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ABSTRACT. This supplement provides the details of the proofs which were omitted from

the main text. Section 1 provides auxiliary lemmas for the proof of Theorem 1. Section 2

provides auxiliary lemmas for the proof of Theorem 2. The proofs to corollaries are collected

in Section 3.

We first re-introduce the assumptions made in the main text.

Assumption 1. There are L → ∞ identical auctions, and for each auction, there are I

symmetric and risk neutral bidders. Their private values are i.i.d. draws from a common

distribution F(·).

Assumption 2. F(·) is continuously differentiable over its compact support [v, v]. There

exists λ > 0 such that infv∈[v,v] f (v) ≥ λ > 0.

Assumption 3. The valuation density f is continuously differentiable.

Assumption 4. Let K′ be the first order derivative of K. Then K satisfies (1) K has com-

pact support and take value zero on the boundary, (2)
∫

K′(u)du =
∫

u2K′(u)du = 0,

(3)
∫

uK′(u)du = −1, (4)
∫

u3K′(u)du 6= 0.

1. AUXILIARY LEMMAS FOR THEOREM 1

Lemma 1. Suppose that Assumptions 1 and 2 hold, then for any α0 ∈ (0, 1) and uniformly

over t ∈ T , where T is a compact subset of R,

n2/3

{∫ α0+t/n1/3

α0

Qb,n(τ)dτ −
∫ α0+t/n1/3

α0

Qb(τ)dτ

}
p→ 0.
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Proof. Assumption 2 implies that Qb is twice continuously differentiable (see Guerre,

Perrigne, and Vuong, 2000, Proposition 1-(iv)). By the Bahadur representation for quantile

functions (see, e.g. Bahadur, 1966; Kiefer, 1967), we know that uniform in τ ∈ [δ, 1− δ],

Qb,n(τ)−Qb(τ) =
τ − 1

n ∑i 1[bi ≤ Qb(τ)]

g(Qb(τ))
+ Oa.s.

(
n−3/4(log n)1/2(log log n)1/4

)
.

Since α0 ∈ (0, 1), we have

n2/3
∫ α0+t/n1/3

α0

(Qb,n(τ)−Qb(τ)) dτ = n2/3
∫ α0+t/n1/3

α0

(
τ − 1

n ∑i 1[bi ≤ Qb(τ)]

g(Qb(τ))

)
dτ+ op(1)

= n2/3
∫ Qb(α0+t/n1/3)

Qb(α0)

(
F(u)− 1

n ∑
i

1[bi ≤ u]

)
du + op(1)

=
1√
n ∑

i
n1/6

∫ Qb(α0+t/n1/3)

Qb(α0)
(F(u)− 1[bi ≤ u]) du + op(1)

=
1√
n ∑

i
ξn(bi, t) + op(1),

where ξn(bi, t) = n1/6
∫ Qb(α0+t/n1/3)

Qb(α0)
(F(u)− 1[bi ≤ u]) du. It is sufficient to show that

1√
n ∑i ξn(bi, t) converges uniformly to zero in probability.

Note that E[ξn(bi, t)] = 0 and the summand are i.i.d.. For each n, define a class of

functions indexed by t: Ξn ≡ {ξn(·, t) : t ∈ T }. Then we can have the following

observations.

(i) Let t∗ = argmaxt∈T |Qb(α0 + t/n1/3)− Qb(α0)| and let ξ̄(b) ≡ n1/6|Qb(α0 +

t∗/n1/3)− Qb(α0)|(F(u)− 1[b ≤ u]). Then ξ̄(b) is an envelope function for Ξn. We

also have Eξ̄2(b) = O(1) since |Qb(α0 + t∗/n1/3)−Qb(α0)| = O(n−1/3).

(ii) For any ε > 0, we have E[ξ̄2(b)1[ξ̄(b) > ε
√

n]] = o(1). This is because ξ̄(b) >

ε
√

n if and only if |Qb(α0 + t∗/n1/3) − Qb(α0)|(F(u) − 1[b ≤ u]) > εn1/3 and the

latter is a probability event with probability approaches zero, whereas E[ξ̄2] is bounded.

(iii) For any εn ↓ 0, there is sup(t,s)∈T 2:|t−s|≤εn
E{ξn(b, t)− ξn(b, s)}2 = o(1). To

verify this claim, assume without loss of generality that t > 0 and s < 0. Then ξn(b, t)−
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ξn(b, s) = n1/6
∫ Qb(α0+t/n1/3)

Qb(α0+s/n1/3)
(F(u)− 1[bi ≤ u]) du and almost surely

{ξn(b, t)− ξn(b, s)}2 = n1/3

{∫ Qb(α0+t/n1/3)

Qb(α0+s/n1/3)
(F(u)− 1[bi ≤ u]) du

}2

≤ n1/3

{∫ Qb(α0+t/n1/3)

Qb(α0+s/n1/3)
|F(u)− 1[bi ≤ u]| du

}2

≤ 4n1/3
{

Qb(α0 + t/n1/3)−Qb(α0 + s/n1/3)
}2

= n−1/3O(|t− s|),

where the second inequity holds because |F(u)− 1[bi ≤ u]| ≤ supu F(u) + 1 ≤ 2. The

claim is therefore verified.

(iv) Let N (ε, Ξn, L2(P)) be the L2-covering number for Ξn with respect to probability

measure P , then for every εn ↓ 0, we have supP∗
∫ εn

0

√
log N (ε‖ξ̄(b)‖P∗,2, Ξn, L2(P∗))dε =

o(1). This claim holds by observing that ξb,t is continuously differentiable with respect to

t and hence Ξn belongs to the parametric class (see Van der Vaart, 2000, Example 19.7),

which implies the convergences of the integral.

(v) We derive the limit of the covariance function. Take t, s ∈ T ,

E[ξn(bi, t)ξn(bi, s)] = E

[
n1/3

∫ Qb(α0+t/n1/3)

Qb(α0)
1[bi ≤ u]du

∫ Qb(α0+s/n1/3)

Qb(α0)
1[bi ≤ u]du

]
+ o(1)

= n1/3
∫ Qb(α0+t/n1/3)

Qb(α0)

∫ Qb(α0+s/n1/3)

Qb(α0)
E {1[min{u, v} ≥ bi]} dudv + o(1)

= n1/3
∫ Qb(α0+t/n1/3)

Qb(α0)

∫ Qb(α0+s/n1/3)

Qb(α0)
G(min{u, v})dudv→ 0,

where G is the c.d.f. of the bid distribution. Therefore, H(t, s) ≡ limn→∞ E[ξn(bi, t)ξn(bi, s)] =

0 for any t, s ∈ T .

Based on (i)-(v) and Van Der Vaart and Wellner (1996, Theorem 2.11.22), 1√
n ∑i ξn(bi, t)

converges weakly to a zero mean Gaussian process G with sample path define on T

and with covariance function H(t, s). By the property of Gaussian process, H(t, s) = 0

implies that the limit process G(t) = 0 for all t almost surely. Because the mapping
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supt∈T f (·) : C → R (from the set of continuous functions defined on compact set to R)

is continuous with respect to the sup-norm, we can further apply the continuous mapping

theorem and have

1√
n ∑

i
ξn(bi, ·)

w→ G⇒ sup
t∈T

1√
n ∑

i
ξn(bi, t) d→ sup

t∈T

G(t) = 0⇒ sup
t∈T

1√
n ∑

i
ξn(bi, t)

p→ 0.

The conclusion of the Lemma holds.

Lemma 2. Suppose that Assumptions 1 and 2 hold, then

n2/3α0

{
Qb,n(α0 + tn−1/3)−Qb,n(α0)−Qb(α0 + tn−1/3) + Qb(α0)

}
w→ α0

g(Qb(α0))
B(t),

where B is a two-sided Brownian motion.

Proof. By Van Der Vaart and Wellner (1996, Theorem 1.6.1), it is sufficient to show the

result holds for a sequence of compact sets T1 ⊆ T2 ⊆ · · · ⊆ Tk ⊆ · · · such that 0 ∈ T1

and ∪∞
k=1Tk = R. Denote T +

k = Tk ∩R+ and T −k = Tk ∩R−. Given Assumption 2,

we can apply Bahadur representation again (see Lemma 1) and know that uniform in τ,

Qb,n(τ)−Qb(τ) =
τ − 1

n ∑i 1[bi ≤ Qb(τ)]

g(Qb(τ))
+ Oa.s.(n−3/4(log n)1/2(log log n)1/4.

We consider t ≥ 0 first. Let r1n = Oa.s.(n−1/12(log n)1/2(log log n)1/4, we have

uniformly in t ∈ T +
k ,

n2/3
{

Qb,n(α0 + tn−1/3)−Qb,n(α0)−Qb(α0 + tn−1/3) + Qb(α0)
}

=
n1/6
√

n ∑
i

(
α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0 + tn−1/3))
− α0 − 1[bi ≤ Qb(α0)]

g(Qb(α0))

)
+ r1n

=
n1/6
√

n ∑
i

(
tn−1/3 − 1[Qb(α0) < bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0))

)
+ r1n + r2n,
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where

r2n =
n1/6
√

n ∑
i

(
α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0 + tn−1/3))
− α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0))

)

= n1/6
(

1
g(Qb(α0 + tn−1/3))

− 1
g(Qb(α0))

)
1√
n ∑

i
ξi = n1/6O(n−1/3)Op(1) = op(1),

where ξi = α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]. For the leading term, it is can be

shown by standard method (e.g. Kim and Pollard, 1990) that

n1/6
√

n ∑
i

(
tn−1/3 − 1[Qb(α0) < bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0))

)
w→ 1

g(Qb(α0))
B(t),

where B is a Brownian motion over a sequence of compact sets T +
1 ⊆ T +

2 ⊆ · · · ⊆
T +

k ⊆ · · · .
When t < 0, we have uniformly in t ∈ T −k ,

n2/3
{

Qb,n(α0 + tn−1/3)−Qb,n(α0)−Qb(α0 + tn−1/3) + Qb(α0)
}

=
n1/6
√

n ∑
i

(
α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0 + tn−1/3))
− α0 − 1[bi ≤ Qb(α0)]

g(Qb(α0))

)
+ r̃1n

=
n1/6
√

n ∑
i

(
tn−1/3 + 1[Qb(α0 + tn−1/3) < bi ≤ Qb(α0)]

g(Qb(α0))

)
+ r̃1n + r̃2n,

where the two asymptotically negligible terms r̃1n and r̃2n are analogously defined as r1n and

r2n in the proof of the case t ≥ 0, respectively. The convergence result holds analogously

over a sequence of compact sets T −1 ⊆ T −2 ⊆ · · · ⊆ T −k ⊆ · · · .
The conclusion follows by combining the results for both t ≥ 0 and t < 0.

Lemma 3. Suppose that Assumptions 1 and 2 hold, then

n
2
3

[
Vn(α0 + tn−

1
3 )−Vn(α0)

]
−n

2
3

[
V(α0 + tn−

1
3 )−V(α0)

]
w→ α0

(I − 1)g(Qb(α0))
B(t)

where B is a two-sided Brownian motion.
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Proof. Recall that for any τ ∈ (0, 1),

Vn(τ) =
1
n

I − 2
I − 1 ∑

i
bi1[bi ≤ Qb,n(τ)] +

1
I − 1

τQb,n(τ) + Op(1/n)

≡ I − 2
I − 1

V1n(τ) +
1

I − 1
V2n(τ) + Op(1/n).

Likewise,

V(τ) =
I − 2
I − 1

∫ τ

0
Qv(t)dt +

1
I − 1

τQb(τ) ≡
I − 2
I − 1

V1(τ) +
1

I − 1
V2(τ).

The part associates with V1n, that is, n
2
3

[
V1n(α0 + tn−

1
3 )−V1n(α0)

]
−n

2
3

[
V1(α0 + tn−

1
3 )−V1(α0)

]
converges in probability to zero by Lemma 1. For the part associated with V2n, note that

n
2
3 (I − 1)

[
V2n(α0 + tn−

1
3 )−V2n(α0)

]
− n

2
3

[
V2(α0 + tn−

1
3 )−V2(α0)

]
= n2/3Qb,n(α0 + tn−1/3)(α0 + tn−1/3)− n2/3Qb,n(α0)α0 − n2/3Qb(α0

+ tn−1/3)(α0 + tn−1/3) + n2/3Qb(α0)α0

= n2/3α0

{
Qb,n(α0 + tn−1/3)−Qb,n(α0)−Qb(α0 + tn−1/3) + Qb(α0)

}
+ n1/3t

{
Qb,n(α0 + tn−1/3)−Qb(α0 + tn−1/3)

}
The second right hand side term, for |t| < K, is uniformly bounded by order n1/3 ×

n−1/2 ×Op(1)
p→ 0. The first right hand side term is dealt with by Lemma 2.

2. AUXILIARY LEMMAS FOR THEOREM 2

Lemmas 4 to 8 shows that the sup distance between Vn and V̂ is small, which we adapted

from Pal and Woodroofe (2006). Lemma 9 is an intermediate step for establishing the

limiting distribution of the smoothed quantile estimator.

We introduce some notation. Let kn be a sequence of integers such that kn → ∞ and

n/kn → ∞. Without loss of generality we assume kn divides n and let `n = n/kn.

We therefore can divide [0, n] into kn equal size intervals with each interval contains `n
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consecutive integers. Let {si, i = 1, 2, · · · , kn} be the set of upper boundary of those

intervals such that si = i`n.

For (i− 1)`n ≤ s < i`n, i = 1, 2, · · · , kn, define

L(s) =
s− (i− 1)`n

`n
V
(

i
n

)
+

i`n − s
`n

V
(

i− 1
n

)
,

and

Ln(s) =
s− (i− 1)`n

`n
Vn

(
i
n

)
+

i`n − s
`n

Vn

(
i− 1

n

)
,

That is, L and Ln are the linear interpolation of V and Vn on kn knots {s1/n, s2/n, · · · , skn /n},
respectively. Note that since V is convex, L is necessarily convex. However Ln may not

be convex since Vn is not necessarily convex. Let An be the event such that Ln is convex.

Since Ln is convex if and only if each segment is convex, the complement of An can be

written as

Ac
n =

kn−1⋃
i=2

{
Vn

(
(i− 1)`n

n

)
+ Vn

(
(i + 1)`n

n

)
< 2Vn

(
i`n

N

)}

=
kn⋃

i=2

{
V
(
(i− 1)`n

n

)
+ V

(
(i + 1)`n

n

)
− 2V

(
i`n

n

)

+∆n

(
(i− 1)`n

n

)
+ ∆n

(
(i + 1)`n

n

)
− 2∆n

(
i`n

n

)
< 0

}
,

where ∆n ≡ Vn −V. Pal and Woodroofe (2006, Proposition 2) shows that Ac
n has proba-

bility approaching zero, thus it is sufficient to consider derive the bounds of the distance

conditional on An (see also Kiefer and Wolfowitz, 1976, Lemma 4).

Lemma 4. Suppose that Assumption 3 is satisfied, then there exists a positive c1 such that

mini=2,··· ,kn−1 |V
(
(i−1)`n

n

)
+ V

(
(i+1)`n

n

)
− 2V

(
i`n
n

)
| ≥ c1

k2
n
.
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Proof. By Assumption 3, there exists c1 > 0 such that Q′v(α) ≥ c1 > 0 for all α ∈ [0, 1].

Then we have

V
(
(i− 1)`n

n

)
+ V

(
(i + 1)`n

n

)
− 2V

(
i`n

n

)

=
∫ (i+1)`n

n

i`n
n

Qv(α)dα−
∫ i`n

n

(i−1)`n
n

Qv(α)dα ≥
∫ (i+1)`n

n

i`n
n

[
Qv(α)−Qv

(
i`n

n

)]
dα

=
`n

n

[
Qv(α

∗
n)−Qv

(
i`n

n

)]
≥ c1

`2
n

n2 =
c1

k2
n

. �

Lemma 5. Let ‖ · ‖ denote the sup norm. Conditional on An, there is

‖Vn − V̂‖ ≤ 2‖(Vn − Ln)− (V − L)‖+ 2‖V − L‖.

Proof. By Marshall’s Lemma (see Kiefer and Wolfowitz, 1976, Lemma 3), for any convex

function m, ‖V̂ −m‖ ≤ ‖Vn −m‖. Therefore,

‖Vn− V̂‖ ≤ ‖Vn− Ln‖+ ‖Ln− V̂‖ ≤ 2‖Vn− Ln‖ ≤ 2‖(Vn− Ln)− (V− L)‖+ 2‖V− L‖,

where the first and third inequalities holds by triangular inequality, the second one holds by

Marshall’s Lemma. �

Lemma 6. Suppose that Assumption 3 is satisfied, then there exists c3 > 0 such that for all

s ∈ [0, n],

0 ≤ L(s)−V(s) ≤ c3

k2
n

.

Proof. L(s) > V(s) follows immediately by the convexity of V. The other inequality holds

follows from a similar argument as in Lemma 4 and the fact that Q′v(α) is bounded from

above uniformly.

Lemma 7. Suppose that Assumptions 1 and 3 is satisfied, then

‖Vn − Ln −V + L‖ = Op

(√
log kn

nkn

)
+ Op

(
log n

n

)
.
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Proof. Define function VP such that VP(j/n) = V(j/n) for each j/n and otherwise equals

to its own interpolation. It is obvious that ‖VP − V‖ = O(1/n). It is then sufficient to

focus on Vn − Ln −VP + L. Note that all four functions are piece-wise linear, and so does

there linear combinations. Therefore, the sup must be achieved at some knot(s). Based on

this observations, we can write

‖Vn − Ln −VP + L‖

= max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣∆n(j/n)− j− (i− 1)`n

`n
∆n(i/n)− i`n − j

`n
∆n((i− 1)/n)

∣∣∣∣ ,

where for t ∈ [0, 1],

∆n(t) = Vn(t)−VP(t) = Vn(t)−V(t) + O(1/n)

=
I − 2
I − 1

{
[tn]

∑
i=1

b(i)
n
−
∫ t

0
Qb(α)dα

}
︸ ︷︷ ︸

∆A(t)

+
1

I − 1

{
[tn]
n

b(j) − tQb(t)
}

︸ ︷︷ ︸
∆B(t)

+O(1/n)

where [x] denotes the integer part of x. Note that ∆A is an integrated quantile process. By

Tse (2009, Theorem 2.1), there exists a Gaussian process Gn and Brownian bridge BA
n

defined on proper measurable space such that for any τ < 1/6,

‖
√

n∆A − ψn‖
a.s.
= O(n−τ),

where ψn(t) = Gn(t)+
∫ t

0 BA
n (u)dQb(u). On the other hand, by Csorgo and Revesz (1978,

Theorem 6), there exists a sequence of Brownian bridge Bn such that supδn≤t≤1−δn
|g(Qb(t))

√
n∆B(t)−
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Bn(t)|
a.s.
= Op(n−1/2 log n). We can then conclude

‖Vn − Ln −VP + L‖

≤ max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣∆A(j/n)− j− (i− 1)`n

`n
∆A(i/n)− i`n − j

`n
∆A((i− 1)/n)

∣∣∣∣
+ max

i=1,···Kn
max

(i−1)`n≤j≤i`n

∣∣∣∣∆B(j/n)− j− (i− 1)`n

`n
∆B(i/n)− i`n − j

`n
∆B((i− 1)/n)

∣∣∣∣+Op(1/n)

d
=

1√
n

max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣ψn(j/n)− j− (i− 1)`n

`n
ψn(i/n)− i`n − j

`n
ψn((i− 1)/n)

∣∣∣∣+Op(n−τ−1/2)

+
1√
n

max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣Bn(j/n)− j− (i− 1)`n

`n
Bn(i/n)− i`n − j

`n
Bn((i− 1)/n)

∣∣∣∣+Op(log n/n)

≤ 1√
n

sup
0≤t−s≤ 1

kn

|ψn(t)−ψn(s)|+
1√
n

sup
0≤t−s≤ 1

kn

|Bn(t)− Bn(s)|+Op(log n/n)+Op(n−τ−1/2)

≤
√

2 log log n√
n

1√
kn

+
1√
n

√
log log Kn√

kn
+ Op(log n/n) + Op(n−τ−1/2)

where the last two inequalities result from the continuity module of Gaussian processes and

the fact that g(b) ≥ b > 0 for all b (GPV Proposition 1). Recall that kn ∝ n
log n , we can

conclude that the right hand side is of order Op((n/ log n)−2/3).

Lemma 8. Suppose Assumptions 3 and 4 are satisfied, the ‖V̂−Vn‖ = Op((n/ log n)−2/3).

Proof. The conclusion holds by Lemmas 5 to 7. �

Lemma 9. Let z(i) = n(b(i) − b(i−1)) and wi = ((i− 1)/n− α)
∫ i

n
i−1

n
Kh(u − α)du.

Suppose Assumption 3 is satisfied, then ∑i z(i)wi = op(1/
√

nh).

Proof. Since bi has bounded support, it is without loss of generality to prove the case when

bi follows the uniform distribution. Pyke (1965, Section 2.1) shows that z(i) are identically

distributed across i. Furthermore, E[z(i)] = n(n+ 1)−1, V(z(i)) = n3(n+ 1)−2(n+ 2)−1

and Cov(z(i)z(j)) = −n2(n + 1)−2(n + 2)−1. Let ρij be the correlation coefficient, so

ρij = 1 if i = j, and ρij = −1/n otherwise.
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Note first that E[∑i z(i)wi] = n(n+ 1)−1 ∑i wi = (1/h)
(∫ 1

0 (u− α)K(u− α/h)du + O(1/n)
)
=

O(1/nh) = op(1/
√

nh) since
∫

uK(u) = 0 by assumption. Next consider

V(∑
i

z(i)wi) = ∑
i

w2
i V(z(i))+ 2 ∑

i 6=j
wiwjCov(z(i), z(j)) = V(z(i))

(
∑

i
w2

i + 2 ∑
i 6=j

wiwjρij

)
.

Consider wi, there exists a u∗i ∈ ((i− 1)/n, i/n) such that

wi =

(
i− 1

n
− α

) ∫ i
n

i−1
n

Kh(u− α)du =
1

nh

(
i− 1

n
− α

)
K
(

u∗i − α

h

)
,

Since the kernel function has bounded support, that is, K(u) = 0 if |u| > K̄. Then

wi 6= 0 only if |u∗i − α| ≤ K̄h. Therefore the quantity i− 1/n for nonzero wi is around h

neighborhood of α, which implies that each of the nonzero |wi| is of order 1
nh × h = 1

n . Let iα

be the nearest integer to nα, then we know wi 6= 0 only if |i− iα| ≤ Cnh for some constant

C, which implies that in the expression of V(∑i z(i)wi), there are of order nh nonzero

summands. Since each wi is of order 1/n, ρij = −1/n when i 6= j, V(z(i)) = O(1),

the order of V(∑i z(i)wi) is O(nh× (1/n)2 + (nh)2 × (1/n)3) = O(h/n), which is of

smaller order than 1/nh.

The above argument shows that E[∑i z(i)wi] = op(1/
√

nh) and V(∑i z(i)wi) =

op(1/nh), therefore we can conclude that ∑i z(i)wi = op(1/
√

nh).

3. PROOFS TO COROLLARIES

3.1. Proof of Corollary 1. Consider a J × 1 vector of mutually different quantile levels

(α1, α2, · · · , αJ), following the arguments in the proof of Theorem 1, the following events

are equivalent:

∩j=1,2,··· ,J {n
1
3 (Q̂v(αj)−Qv(αj)) ≤ zj} ⇔ ∩j=1,2,··· ,J

 argmin
t∈[−αjn

1
3 ,(1−αj)n

1
3 ]

{Wjn(t)− zjt} ≥ 0

 ,

11



where for j = 1, 2, · · · , J

Wjn(t) = n
2
3

[
Vn(αj + tn−

1
3 )−Vn(αj)

]
− n

2
3

[
V(αj + tn−

1
3 )−V(αj)

]
+ n

2
3

[
V(αj + tn−

1
3 )−V(αj)−Qv(αj)tn−

1
3

]
.

Following the same arguments, we have the convergence of each single component:

Wjn(t)
w→

αj

(I − 1)g(Qb(αj))
Bj(t) +

1
2

Q′v(αj)t2.

where Bj is a two sided Brownian motion. Since Bj is Gaussian, it remains to find their

covariance. Following the arguments in Lemmas 1 to 3 and ignoring the small order terms,

we know that for each given t, the joint limiting distribution of Wjn, j = 1, · · · , J, is

determined by the joint limiting distribution of

n2/3
{

Qb,n(αj + tn−1/3)−Qb,n(αj)−Qb(αj + tn−1/3) + Qb(αj)
}

, j = 1, · · · , J,

or alternatively, the joint limiting distribution of (for t > 0, the case of t < 0 is similar)

n1/6
√

n ∑
i

(
tn−1/3 − 1[Qb(αj) < bi ≤ Qb(αj + tn−1/3)]

g(Qb(αj))

)
, j = 1, · · · , J,

To calculate the limit of covariance of above expression at different quantile levels, it

is sufficient to focus on same observation index i since bids are i.i.d.. Since all the αj

are mutually different, the we have for j 6= j′, there is Qb(αj) 6= Qb(αj′) by the strict

monotonicity of Qb. Therefore,

lim
n→∞

n1/3E
[(

tn−1/3 − 1[Qb(αj) < bi ≤ Qb(αj + tn−1/3)]
)

×
(

tn−1/3 − 1[Qb(αj′) < bi ≤ Qb(αj′ + tn−1/3)]
)]

= lim
n→∞

E
[
−t2n−1/3 + n1/31[Qb(αj) < bi ≤ Qb(αj + tn−1/3)]

× 1[Qb(αj′) < bi ≤ Qb(αj′ + tn−1/3)]
]
= 0.

12



Therefore, we can conclude that Bj are asymptotically uncorrelated and hence independent.

Let constants (aj, bj) be defined as

aj =
αj

(I − 1)g(Qb(αj))
, bj =

1
2

Q′v(αj).

Then we have the joint limiting distribution be given by

P
(
∩j=1,2,··· ,J{n

1
3 (Q̂v(αj)−Qv(αj)) ≤ zj}

)
→ P

∩j=1,2,··· ,J

argmaxt∈R{Bj(t)− t2} ≤
zj

2bj

(
bj

aj

)2/3



= Πj=1,···JP

argmaxt∈R{Bj(t)− t2} ≤
zj

2bj

(
bj

aj

)2/3
 .

3.2. Proof to Corollary 2. Consider inverting Q̂(·) first. Recall that F̂(v0) = sup{α :

Q̂v(α) ≤ v0}. Consistency of F̂(v0) holds by the consistency of Q̂v and the continuity of

the sup operator. It remains to work out the convergence rate and limiting distribution. Let

Z = argmaxt∈R{B(t)− t2}. Now,

P
(

n1/3(F̂(v0)− F(v0)) < x
)
= P

(
F̂(v0) < n−1/3x + F(v0)

)
Note that the event {F̂(v0) < n−1/3x + F(v0)} is equivalent to {v0 < Q̂v(n−1/3x +

F(v0))}. Using the fact that F(v0) = α0, Qv(α0) = v0, and (Q′v(α0))
−1 = f (v0), we

have

P
(

F̂(v0) < n−1/3x + F(v0)
)
= P

(
Q̂v(n−1/3x + F(v0)) > v0)

)
= P

(
Q̂v(n−1/3x + α0)−Qv(n−1/3x + α0) > v0 −Qv(n−1/3x + α0)

)
= P

(
Q̂v(n−1/3x + α0)−Qv(n−1/3x + α0) > −n−1/3Q′v(α0)x + O(n−2/3))

)
= P

(
f (v0)n1/3(Q̂v(n−1/3x + α0)−Qv(n−1/3x + α0)) < x + O(n−1/3))

)

13



Repeat the proof of Theorem 1 shows that for each x, n1/3(Q̂v(n−1/3x+ α0)−Qv(n−1/3x+

α0)) has the same limiting distribution as n1/3(Q̂v(α0)−Qv(α0)). Therefore, we have

P
(

n1/3(F̂(v0)− F(v0)) < x
)
→ P ( f (v0)C(α0)Z < x) .

Next, by the definition of F̂, we have for any positive ηn ↓ 0,

P
(

n1/3(F̂(v0)− F(v0)) = x
)
≤ P

(
Q̂v(n−1/3x + F(v0)) ≤ v0 < Q̂v(n−1/3x + F(v0) + ηn))

)
,

the right hand side coverages to zero. Observe that Z is continuous, we have

P
(

n1/3(F̂(v0)− F(v0)) ≤ x
)
→ P ( f (v0)C(α0)Z ≤ x) .

Lastly, because q̂(·) is continuous and strictly increasing, the result for F̂S follows

essentially the same (but simpler) argument as above and therefore omitted.

3.3. Proof to Corollary 3. We give the sketch of the proof for brevity. Let γn be a

deterministic diverging sequence whose rate will be determined later. For a given x, define

Wn(t|x) = γ2
n

[
Vn(α0 + tγ−1

n |x)−Vn(α0|x)−Qv(α0|x)tγ−1
n

]
.

Following the same argument as in Theorem 1, we have

γ−1
n (Q̂v(α0|x)−Qv(α0|x)) ≤ z⇔ argmin

t∈[−α0γn,(1−α0)γn]

{Wn(t|x)− zt} ≥ 0

Then we conduct the same decomposition:

Wn(t|x) = γ2
n

[
Vn(α0 + tγ−1

n |x)−Vn(α0|x)
]
− γ2

n

[
V(α0 + tγ−1

n |x)−V(α0|x)
]

︸ ︷︷ ︸
≡WA

n (t)

+ γ2
n

[
V(α0 + tγ−1

n |x)−V(α0|x)−Qv(α0|x)tγ−1
n

]
︸ ︷︷ ︸

= 1
2 Q′v(α0|x)t2+o(1)

.
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It remains to analyze the asymptotic behavior of WA
n . It can be observed from the

definition of Vn(·|x) that for any τ ∈ (0, 1),

Vn(τ|x) =
I − 2
I − 1

∫ τ

0
Qn,b(t|x)dt +

1
I − 1

τQn,b(τ|x) + O(1/n),

where Qn,b(τ|x) is chosen to be the local polynomial estimator of Guerre and Sabbah

(2012), whose Assumptions X, F and K can be verified to hold in our context. In particular,

Assumption F is satisfied since the continuous differentiability of F(·|x) implies that Qb(·|x)
is twice continuously differentiable, as shown in Guerre, Perrigne, and Vuong (2000,

Proposition 1-iv).

Since we only need to estimate the quantile function, we choose the order ν of the

polynomial as ν = 0. Using Guerre and Sabbah (2012, page 98)’s uniform Bahadur

representation, we have for any τ ∈ (0, 1),

Qn,b(τ|x)−Qb(τ|x) =
βn(τ)

(nhd)1/2 + O
(

h2
)
+ Op

(
log n
nhd

)3/4

,

where the first right hand side (RHS) is the first order approximation, the second RHS term

is the bias and its order is determined by the twice continuous differentiability of Qb, and

the third RHS term is the Bahadur representation error, and βn is defined as

βn(τ) = J−1
n

2
(nhd)1/2

n

∑
i
{1[bi ≤ Q∗b(τ|x)]− τ}K

(
Xi − x

h

)
,

where Jn
p→ J for some constant, K(·) is the kernel function and Q∗b is the argmin of the

population criterion function of the local polynomial regression.

Following similar argument as in Lemmas 1 to 3, we need to make sure that both the bias

term and the Bahadur representation error term converges (in probability) to zero faster than

γ2
n. Take γn = (nhd)1/3, then O(γ2

nh2) = o(1) since h is chosen such that nhd+3 → 0;

γ2
n

(
log n
nhd

)3/4
= op(1) since nhd → ∞. As the consequence, the limiting behavior of

WA
n (t) when t ≥ 0 (the case of t < 0 similar) depends on the following dominant term (up

to additive asymptotically negligible and some multiplicative constant terms):
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1√
nhd

n

∑
i
(nhd)1/6

{
t(nhd)−1/3 − 1[Q∗b(α0|x) < bi ≤ Q∗b(α0 + t(nhd)−1/3|x)]

}
︸ ︷︷ ︸

≡ξi(t)

K
(

Xi − x
h

)
.

Guerre and Sabbah (2012, Lemma A.1) shows that ξi(t) has zero mean. Furthermore, for

arbitrary t, s > 0,

lim
n→∞

h−dE[ξi(t)ξi(s)] = lim
n→∞

h−dE{E[ξi(t)ξi(s)|Xi]}

= lim
n→∞

h−dE

{
K2
(

Xi − x
h

)
[min{t, s}+ O(γ−1

n )]

}
= fX(x)min{t, s}

∫
K2(u)du.

It follows that 1√
nhd ∑i ξi(t) converges in distribution to normal for each t and given ξi(t)

is sum of indicator functions, 1√
nhd ∑i ξi(·) weakly converge to a constant multiplied by a

Brownian motion process. The rest of the proof follows similarly from Theorem 1.
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