to compute since it is

piece-wise linear. Indeed, satisfying monotonicity in finite samples is a desirable feature of

a quantile function estimator in general; see discussions in Chernozhukov, Fernandez-Val,

and Galichon (2010). Chernozhukov, Fernandez-Val, and Galichon (2010) proposed a

“rearrangement” approach to achieve the monotonicity. We take the g.c.m. approach on the

integrate-quantile function in our context because it not only delivers the monotonicity, but

also circumvents the necessity of estimating the bid density function in the denominator.

Our estimator is constructed using order statistics of the bids. Indeed, using order statistics

is not uncommon in the literature of nonparametric estimation of auction models (see, e.g.

Athey and Haile, 2007). Recently, Menzel and Morganti (2013) discussed estimation of

value distribution based on the distributions of order statistics. They show that the mapping

between distribution of order statistics and valuation distribution is in general non-Lipschitz

continuous and established optimal rate for varies of parameters of interest. Our main

motivation is to provide computationally-easy estimators for the classical IPV setup of GPV

with all bids being observed, which is, as mentioned by Menzel and Morganti (2013), a

scenario for which the irregularity of inverting order statistics distribution does not rise. The

reason that our first estimator converges at an irregular cube-root-n rate is that we impose

weaker smoothness assumption on the valuation distribution, rather than the non-Lipschitz

continuous feature of the mapping.
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We illustrate our method using the California Highway Procurement auction data set. In

practice, it is common that researchers observe auction-specific characteristics.2 It is worth

noting that our method applies naturally if the observed auction-specific characteristics are

discrete-valued (or discretization of continuous variables) by conditioning on realizations.

The estimate will then be interpreted as conditional valuation quantiles on observed auction

characteristics. When the observed auction-specific characteristics are continuous, GPV and

MS propose to estimate the conditional valuation density by Kernel method, which suffers

the “curse of dimensionality” when the covariates are high dimensional. In Section 2.3, we

show our estimation procedure can also take GS’s estimator for bids quantile function as

an input and deliver a consistent and monotone conditional valuation quantile estimator for

each realization of the continuous covariates. Lastly, we can also use the homogenization

method proposed by Haile, Hong, and Shum (2003) and apply our estimation methods to the

homogenized bids. The homogenization approach requires additional additive separability

structure on how valuation depends on observed characteristics. As a result, it is easier to

compute and has a faster convergence rate.

The rest of the paper is organized as follows. We lay out the model and propose our

estimator in Section 2. We examine the performance of our estimator in Section 3. Section 4

is the empirical illustration. We conclude the paper in Section 5.

2. MODEL AND MAIN RESULTS

We consider the first-price sealed-bid auction model with independent private values. A

single and indivisible object is auctioned. We make the following assumptions.

Assumption 1. There are L → ∞ identical auctions, and for each auction, there are I

symmetric and risk neutral bidders. Their private values are i.i.d. draws from a common

distribution F(·).

2In general, the first price auction model is not identified if there is unobserved heterogeneity across auctions,
see Armstrong (2013b).
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Let the total number of bids be n = LI. Asymptotics are on the number of auctions, that

is, L→ ∞. The assumption that number of bidders I is constant across auctions is just for

simplifying notation; our analysis can be easily extended to conditional on I.

Assumption 2. F(·) is continuously differentiable over its compact support [v, v]. There

exists λ > 0 such that infv∈[v,v] f (v) ≥ λ > 0.

Assumption 2 only requires F(·) is continuously differentiable, which is weaker than the

twice continuously differentiability, as assumed in the literature, e.g., GPV and MS. It is

well known that the equilibrium strategy is

b = s(v|F, I) ≡ v− 1
F(v)I−1

∫ v

0
F(x)I−1dx.

GPV show that the first-order condition can be written as Equation (1). Haile, Hong, and

Shum (2003) represent this equation in terms of quantiles as in Equation (2). In this paper,

we consider the integrated quantile function of the valuation as in Equation (3).

Now let us first propose a tuning-parameter-free estimator for the valuation quantile

function. Let b(i) be the i-th order statistic of a sample of bids {bi}n
i=1. Employing

Equation (3), we construct a raw estimator Vn(·) for V(·) as follows. Let Vn(0) = 0. For

α ∈ { 1
n , 2

n , · · · , 1},

Vn (α) =
I − 2

n(I − 1)

nα

∑
i=1

b(i) +
1

I − 1
αb(nα).

For α ∈
(

j−1
n , j

n

)
, j = 1, · · · , n, define

Vn (α) = (j− αn)Vn

(
j− 1

n

)
+ (αn− j + 1)Vn

(
j
n

)
.

Note Vn(·) may not be convex in finite samples. Let V̂(·) be the g.c.m. of Vn(·). To

obtain a quantile estimator which respects the monotonicity property, we consider use the

left-derivative of V̂(·). Since Vn(·) is piecewise linear, so is V̂(·). Define Q̂v(0) = b(1)
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and for α ∈
(

j−1
n , j

n

]
, j = 1, · · · , n,

Q̂v(α) = n
{

V̂
(

j
n

)
− V̂

(
j− 1

n

)}
.

By definition, Q̂v(·) is a left-continuous and weakly increasing step function.

Constructing the g.c.m. V̂(·) for a piecewise linear function Vn(·) is computationally

easy. While many algorithms are proposed, the most widely used one is the Pooled Adjacent

Violators Algorithm (PAVA, see e.g. Robertson, Wright, Dykstra, and Robertson, 1988;

Groeneboom, Jongbloed, and Wellner, 2014). We can envision V̂(·) as a taut string tied to

the leftmost point (0, 0) and pulled up and under the graph of Vn(·), ending at the last point

(1, Vn(1)). See Appendix B for details.

Theorem 1. Suppose Assumptions 1 and 2 are satisfied at a given α0 ∈ (0, 1), then

n
1
3 (Q̂v(α0)−Qv(α0))

d→ C(α0) argmaxt

{
B(t)− t2

}
,

where C(α0) is a constant that depends on α0 and B is a two-sided Brownian motion

process.

Proof. See Appendix A.1. �

We have a few comments on Theorem 1. First, C(α0) depends on α0, g and Qb and is

estimable (detailed expression in Appendix A.1). To conduct inference on Qv(α0), one can

obtain the critical values by estimating C(α0) and simulating the one-dimensional Brownian

motion B, which is straightforward to implement, and an alternative way is subsampling

whose validity follows straightforwardly from Theorem 1. Second, the n1/3-consistency of

our quantile estimator is obtained under weak assumptions on value distribution F(·) and

without choosing any tuning parameters. It is slower than the optimal rate of n2/5 when F(·)
is twice continuously differentiable, as established in GPV. This is similar to the well-known

results in the literature on isotonic estimation: without imposing additional smoothness

assumptions on the model primitives and without introducing smoothing, one can at most
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get cube-root-n rate. Third, Theorem 1 shows that our estimator is consistent at quantile

level α ∈ [ε, 1− ε] for any fixed ε > 0. In addition, our estimator is super-consistent at

α0 = 0 by construction. To see this, note that in equilibrium, the bidder with the lowest

valuation bids his/her own valuation, which implies that Q̂v(0) = b(1)
p→ Qb(0) = Qv(0)

at a super-consistent rate under current assumptions. However, our estimator need not be

consistent at quantile levels at the right boundary 1. This is because the construction of

the g.c.m. starts from the left boundary 0 and tends to use one-sided information as it

approaches to the right boundary 1. In the context of isotonic regression, a common way

to correct the bias is to use the “penalized cusum diagram”, as suggested by Groeneboom,

Jongbloed, et al. (2013). Since our main target is imposing the monotonicity constraint and

using fewer tuning parameters, we leave this issue for future research.

In practice it is often useful to conduct joint inferences on a set of quantile levels. For

example, the test for common values in Haile, Hong, and Shum (2003) and test for different

models of entry in Marmer, Shneyerov, and Xu (2013) are characterized by stochastic

dominance relations between distributions. The following Corollary shows the quantile

estimator is independent across a fixed vector of quantile levels asymptotically.

Corollary 1. Let 0 < α1 < α2 < · · · < αJ < 1 be a vector of fixed quantile levels. Then

P
(
∩j=1,2,··· ,J{n

1
3 (Q̂v(αj)−Qv(αj)) ≤ zj}

)
= Πj=1,2,··· ,JP

(
C(αj) argmaxt{Bj(t)− t2} ≤ zj

)
,

where Bj, j = 1, 2, · · · , J, are independent two-sided Brownian motions.3

The result in Corollary 1 does not hold in general for quantile estimations. It is useful

when researchers would like to compare multiple quantile levels simultaneously, which

in practice, is a useful approximation for comparing the whole distribution. One possible

choice is the multiple testing procedure of Holm (1979), which controls the familywise error

3Please see the online supplement materials (Luo and Wan, 2016) for the proof of all corollaries in this paper.
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rate of one false rejection. For example, one can calculate the p-vales p̂j, j = 1, 2, · · · J
for each of the J hypothesizes. Rank all the p-values such that p̂(1) ≤ p̂(2) ≤ · · · ≤ p̂(J).

Let α be the significance level. If p̂(1) ≥ α/J, then no hypothesis is rejected; otherwise

the procedure rejects hypothesizes H(1), · · · , H(k), where k is the largest integer such that

p̂(j) ≤ α/(J − j + 1). One important source of conservativeness of Holm’s procedure—

dependence among p-values—does not rise here.

Theorem 1 also provides a basis for constructing a simple trimming-free smoothed

quantile estimator that converges at the optimal rate of GPV under appropriate smoothness

conditions as listed in Assumption 3 below. Numerous smooth quantile function estimators

have been studied, see, e.g., Nadaraya (1964) for inverting a kernel distribution function

estimator, Harrell and Davis (1982) for using generalized order statistics and Cheng (1995)

for a Bernstein polynomial estimator. We adopt the kernel estimator used in Yang (1985),

which dates back to Parzen (1979). Specifically, for any 0 < α < 1, let

q̂v (α) =
∫ 1

0

1
h

K
(

α− u
h

)
Q̂v(u)du, (4)

where h is a bandwidth and K(·) is a kernel with a compact support. Note that by construc-

tion, q̂v(·) is necessarily increasing since Q̂v(·) is increasing.

Assumption 3. The valuation density f is continuously differentiable.

Assumption 4. Let K′ be the first order derivative of K. Then K satisfies (1) K has com-

pact support and take value zero on the boundary, (2)
∫

K′(u)du =
∫

u2K′(u)du = 0,

(3)
∫

uK′(u)du = −1, (4)
∫

u3K′(u)du 6= 0.

Assumption 3 requires same smoothness as in GPV and MS. Assumption 4 is satisfied by

commonly used kernel functions such as second order Epanechnikov or Triweight Kernels.

Theorem 2. Suppose Assumptions 1 to 4 are satisfied, and let α ∈ (0, 1),
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(i) if nh5 → c ∈ (0, ∞), then
√

nh(q̂v(α)−Qv(α))
d→ N(B, V ), where

B = −
(√

cQ′′b (α)
3

+
c2α

6(I − 1)
Q
′′′
b (α)

) ∫
u3K′(u)du, V =

α2

c(I − 1)2 (Q
′
b(α))

2
∫

K2(u)du.

(ii) if nhr → c for some 5 < r < 2, then

√
nh(q̂v(α)−Qv(α))

d→ N(0, V ).

Proof. See Appendix A.2. �

We have some remarks on Theorem 2. First, the variance and bias depend on c analytically.

One can estimate the optimal choice of c that minimizes the asymptotic mean squared error,

provided that the model has enough smoothness for consistent estimation of Q
′′′
b (·). Part

(ii) of the theorem suggests that we can use under-smoothing to eliminate the asymptotical

bias. Second, note from the quantile representation Equation (2) that the valuation quantile

function is the sum of the bid quantile and a term containing quantile derivative (also known

as quantile density function). It is the latter which determines the convergence rate of our

estimator since the bid quantile can be estimated at root-n rate. When there is sufficient

amount of smoothness, the bid quantile derivative can be estimated at a faster rate, which

results in a faster convergence rate than what we obtained in Theorem 1. Third, another

way of estimating the quantile derivative is to use the relationship Q′b(α) = 1/g(Qb(α))

and plug in a kernel density estimator for g, which is the method adopted in Marmer,

Shneyerov, and Xu (2013). It is quite interesting to note that by choosing the two bandwidths

proportionally, the asymptotic variances of our estimator and Marmer, Shneyerov, and Xu

(2013) are identical in the current context.4

In the rest of the section, we discuss several interesting extensions of our method.

4Marmer, Shneyerov, and Xu (2013) consider entry. In our model all the potential bidders enter with probability
one. Let hMSX be the bandwidth of Marmer, Shneyerov, and Xu (2013) and hLW be ours. Then the equality of
variances holds by letting hMSX = hLW Q′(α0) and observing that Lhr → 1⇔ nhr → I since n = LI and
I is fixed. As a matter of fact, taking derivative of a smoothed quantile estimator and taking reciprocal of a
kernel density estimator are two general approaches to estimate quantile derivatives. For general comparison
of these two approaches, see Jones (1992).
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2.1. Generalization to procurement auctions. Our method can be easily adapted to first

price procurement auction settings. Suppose that there are I bidders competing for a contract

in a first-price sealed bid auction. For each auction, every bidder i simultaneously draws

an i.i.d. cost ci from a common distribution F(·) and submits a bid to maximize his/her

expected profit E[(bi − ci)1(bi ≤ s(minj 6=i cj))]. The lowest bid wins the contract, and the

bidder is paid the amount he/she bid.

Differentiating the expected profit with respect to bi gives the following system of first-

order differential equations that define the equilibrium strategy s(·):

(bi − ci)(I − 1)
f [s−1(bi)]

[1− F(s−1(bi))]s′[s−1(bi)]
= 1,

which can be rewritten as

ci = bi −
1

I − 1
1− G(bi)

g(bi)
.

Therefore, the quantile relationship becomes

Qc(α) = Qb(α)− (1− α)/[(I − 1)g(Qb(α))],

where Qc(·) represents the cost quantile function. The integrated quantile function becomes

C(β) ≡
∫ β

0
Qc(α)dα =

I − 2
I − 1

∫ β

0
Qb(α)dα− 1

I − 1
Qb(β)(1− β)+

1
I − 1

Qb(0). (3’)

To impose the monotonicity constraint, we consider the g.c.m. of the empirical counterpart

of the following function:

C̃(β) ≡ C(1− β),

which is the reflection of the integrated quantile function over the line β = 1/2. The

idea is to utilize the prior information that the maximum possible bid equals the maximum

cost in procurement auctions, i.e. Qb(1) = Qc(1). As the pseudo values are constructed

sequentially, consider the g.c.m. of C̃(·) is preferable to C(·). To see this, note that [Ĉ(1)−
Ĉ(n−j

n )]/(j/n) = I−2
I−1 ∑N

k=n−j+1 b(k)/j + 1
I−1 b(N−j) and [Ĉ(1/n) − Ĉ(0)]/(1/n) =

b(1). By definition, the preferred method starts with the largest pseudo valuation ĉ(n) =
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I−2
I−1 b(n) +

1
I−1 b(n−1). Note the right-hand side converges to Qb(1) = Qc(1) at a fast rate.

On the other hand, considering the g.c.m. of C(·), we would start with an estimate of the

smallest pseudo valuation ĉ(1) ≤ b(1). Although b(1) converges to Qb(0) at a fast rate, it

does not guarantee that ĉ(1) converges to Qc(0) at a fast rate.

For estimation, we construct a raw estimator C̃n(·) for C̃(·) by plugging in the bid

quantile estimator. We then take the g.c.m. of C̃n(·). The pseudo cost of the bidder whose

bid is the jth highest is constructed as the negative of the right-derivative of the g.c.m. at

β = (j− 1)/n, where j = 1, . . . , n. A smooth estimator for the cost quantile function

follows naturally: q̂c (α) =
∫ 1

0
1
h K
(

α−u
h
)

Q̂c(u)du. Moreover, we can also apply a kernel

density estimator on the sample of pseudo costs: f̂ (c) = 1
nh ∑n

j=1 K
(

ĉj−c
h

)
.

2.2. Estimating the valuation distribution function. Sometimes an analyst might be

more interested in the valuation distribution function than the quantile function. Estimators

of valuation distribution function can be obtained by inverting Q̂ and q̂, respectively. Note

q̂ is strictly monotone and continuous. The following corollary establishes their limiting

distributions.

Corollary 2. Let v0 ∈ (v, v) and α0 = F(v0).

(i) Suppose the conditions of Theorem 1 are satisfied. Define F̂(v0) = sup{α : Q̂v(α) ≤
v0}. Then,

n1/3(F̂(v0)− F(v0))
d→ f (v0)C(α0) argmaxt

{
B(t)− t2

}
,

where C(α0) and B are as defined in Theorem 1.5

(ii) Suppose that the conditions of Theorem 2-(ii) are satisfied. Define F̂S(v0) = q̂−1(v0).

Then,
√

nh(F̂S(v0)− F(v0))
d→ N(0, ( f (v0))

2V ).
5Under a similar set of smoothness assumptions to ours, Armstrong (2013a) proposes to estimate the bidding
strategy by maximizing the sample analog of the bidder’s objective function and subsequently estimates
the valuation distribution function at cube-root-n rate. Our approach is based on the integrated-quantile
representation of the first order condition and imposes monotonicity restriction. Both estimators are tuning-
parameter-free and robust to the degree of smoothness in the model.
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To construct an estimator for valuation density, we can first construct a sample of pseudo

valuations employing Q̂v(·). Let v̂j = Q̂v(j/n), where j = 1, . . . , n. Second, we apply a

kernel density estimator on the sample of pseudo values {v̂j}N
j=1: for v ∈ (v, v)

f̂ (v) =
1

nh

n

∑
j=1

K
(

v̂j − v
h

)
.

Since our first step estimator Q̂v(·) is tuning-parameter-free, our estimator of the valuation

density function requires no trimming and only one tuning parameter h.

2.3. Incorporating auction level heterogeneity. In practice, it is of empirical interest to

incorporate auction-level observed heterogeneity. In this subsection, we discuss several

ways of incorporating such heterogeneity.

In many applications, researchers are interested in the valuation quantile/distribution

conditional on discrete or discretization of continuous variables. For example, in a procure-

ment auction, researchers may be interested in the valuation (or cost) quantiles of “large”

projects, which is defined by whether engineers’ estimates (a continuous variable) exceed

certain cutoff values. In these cases, our estimation procedure can be directly applied to

corresponding subsamples, and the estimates can be interpreted as the conditional valuation

quantile.

Our method can also be applied together with the homogenization method (see Haile,

Hong, and Shum, 2003)–one common method of controlling both continuous and discrete

observed heterogeneity in the empirical auction literature. The homogenization approach as-

sumes valuations depend on auction-level characteristics in an additively (or multiplicatively)

separable form, which implies the bids depend on characteristics in the same separable

way. Under such an assumption, the effect of auction level characteristics can be controlled

by focus on the regression residuals (called homogenized bids) of the original bids (or

log of bids in the multiplicative case) on those covariates. Since our estimators converge

at rates which are slower than root-n, their asymptotic properties are not affected by the

homogenizing step.
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If researchers would like to be agnostic about how valuations depend on the continuous

covariates X, and if they are interested in the valuations quantiles conditional on a particular

realization x, our method can also be applied with modification. In particular, since the

quantile representation holds conditional on X, we can define the (sample) conditional

integrated-quantile functions as

Vn(β|X = x) =


I−2

n(I−1) ∑
nβ
i=1 Qn,b(i/n|X = x) + 1

I−1 βQn,b(nβ|X = x), β ∈
{

1
n , · · · , 1

}

(j− βn)Vn

(
j−1

n |X = x
)
+ (βn− j + 1)Vn

(
j
n |X = x

)
, β ∈

(
j−1

n , j
n

)
where Qn,b(α|X = x) is a suitable estimator for the conditional quantile function of bids

given X = x. Note that by definition, Vn(·|X = x) is still a piecewise linear function and

its g.c.m., denoted by V̂(·|X = x) is as easy to compute as in the unconditional case. Our

estimator for conditional valuation quantile function, denoted by Q̂v(·|X = x), is then

defined as the piecewise derivative of V̂(·|X = x).

For Qn,b(α|X = x), we adopt the local polynomial estimator proposed by GS and estab-

lish the convergence rate of our estimator based on GS’s uniform Bahadur representation for

the conditional quantile function and its derivatives.

Corollary 3. Suppose that (i) X has a continuously differentiable density function which is

bounded away from zero over its compact support X ⊂ Rd; (ii) for every x, the conditional

valuation distribution F(·|x) is continuously differentiable over its compact support [v, v].

There exists λ(x) > 0 such that infv∈[v,v] f (v|x) ≥ λ(x) > 0; (iii) the bandwidth for the

local polynomial regression is chosen such that h = cn−r for some r satisfying 1
d+3 < r < 1

d .

The kernel function is chosen to satisfy Assumption 4. Then for a given x in the interior of

X and α0 ∈ (0, 1),

3√
nhd(Q̂v(α0|X = x)−Qv(α0|X = x)) d→ C̃(α0, x) argmaxt

{
B(t)− t2

}
,

where C̃(α0, x) is a constant that depends on α0, x and the kernel function.
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In the presence of covariates, the rate of convergence of our first stage estimator is 3
√

nhd,

which is slower than the optimal n2/(5+d) rate obtained by GPV and MS under stronger

smoothness assumption on F(·|x); when there is no covariates (i.e. d = 0), this reduces to

the 3
√

n versus n2/5 comparison in the homogeneous auction case.

3. SIMULATION

To study the finite sample performance of our estimation method, we conduct Monte

Carlo experiments. We adopt the setup of the Monte Carlo simulations from MS. The true

valuation distribution is

F(v) =


0 if v < 0,

vγ if 0 ≤ v ≤ 1,

1 if v > 1,

where γ > 0. Such a choice of private value distributions is convenient since the distributions

correspond to linear bidding strategies as:

s(v) =
(
1− 1

γ(I − 1) + 1
)
· v. (5)

We consider I = 7 bidders, n = 4200 and γ ∈ {0.5, 1, 2}. The number of Monte Carlo

replications is 1000. For each replication, we first generate randomly n private values from

F(·). Second, we obtain the corresponding bids bi employing the linear bidding strategy

(5). Third, we construct a raw estimator Vn(·) for V(·). Let V̂(·) be the g.c.m. of Vn(·).
Fourth, we obtain a sample of pseudo values v̂j as the left-derivative of V̂(·) at j/N and

estimate the valuation density function using a kernel estimator.

We compare our method with MS and GPV. For the MS and GPV methods, we use

the same setups as in MS: the tri-weight kernel function for the kernel estimators and the

normal rule-of-thumb bandwidths in estimation of densities. For our method, we also use the

tri-weight kernel function for the kernel estimators and the normal rule-of-thumb bandwidth
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in estimation of f : h = 1.06σ̂vn−1/7, where σ̂v is the estimated standard deviation of the

constructed pseudo valuations {v̂j}N
j=1.

Table 1 shows the simulation results for density estimation. When the distribution is

skewed to the left (γ = 0.5), our method improves MSE and MAD but seems to produce

larger biases near the boundaries. While the MS and GPV methods behave similarly in

terms of MSE and MAD, the former seems to produce larger biases. When the distribution

is uniform or skewed to the right (γ = 1 or 2), our method performs similarly to the GPV

method, both of which seem to perform slightly better than the MS method.

4. EMPIRICAL ILLUSTRATION

In this section, we implement our method using the California highway procurement

data. In particular, we analyze the data used in Krasnokutskaya and Seim (2011). It

covers highway and street maintenance projects auctioned by the California Department

of Transportation (Caltrans) between January 2002 and December 2005. We focus on the

procurement auctions with 2 to 7 bidders. For each auction, the data contains the engineer’s

estimate of the project’s total cost, the type of work involved, the number of days allocated

to complete the project, and the identity of the bidders and their bids.

Following Haile, Hong, and Shum (2003), we homogenize the bids before implementing

our method to control for observable heterogeneity for each sample (with the same number

of bidders). In particular, we regress the logarithm of the bid (logb) on the logarithm of

the engineer’s estimate (logX), the logarithm of the number of days (logDays), and the

project type dummies. Table 2 displays the results. The homogenized bids (bid_new) are

calculated as the exponential of the differences between the logarithm of the original bids

and the demeaned fitted values of the regression. Table 3 displays the mean and standard

deviation of the original and homogenized bids.

We estimate a first price auction model with each sample. Figure 1 displays the estimated

inverse bidding strategies and the estimated valuation quantile functions without and with

smoothing, respectively. The curves represented are: from the sample with 2 bidders (yellow

17



TABLE 1. Simulation Results for Density Estimation

v 0.2 0.3 0.4 0.5 0.6 0.7 0.8
γ = 0.5 MSE MS 0.0068 0.0073 0.0103 0.0131 0.0132 0.0171 0.0202

GPV 0.0056 0.0072 0.0101 0.0132 0.0139 0.0188 0.0218
Ours 0.0044 0.0057 0.0080 0.0100 0.0109 0.0140 0.0163

Bias MS -0.0041 -0.0019 -0.0086 -0.0029 -0.0159 -0.0156 -0.0185
GPV 0.0038 0.0018 -0.0034 0.0037 -0.0019 0.0025 0.0072
Ours 0.0120 0.0043 -0.0016 0.0037 -0.0022 0.0038 0.0056

MAD MS 0.0672 0.0689 0.0806 0.0907 0.0908 0.1027 0.1094
GPV 0.0611 0.0688 0.0800 0.0925 0.0940 0.1106 0.1186
Ours 0.0543 0.0608 0.0711 0.0806 0.0825 0.0952 0.1030

γ = 1 MSE MS 0.0036 0.0050 0.0066 0.0076 0.0102 0.0122 0.0148
GPV 0.0025 0.0035 0.0050 0.0060 0.0082 0.0102 0.0127
Ours 0.0023 0.0033 0.0049 0.0061 0.0083 0.0102 0.0129

Bias MS 0.0003 0.0000 -0.0047 -0.0035 0.0014 -0.0060 -0.0113
GPV 0.0000 0.0015 -0.0023 -0.0011 0.0053 0.0007 -0.0021
Ours 0.0000 0.0016 -0.0027 -0.0020 0.0056 0.0007 -0.0026

MAD MS 0.0479 0.0557 0.0647 0.0688 0.0800 0.0892 0.0961
GPV 0.0402 0.0470 0.0563 0.0610 0.0724 0.0806 0.0904
Ours 0.0389 0.0459 0.0557 0.0615 0.0730 0.0812 0.0901

γ= 2 MSE MS 0.0016 0.0025 0.0037 0.0063 0.0085 0.0108 0.0154
GPV 0.0011 0.0016 0.0025 0.0044 0.0060 0.0078 0.0112
Ours 0.0011 0.0017 0.0028 0.0049 0.0069 0.0091 0.0130

Bias MS -0.0006 -0.0031 -0.0008 -0.0013 -0.0033 -0.0085 -0.0001
GPV 0.0005 -0.0020 0.0007 0.0002 -0.0004 -0.0044 0.0021
Ours 0.0006 -0.0019 0.0013 0.0002 -0.0006 -0.0048 0.0020

MAD MS 0.0320 0.0394 0.0481 0.0637 0.0739 0.0830 0.1008
GPV 0.0263 0.0321 0.0396 0.0528 0.0624 0.0707 0.0864
Ours 0.0266 0.0329 0.0415 0.0555 0.0668 0.0767 0.0929

solid line); 3 bidders (magenta dash-dot line); 4 bidders (cyan solid line); 5 bidders (red

dash-dot line); 6 bidders (green solid line); 7 bidders (blue dash-dot line), and the 45-degree

line (black dash line).

All inverse bidding strategies are increasing. The valuation quantile functions seem to be

close except for I = 2. Table 3 displays some summary statistics of the estimated pseudo

costs. The auctions with two bidders tend to be less costly to finish in percentage terms. In
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TABLE 2. Regression Results

2 3 4 5 6 7
logX 0.978∗∗∗ 0.966∗∗∗ 1.015∗∗∗ 0.957∗∗∗ 0.932∗∗∗ 0.938∗∗∗

(34.11) (56.68) (50.59) (51.81) (49.91) (56.58)

logDays 0.00650 0.00473 -0.00271 0.0901∗∗∗ 0.138∗∗∗ 0.00430
(0.15) (0.25) (-0.13) (4.76) (6.31) (0.18)

type Yes Yes Yes Yes Yes Yes
n 206 474 564 470 402 252
adj. R2 0.871 0.906 0.857 0.929 0.930 0.947
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

TABLE 3. Summary Statistics

2 3 4 5 6 7 Total
bid 993.8 967.6 757.7 1136.9 990.9 1769.7 1042.8

(1644.5) (1935.9) (843.7) (4584.7) (3350.3) (7288.0) (3595.9)

bid_new 652.5 587.7 566.3 508.9 464.4 478.5 540.0
(208.4) (190.6) (178.6) (129.0) (135.0) (137.4) (174.0)

cost 402.1 468.0 477.8 453.8 423.6 441.7 451.5
(259.6) (223.6) (218.9) (164.4) (156.3) (159.5) (200.0)

profit 250.4 119.7 88.46 55.09 40.79 36.81 88.59
(75.81) (77.65) (60.62) (49.56) (42.83) (46.68) (83.51)

profit rate 0.439 0.244 0.197 0.136 0.109 0.0978 0.190
(0.213) (0.208) (0.194) (0.167) (0.153) (0.158) (0.206)

Std. Dev. in parentheses. pro f it = bid_new− cost. Profit rate=profit / bid.

fact, the generated profit rate is almost twice that of the sample with three bidders. As the

auction becomes more competitive when the number of bidders increases from two to seven,

the profit rate decreases from 44% to about 10%.
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ŝ−1(·) Q̂v(·) q̂v(·)

FIGURE 1. Estimation results

5. CONCLUSION

This paper considers nonparametric estimation of first-price auction models based on an

integrated-quantile representation of the first-order condition. The monotonicity of bidding

strategy is imposed in a natural way. We propose two estimators for the valuation quantile

function and derive their asymptotics: a non-smoothed estimator that is tuning-parameter-

free and a smoothed one that is trimming-free. We show the former is cube-root consistent

under weaker smoothness assumptions, and the latter achieves the optimal rate of GPV under

standard ones. Monte Carlo simulations show our method works well in finite samples. We

apply our method to data from the California highway procurement auctions.
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APPENDIX A. PROOF OF MAIN RESULTS

A.1. Proof of Theorem 1. For a generic c > 0, let Zn(c) = argmint∈[0,1]{Vn(t)− ct}. If the

argmin is a set, then we take the sup of the set. For any α0 ∈ (0, 1), by van Es, Jongbloed, and

Zuijlen (1998, Theorem 2), the two following events are equivalent

Zn(c) ≥ α0 ⇔ Q̂v(α0) ≤ c.

Therefore, we have for a fixed α0 ∈ [0, 1)

n
1
3 (Q̂v(α0)−Qv(α0)) ≤ z⇔ Q̂v(α0) ≤ zn−

1
3 + Qv(α0)⇔ Zn(zn−

1
3 + Qv(α0)) ≥ α0

i⇔ argmin
s∈[0,1]

{Vn(s)− (zn−
1
3 + Qv(α0))s} ≥ α0

ii⇔ argmin
{t:α0+tn−

1
3 ∈[0,1]}

{Vn(α0 + tn−
1
3 )− (zn−

1
3 + Qv(α0))(α0 + tn−

1
3 )} ≥ 0

iii⇔ argmin
t∈[−α0n

1
3 ,(1−α0)n

1
3 ]

{Vn(α0 + tn−
1
3 )−Vn(α0)−Qv(α0)tn−

1
3 − ztn−

2
3 } ≥ 0

iv⇔ argmin
t∈[−α0n

1
3 ,(1−α0)n

1
3 ]

{n 2
3 Vn(α0 + tn−

1
3 )− n

2
3 Vn(α0)−Qv(α0)tn

1
3 − zt} ≥ 0,

where (i) holds by definition of Zn, (ii) holds by changing variable s = α0 + tn−
1
3 , and (iii) and (iv)

hold because the argmin stays unchanged when constants are multiplied or added to, or subtracted

from the objective function.

Let Wn(t) = n
2
3

[
Vn(α0 + tn−

1
3 )−Vn(α0)−Qv(α0)tn−

1
3

]
, then the above displayed equation

reduces to

n
1
3 (Q̂v(α0)−Qv(α0)) ≤ z⇔ argmin

t∈[−α0n
1
3 ,(1−α0)n

1
3 ]

{Wn(t)− zt} ≥ 0

It remains to analyze the asymptotic behavior of Wn(t). Decompose Wn as following

Wn(t) = n
2
3

[
Vn(α0 + tn−

1
3 )−Vn(α0)

]
− n

2
3

[
V(α0 + tn−

1
3 )−V(α0)

]
+ n

2
3

[
V(α0 + tn−

1
3 )−V(α0)−Qv(α0)tn−

1
3

]
.
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The second component equals to 1
2 Q′v(α0)t2 + o(1) by Assumption 2. As shown by Lemma 3 in

the Supplement Material (Luo and Wan, 2016), the first right hand side term converges weakly to
α0

(I−1)
√

g(Qb(α0))
B, where B is a two sided Brownian Motion. Therefore, we have

Wn(t)
w→ α0

(I − 1)g(Qb(α0))
B(t) +

1
2

Q′v(α0)t2.

To simplify the notation, denote the constants in front of B and t2 with a and b, respectively. Note

that a > 0 and b > 0. By Van Der Vaart and Wellner (1996, Theorem 3.2.2) and the property of

Brownian motion,

argmin
t∈[−α0n

1
3 ,(1−α0)n

1
3 ]

{Wn(t)− zt} d→ argmin
t∈R

{aB(t)+ bt2− zt} d∼ argmin
t∈R

{aB(t)+ b(t− z
2b

)2}

d∼ argmin
t∈R

{ a
b

B(t) + (t− z
2b

)2} d∼
( a

b

)2/3
argmin

t∈R

{B(t) + t2}+ z
2b

,

where d∼ denote equivalence in distribution. Therefore,

P
(

n
1
3 (Q̂v(α0)−Qv(α0)) ≤ z

)
→ P

(( a
b

)2/3
argmin

t∈R

{B(t) + t2}+ z
2b
≥ 0

)

= P

(
argmin

t∈R

{B(t) + t2} ≥ − z
2b

(
b
a

)2/3
)

= P

(
argmaxt∈R{B(t)− t2} ≤ z

2b

(
b
a

)2/3
)

Thus we can conclude that for C(α0) = 2a2/3b1/3,

n
1
3 (Q̂v(α0)−Qv(α0))

d→ C(α0) argmaxt∈R{B(t)− t2}.

A.2. Proof of Theorem 2. For notation simplicity, let Kh(·) = (1/h)K(·/h). Then

q̂v(α) =
∫

Kh (α− u) dV̂(u) =
∫

Kh (α− u) dVn(u) +
∫

Kh (α− u) d(V̂ −Vn)(u)

=
∫

Kh (α− u) dVn(u) +
1
h

∫
K′h(α− u)(V̂(u)−Vn(u))du

=
∫

Kh (α− u) dVn(u) +
1
h

∫
K′h(t)(V̂(α + ht)−Vn(α + ht))dt

=
∫

Kh (α− u) dVn(u) + Op((n/ log n)−2/3/h) (6)
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where the third inequality holds by integration by parts, and the last equality holds because the sup

distance from Vn to its g.c.m. V̂ is of order Op((n/ log n)−2/3) by Lemma 8 in the Supplement

Material (Luo and Wan, 2016). Therefore it is then sufficient to focus on the first right hand side

term. Since Qv,n is piecewise flat and is left-continuous, we have

∫
Kh (α− u) dVn(u)−Qv(α) =

∫
Kh (α− u) Qv,n(u)du−Qv(α)

=
n

∑
i=1

b(i)
∫ i

n

i−1
n

Kh (α− u) du−Qb(α)︸ ︷︷ ︸
An(α)

+
1

I − 1

(
n

∑
i=1

(i− 1)(b(i) − b(i−1))
∫ i

n

i−1
n

Kh (α− u) du− α

g(Qb(α))

)
︸ ︷︷ ︸

Bn(α)

.

An(α) is the standard smooth quantile estimator. Yang (1985, Theorem 1) shows that when

nh5 → c,
√

nhAn(α)
p→
√

cQ′′b (α)
∫

u2K(u)du = −
√

c
3 Q′′b (α)

∫
u3K′(u)du, and when nh5 → 0,

√
nhAn(α)

p→ 0.

It remains to consider the Bn part. Define B̃n(α) as

B̃n(α) =
n

∑
i=1

αn(b(i) − b(i−1))
∫ i

n

i−1
n

Kh (α− u) du− α

g(Qb(α))
.

Note first when n is large,

n
n

∑
i=1

(b(i) − b(i−1))
∫ i

n

i−1
n

Kh (α− u) du = n
n−1

∑
i=1

b(i)
∫ i

n

i−1
n

Kh (α− u) du

− n
n−1

∑
i=1

b(i)
∫ i+1

n

i
n

Kh (α− u) du + nb(n)
∫ 1

n−1
n

Kh (α− u) du− nb(0)
∫ 1/n

0
Kh (α− u) du

≈ n
n−1

∑
i=1

b(i)
∫ i

n

i−1
n

Kh (α− u) du− n
n−1

∑
i=1

b(i)
∫ i+1

n

i
n

Kh (α− u) du.

The last equality holds because under Assumption 4, when n is large, Kh (t) = 0 for any t 6= 0.

Recall that Kh(·) = (1/h)K(·/h), we know that

B̃n(α) = αn
n−1

∑
i=1

b(i)

{∫ i
n

i−1
n

Kh (α− u) du−
∫ i+1

n

i
n

Kh (α− u) du

}

=
α

h2

n−1

∑
i=1

b(i)
∫ i

n

i−1
n

K′
(

u− α

h

)
du + Op(1/n).
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By Welsh (1988, main theorem, part (ii)), under Assumptions 3 and 4 and nh5 → c,
√

nh(B̃n(α)−
α

g(Qb(α))
)

d→ N(B, V ), where

B = − c2α

6(I − 1)
Q
′′′
b (α)

∫
u3K′(u)du V =

α2

c(I − 1)2 (Q
′
b(α))

2
∫

K2(u)du.

When h = cn−r for some 1
5 < r < 1

2 ,
√

n1−r(B̃n(α)−Qv(α))
d→ N(0, V ).

Lastly, let z(i) = n(b(i) − b(i−1)) and wi = ((i− 1)/n− α)
∫ i

n
i−1

n
Kh(u− α)du. Observe that

Bn − B̃n = ∑i z(i)wi. By Lemma 9 in the Supplement Material (Luo and Wan, 2016), Bn − B̃n is of

order op(1/
√

nh). Therefore we can conclude that
√

nhBn(α)
d→ N(B, V ).

APPENDIX B. COMPUTE THE GREATEST CONVEX MINORANT OF Vn(·)

We now describe how to compute the greatest convex minorant of Vn(·).

First, consider the coordinate vectors of the piecewise linear function Vn(·): {(0, 0),(1/n, Vn(1/n)),

. . ., (1, Vn(1))}. We find the smallest slope of each (j/n, Vn(j/n)) with respect to the origin, which

defines the first partition on the g.c.m.. Let j1 = argminj∈{1,...,n}
Vn(j/n)−0

j/n−0 . The first partition is the

line segment connecting (0, 0) and (j1, Vn(j1/n)).

Second, we find the next smallest slope, after removing the first partition from further con-

sideration. In particular, consider the coordinate vectors {(j1, Vn(j1/n)), . . . , (1, Vn(1))}. Let

j2 = argminj∈{j1+1,...,n}
Vn(j/n)−Vn(j1/n)

j/n−j1/n . The second partition is the line segment connecting

(j1, Vn(j1/n)) and (j2, Vn(j2/n)).

We continue in this manner until we reach the end of the points (1, Vn(1)). The resulting co-

ordinate vectors {(0, 0), (j1, Vn(j1/n)), (j2, Vn(j2/n)), . . . , (1, Vn(1))} define the greatest convex

minorant of Vn(·), which is also piecewise linear.
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