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1. INTRODUCTION

In empirical studies it is not uncommon that researchers are primarily interested in making

inferences about one particular element of the parameter vector, while treating others as “nuisance

parameters”. For example, in empirical industrial organization literature, the parameter measuring

the strategy interaction among firms often draws more attention than others. When the parameters

are partially identified, a traditional way to construct confidence intervals for individual parameters

is to first obtain a joint confidence set for the whole vector, then report its projections. However,

this approach is not always the most desirable choice as such confidence intervals are likely to be

conservative (see discussions in Chernozhukov, Hansen, and Jansson, 2009; Hahn and Ridder, 2011).

Moreover, in partially identified models, we often have to invert hypothesis tests at every possible

parameter value, which is computationally challenging in the first place.

In this paper we propose easy-to-implement estimation and inference methods for individual

parameters in a class of moment inequality models. We compute the
√

n-consistent interval estimators

by extending the computationally attractive Laplace-type estimation techniques (Chernozhukov and

Hong, 2003) to partially identified models. Numerically, the estimation procedure requires no more

than getting random draws from a known distribution, which can be implemented using Markov

Chain Monte Carlo (MCMC) algorithms.

To obtain confidence intervals for individual parameters, we do not construct a high–dimensional

confidence set to start with, instead we integrate out the rest of the parameters and make an inference

directly on the parameter of interest. The proposed inference procedure is therefore easier to

implement than the traditional projection method because there is no need to invert hypothesizes at

every point in a high-dimensional parameter space. Furthermore, since the confidence intervals are

not obtained through projection, they are not conservative.

The key quantity in our methods is the quasi-posterior

fn(θ) =
exp(nLn(θ))∫

Θ exp(nLn(θ)dθ
,

where Θ is a compact parameter space and Ln(·) is the sample analog of a population objective

function L(·), which takes the maximum over the identified set ΘI . fn is well defined since it is

without loss of generality to assume that L(θ) ≤ 0. Being integrated to 1, fn resembles a Bayesian
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posterior in which the loglikelihood is replaced by the rescaled sample objective function of an

extremum estimator. Chernozhukov and Hong (2003, CH2003) first proposed Laplace type estimators

(LTEs) as minimizers of quasi-posterior risk functions to simplify the computation when the model

is point identified, that is, when ΘI is a singleton. When the model is partially identified, the

“quasi-posterior mass” of fn over the identified set converges in probability to 1 when the sample size

increases. Using this property, we propose to estimate projections of the identified set consistently

by choosing two “extreme quantiles” of corresponding marginal quasi-posteriors whose probability

levels approach 0 and 1, respectively, as sample size increases. Numerically, it is as simple as taking

two rank statistics of a set of random draws from the marginal quasi-posterior.

To construct confidence intervals, we show that two appropriately chosen quantiles of the marginal

quasi-posterior form an asymptotically (pointwise) exact confidence interval for the corresponding

parameter. We show that the rescaled “tail mass” of the marginal quasi-posterior converges in

distribution to a random variable whose distribution can be easily simulated. The distributional

information of the limiting random variable provides guidance to choose desirable quantiles. A

nice feature is that there are only two distributions to simulate (for the left and right boundaries

of the confidence interval), and for each distribution it only requires making random draws from a

multivariate normal distribution with a known variance matrix and Monte Carlo integration.

There are numerous papers on inferences in moment inequality models, for example, Andrews and

Guggenberger (2009); Andrews and Soares (2010); Beresteanu and Molinari (2008); Bugni (2010);

Canay (2010); Chernozhukov, Hong, and Tamer (2007); Imbens and Manski (2004); Kaido (2010);

Pakes, Porter, Ho, and Ishii (2006); Romano and Shaikh (2008). Many of the existing methods

aim to construct joint confidence sets that have nice asymptotic properties, such as uniform validity.

In general, these methods require inverting a hypothesis test, which would sometimes require a

resampling procedure at each parameter value that is tested. Our main motivation is to provide

empirical researchers an easy-to-implement inference procedure when the objects of interest are

confidence intervals on individual parameters; hence this is a useful complement to existing work.

Romano and Shaikh (2008) discussed constructing asymptotic uniformly valid confidence sets for a

given parameter (and known functions of the parameter vector in general) in which the test statistics

are obtained by taking minimums at each parameter value being tested, and critical values are

calculated by subsampling. Our method replaces minimization by integration, and under our model
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setting it only requires simulating two limiting random variables. In addition, the methods developed

in this paper do not require subsampling and therefore avoid the issue of choosing subsample sizes.

In the main text of the paper, we focus on the models in which the “extreme points” (defined later)

of the identified set is a singleton—a restriction also imposed in the literature (e.g., Pakes, Porter, Ho,

and Ishii, 2006, PPHI)1. Our methods differ from those of PPHI in both estimation and inference.

In estimation, our estimator is implemented using MCMC algorithms. For the same argument as in

CH2003, Laplace-type estimators are, in general, computationally attractive compared to extremum

estimators, especially when the objective functions are not smooth. In inference, we propose a

moment selection mechanism when simulating critical values. This moment selection mechanism

picks out the binding moment conditions and delivers exact asymptotic coverage probability. In

Section 6.1, we discuss how to construct consistent estimators without making the “singleton extreme

points” assumption.

Despite that the quasi-posterior fn resembles a Bayesian posterior, we aim to construct classical

confidence intervals. Our method is therefore different from Bayesian/quasi-Bayesian analysis of

moment inequality models. For example, Liao and Jiang (2010) studied large sample properties of a

(quasi-) posterior derived from the limited information likelihood (see Kim, 2002) in a similar setup.

The credible sets proposed by Liao and Jiang (2010), however, are not valid confidence sets from

the classical perspective (too small). See Moon and Schorfheide (2012) for a general comparison

between Bayesian approaches and classical approaches in partially identified models.

We illustrate our methods using a simulated example of a 2 × 2 discrete game of complete

information with a two-dimensional parameter vector. In the experiment, our procedure takes

about 6% of the time that a projection-based confidence interval would require and has coverage

probabilities much closer to the desirable levels. In Section 5 we provide a detailed comparison.

The rest of the paper is organized as follows. We introduce the model and our estimator in

Section 2. We discuss the asymptotic properties of the estimator in Section 3. In Section 4, we

propose procedures for constructing confidence intervals. Section 5 is the Monte Carlo simulation.

In Section 6, we discuss some extensions and conclude this paper.

1This scenario could occur in such models that when the value of a particular parameter is given, the rest of parameters
are identified. For example, in a two equations Probit model with endogenous dummy regressors and without exclusion
restrictions, once the correlation coefficient of the two error terms is fixed, other parameters in the model are point-identified
(see Meango and Mourifie, 2013).

4



2. SETUP

We consider a set of J moment inequalities, E [mi(θ0)] ≤ 0, where mi(θ) is the J-vector of

moment functions evaluated at Wi and θ,

mi(θ) ≡ m(Wi, θ) = (m(1)(Wi, θ), · · · , m(J)(Wi, θ))′.

{Wi}n
i=1 are i.i.d. observations. The true parameter θ0 ∈ Θ ⊂ Rd. The identified set ΘI is a

collection of parameter values that satisfy the moment inequalities: ΘI = {θ ∈ Θ : E [mi(θ)] ≤ 0}.
ΘI is not empty as θ0 ∈ ΘI by construction. Throughout this paper, the measurability of m(j) is a

maintained assumption.

For any J-vector x, let ‖x‖2
+ = ∑j

(
|xj|+

)2, where |xj|+ = max{0, xj}. Following Cher-

nozhukov, Hong, and Tamer (2007, CHT2007), we consider population and sample objective

functions of the following forms:

L(θ) = −‖Emi(θ)‖2
+ , Ln(θ) = −‖m̄(θ)‖2

+ ,

where m̄(θ) = (1/n)∑n
i=1 mi(θ).2 Note that L(θ) = 0 if and only if θ ∈ ΘI .

We define the quasi-posterior density

fn(θ) =
1

Dn
exp(nLn(θ)) (1)

over parameter space Θ, where Dn =
∫

t∈Θ exp(nLn(t))dt is a normalization factor. Note that fn is

not a Bayesian posterior because exp(nLn(θ)) is not a likelihood function.

We have a few comments on the quasi-posterior fn. First, fn is essentially a monotone transfor-

mation of the rescaled sample objective function. Under such a transformation, fn(θ)
p→ 0 at an

exponential rate for any θ /∈ ΘI . Second, the exponential function is not the only possible choice. In

the case of point identification (as in CH2003), the exponential transformation is a natural choice

because it leads to normal approximation for the quasi-posterior density in large samples. In partially

identified models, the exponential transformation has a similar property, which will be illustrated

in Example A below. Third, our analysis applies if we define fn(θ) ∝ π(θ) exp(nLn(θ)) for a

weighting function π which takes positive values over ΘI . In this paper, we take π(θ) ≡ 1 so that

2We could define the objective function as L(θ) = −
∥∥∥Emi(θ)Σ1/2(θ)

∥∥∥2

+
for some weighting matrix Σ(θ). In this paper,

we let Σ(θ) = I for the ease of notation. Our approach can be extended to accommodate such weighting matrices.
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the quasi-posterior can be approximated by a uniform distribution over the identified set in large

samples.

Let θ = (θ1, θ′2)
′ and θ0 = (θ01, θ′02)

′, where θ1 is a scalar and θ2 is potentially vector-valued.

From now on we assume that researchers are interested in estimating and making inferences about

θ01. Define

Θ1 = {θ1 : ∃θ2 such that (θ1, θ′2) ∈ Θ} and ΘI1 = {θ1 : ∃θ2 such that (θ1, θ′2) ∈ ΘI},

that is, Θ1 and ΘI1 are the first dimension of Θ and ΘI , respectively. Define Θ2 and ΘI2 similarly.

Let

θ1` = inf
θ1∈ΘI1

θ1, θ1u = sup
θ1∈ΘI1

θ1.

θ1` and θ1u are the end points of ΘI1. Likewise, let θ1 and θ1 be the end points of Θ1, which are

assumed to be known to researchers. For any θ∗1 ∈ ΘI1, let

ΘI2(θ
∗
1 ) = {θ2 : (θ∗1 , θ′2) ∈ ΘI},

be a collection of θ2s such that (θ∗1 , θ′2) belongs to the identified set. This notation will be used

repeatedly throughout this paper.

Let f1n be the marginal quasi-posterior density for θ1: f1n(θ1) =
∫

θ2∈Θ2
fn(θ1, θ2)dθ2. Let F1n

be the “distribution function” of the marginal quasi-posterior. For any τ ∈ [0, 1], we define the τ–th

quantile of the marginal quasi-posterior as

F−1
1n (τ) = inf{θ1 ∈ [θ1, θ1] : F1n(θ1) ≥ τ}.

3. ESTIMATION

We propose estimators for θ1` and θ1u in this section. Example A below (Example 1 in CHT2007)

illustrates the idea behind our estimator.

Example A (interval-observed data). Let {(Y`i, Yi, Yui)}n
i=1 be a sequence of i.i.d. random vectors.

Assume that Y`i, Yi, and Yui have finite first two moments and satisfy Y`1 ≤ Y1 ≤ Yu1 a.s.. The

parameter of interest is θ0 = E[Y1]. Researchers only observe {(Y`i, Yui)}n
i=1. This model can be

6



characterized by two moment inequalities:

EY`1 ≤ θ0 ≤ EYu1.

In this model, θ0 is not identified, whereas the bounds of ΘI = [θ`, θu] = [EY`1, EYu1] are

identified. We define the population and sample objective functions as follows:

L(θ) = −|EY`1 − θ|2+ − |θ −EYu1|2+, Ln(θ) = −|Ȳ` − θ|2+ − |θ − Ȳu|2+.

For the purpose of illustration, assume that θu > θ` and Ȳu > Ȳ`. Let Θ be a compact subset of

R whose interior contains [θ`, θu]. Consider first an “infeasible” quasi-posterior:

f∞(θ) ≡ lim
n→∞

exp(nL(θ))∫
t∈Θ exp(nL(t))dt

.

It is easy to observe that f∞(θ) = 1/(θu − θ`) if θ ∈ ΘI and that f∞(θ) = 0 otherwise. Hence, the

support of the “infeasible” quasi-posterior is exactly the identified set. Since the population objective

function is unknown, we construct a “feasible” version of f∞ by replacing L with its sample analog

Ln:

fn(θ) =
exp(−n|Ȳ` − θ|2+ − n|θ − Ȳu|2+)∫

t∈Θ exp(−n|Ȳ` − t|2+ − n|t− Ȳu|2+)dt
.

By construction, the quasi-posterior density is maximized and is flat over the interval [Ȳ`, Ȳu] and

declines towards both end points of Θ. Note also that under the exponential transformation, fn is

proportional to normal densities when θ ≥ Ȳu or θ ≤ Ȳ`. �

Figure 1 shows the shapes of f∞ and fn (renormalized such that the maximum of fn equals

1/(θu − θ`)) for different sample sizes, with Y`i ∼ U[−1, 0] and Yui ∼ U[1, 2]. We can see

that as n increases, the “quasi-posterior mass” outside of the identified set decreases to 0. When

d > 1, a similar pattern can be expected for the marginal quasi-posterior f1n. Example A, despite

its simplicity, suggests a natural method of estimation for θ1` and θ1u: a quantile of the marginal

quasi-posterior whose probability level converges to 0 (or 1) can be a candidate estimator for θ1` (or

θ1u). Specifically, we define the following estimators for the two end points of ΘI1:

θ̂1` = F−1
1n (τ̂`) , θ̂1u = F−1

1n (1− τ̂u) ,

where τ̂` and τ̂u are chosen by researchers.
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FIGURE 1. Quasi–posterior density (Example A)

3.1. Consistency. We develop conditions on τ̂` and τ̂u such that θ̂1` and θ̂1u are consistent estimators

in this subsection. For ease of exposition, we focus on θ̂1`; the results for θ̂1u are similar.

Assumption 3.1. Θ is compact.

Assumption 3.1 is standard. It ensures that Dn =
∫

t∈Θ exp(nLn(t))dt is finite because the

integrand is bounded over Θ.

Assumption 3.2. ΘI is connected.

Assumption 3.2 says that ΘI is not a union of disjoint sets. It ensures that the projections of the

identified set onto each axis are single intervals. We impose this assumption to simplify notation.

With a simple modification to the computation algorithm, our methods still work without this

assumption (see discussions in Section 6.2). Note that we do not require the identified set to be

convex.

For any θ ∈ Θ, let d(θ, ΘI) = inft∈ΘI ‖t− θ‖.
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Assumption 3.3. There exist constants C > 0 and δ > 0 such that for all θ ∈ Θ

‖Em1(θ)‖+ ≥ min{Cd(θ, ΘI), δ}.

Assumption 3.3 is a standard partial identification assumption. It requires that when parameters

take values outside the identified set, the expectations of the moments are at least proportional to the

smallest distance from the parameter to any points in the identified set.

Assumption 3.4. Em1 is Lipschitz continuous on Θ.

Assumptions 3.1 and 3.4 imply that ΘI is closed. Let ∆n(θ) =
√

n (m̄(θ)−Em1(θ)). Let

L ∞(Θ) be the set of functions that are uniformly bounded on Θ.

Assumption 3.5. ∆n(θ) weakly converges to a Gaussian process ∆(θ) in L ∞(Θ).

Assumption 3.5 is also made in CHT2007. It requires convergence in distribution for every θ ∈ Θ

and stochastic tightness of the process ∆n (see section 2.1, Van der Vaart and Wellner, 1996). In

Example A, Assumption 3.5 is satisfied if EY2
`1 and EY2

u1 are finite.

Assumption 3.6. τ̂` and τ̂u are chosen such that

τ̂` = τ̂u =
ĉ

nd/2Dn
,

where ĉ is positive and ĉ
p→ c > 0.3

In the expression of τ̂` and τ̂u, n is sample size and Dn is defined in Equation (1) and can be

computed by Monte Carlo integration. ĉ is chosen by researchers. The constant c plays a role similar

to the tuning parameter we often seen in the partial identification literature (see discussions in Bugni,

2010). To the best of our knowledge, there is no generic rule of choosing such tuning parameters.

Although the asymptotic properties of our estimator do not rely on a specific c, we propose a heuristic

rule for choosing c in Section 5. In our Monte Carlo experiment, we find that this rule approximately

minimizes the mean squared error of our estimator. Theoretic derivation for an “optimal” choice of c

is beyond the scope of this paper and will be left for future research.

3In practice, we may want to choose τ̂` = τ̂u = min
{

ĉ
nd/2Dn

, 1
2

}
to ensure 0 ≤ τ̂` ≤ 1− τ̂u ≤ 1 in finite samples.

This does not affect the asymptotics of the estimators because when the model is not point-identified, for any c > 0, the
minimum is obtained at ĉ/nd/2Dn with probability one.
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Theorem 3.1. Let Assumptions 3.1 to 3.6 hold. Then, θ̂1`
p→ θ1`.

Proof. See Appendix B.1. �

We have some comments on Theorem 3.1. First, in a large sample, the “quasi-posterior mass”

over ΘI converges in probability to 1. Therefore, the “marginal quasi-posterior mass” over [θ1`, θ1u]

also coverages in probability to 1. To achieve consistency, we “cut” two properly-sized tails off from

the marginal quasi-posterior. When the identified set has a positive Lebesgue measure, Dn converges

in probability to a positive constant, implying that τ̂` = ĉ/(nd/2Dn) ∝ n−d/2. In this case, we

essentially cut off two tails whose mass converges to zero at the rate n−d/2.

Second, the rate requirement in Assumption 3.6 can be relaxed in specific scenarios. For example,

if one knows that the identified set has a positive Lebesgue measure, one can allow that ĉ diverges

as long as ĉ/nd/2 p→ 0 at a polynomial rate. Assumption 3.6 is stronger than necessary because

it also ensures the consistency of this estimator even when the identified set has an empty interior

(i.e., if ΘI is a singleton or other lower dimension subset of Rd). For example, when ΘI = {θ0},
nd/2Dn = Op(1), our estimator is essentially a random quantile of the marginal quasi-posterior. This

coincides with the result in CH2003 that any quantiles are consistent estimators in point-identified

models.

Third, for estimation, we do not have to assume that ΘI belongs to the interior of Θ. When ΘI

intersects with the boundary of Θ, for example, θ1` = θ1 (the smallest value for the first dimension

of the parameter space), our estimator θ̂1` converges to θ1` from above.

3.2. Rate of convergence. In this subsection, we provide conditions under which the estimators are
√

n-consistent regardless of θ0 being point- or partially identified. The convergence rate is needed to

construct confidence sets for θ01.

Example A continued. We illustrate the idea of obtaining the
√

n-rate using Example A. If one

chooses a probability level τ̂` in such a way that F−1
n (τ̂`)− Ȳ` = Op(1/

√
n), then since Ȳ` is a

√
n–

consistent estimator of θ`, the quantile F−1
n (τ̂`) will also be a

√
n-consistent estimator. In Example A,

it turns out that Fn(Ȳ`), which is the mass on the left tail of the quasi-posterior, decreases to zero at

the rate 1/
√

n. Hence, a choice of τ̂` ∝ 1/
√

n ensures that F−1
n (τ̂`) falls into a

√
n-neighborhood

of θ`. �
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When θ0 is a vector, the appropriate choice of τ̂` depends on how fast the tail mass of the marginal

quasi-posterior decreases to zero, which in turn depends on the shape of the set ΘI2(θ1`) = {θ2 :

(θ1`, θ2) ∈ ΘI}, a set of “extreme points”. In Pakes, Porter, Ho, and Ishii (2006), this set is assumed

to be a singleton. In the main text of this paper, we also assume ΘI2(θ1`) is a singleton. However,

our estimation method can be extended and allows ΘI2(θ1`) to have a positive Lebesgue measure,

see Section 6.1.

Assumption 3.7. ΘI2(θ1`) = {θ`}.

Assumption 3.8. For all θ ∈ Θ, Em1(θ) is continuously differentiable.

Let Q(θ) be the J × d derivative matrix of Em1 evaluated at θ. Let J (θ) ⊆ {1, 2, · · · , J} be the

set of indices of binding moments at θ, and let EmJ1 (θ) be the subvector of expectations of binding

moments, that is, EmJ1 (θ) = 0. Let QJ (θ) = ∂EmJ1 (θ)/∂θ′. ∆Jn (θ) and ∆J (θ) are similarly

defined. Let Q1(θ) be the first column of Q(θ).

Note that based on Assumptions 3.3 and 3.8, there exist positive constants k and K such that the

absolute value of every component of QJ1 (θ`) takes values in [k, K]. In addition, Assumption 3.3

ensures that each row and each column of QJ (θ) has at least one non-zero element.

Assumption 3.9. QJ (θ`) has full column rank.

Assumption 3.9 is crucial to ensure that the quasi-posterior decreases sufficiently quickly within a
√

n-local neighborhood of the corner point θ`. It implies that J ≥ d and that there are no more than

J − d moment equations that are proportional to each other. Assumption 3.9 is common in moment

inequality models (e.g., Kaido, 2010, and PPHI).

Theorem 3.2. Suppose that Assumptions 3.1 to 3.3 and 3.5 to 3.9 are satisfied; then,
√

n(θ̂1` −
θ1`) = Op(1).

Proof. See Appendix B.2. �

4. INFERENCE

In the previous section, we show that the interval formed by two “extreme quantiles” is a
√

n-

consistent estimator for [θ1`, θ1u]. The next question we address is how to choose two quantiles of the
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marginal quasi-posterior such that the resulting interval covers θ01 asymptotically with a prespecified

probability. There are two issues. First, θ01 may be point–identified or partially identified; our

procedure accommodates both cases. Second, we use a weighting method to pick out the binding

moments.

4.1. Construct confidence sets for θ01.

4.1.1. An infeasible confidence set. It is convenient to introduce the infeasible confidence set ΘI
αn

first; we will propose the feasible confidence set Θ̂I
α in Section 4.1.2.

The inference about θ01 is based on the following observation. Assume that θ` is in the interior of

Θ and nd/2DnF1n(θ1`) converges in distribution to a continuous random variable ξ` (will be shown

later). Let c`(α) be the α–th quantile of ξ`; then

P

{
θ1` ≥ F−1

1n

(
c`(α)

nd/2Dn

)}
= P

{
nd/2DnF1n(θ1`) ≥ c`(α)

}
= P{ξ` ≥ c`(α)}+ o(1) = 1− α + o(1).

Therefore, a quantile of the marginal quasi-posterior f1n serves as the boundary point of a one-sided

confidence set for θ1`. This idea can be extended to construct two-sided confidence intervals for θ01.

Assumption 4.1. [θ1`, θ1u] belongs to the interior of Θ1.

Lemma 4.1. Let ξ`n = nd/2DnF1n(θ1`). Suppose that Assumptions 3.1 to 3.3, 3.5, 3.8, 3.9 and 4.1

are satisfied. Then

ξ`n
d→ ξ` =

∫
{h:h1≤0}

exp
(
−‖∆J (θ`) + QJ (θ`)h‖2

+

)
dh, (2)

where ∆ is defined in Assumption 3.5 and J indicates the identity of binding moments.

Proof. See Appendix C.1. �

Note that the distribution of ξ` depends on the identities of the binding moments. Let γ∗(θ) be a

J-dimensional vector of 1s and 0s, indicating the moment is binding or not binding. Then, we can

write,

ξ` =
∫
{h:h1≤0}

exp(−‖γ∗(θ`)⊗ (∆(θ`) + Q(θ`)h)‖2
+)dθ2dh1,

where ⊗ stands for the component-wise product.
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To have a confidence set with correct asymptotic coverage probability for θ01, one also needs to

take into account of the length of the interval [θ1`, θ1u]. Let T = θ1u − θ1` and T̂ be a
√

n-consistent

estimator for T. We construct a confidence interval for θ01 as

ΘI
αn =

[
F−1

1n

(
τI
`

)
, F−1

1n

(
1− τI

u

)]
,

where τI
` = cI

`/(n
d/2Dn), τI

u = cI
u/(nd/2Dn), and (cI

`, cI
u) is a solution to the following problem:4

(cI
`, cI

u) = argmin
(c`,cu)∈R+×R+

∣∣∣∣F−1
1n

(
c`

nd/2Dn

)
− F−1

1n

(
1− cu

nd/2Dn

)∣∣∣∣ (3)

s.t. P

{
c` ≤ ξ`, cu ≤

√
nν

(
βn

nT̂

)
+ ξu

}
= 1− α,

P

{
cu ≤ ξu, c` ≤

√
nν

(
βn

nT̂

)
+ ξ`

}
= 1− α,

where ν(x) = φ(x)/φ(0) and φ is the standard normal density. βn is a tuning parameter satisfying

Assumption 4.2 below.

Assumption 4.2. βn/
√

n→ ∞ and βn/n→ 0.

When T > 0,
√

nν
(

βn/nT̂
)

diverges to infinity, in which case cI
` and cI

u are computed as

αth quantiles of ξ` and ξu, respectively; when T is zero,
√

nν
(

βn/nT̂
)

converges in probability

to zero, in which case the confidence set is constructed using the joint distribution of ξ` and ξu.
√

nν
(

βn/nT̂
)

plays the same role as the shrinkage parameter of Stoye (2009). One possible choice

for βn is to use the iterated logarithm: βn = n/(2 ln ln n).

Theorem 4.1. Suppose that Assumptions 3.1 to 3.3, 3.5, 3.8, 3.9, 4.1 and 4.2 are satisfied. Then

lim
n→∞

inf
θ01∈[θ1`,θ1u]

P(θ01 ∈ ΘI
αn) = 1− α.

Proof. See Appendix C.2. �

4.1.2. Constructing Θ̂I
α. The confidence set ΘI

αn is infeasible because the joint distribution of ξ` and

ξu is unknown; as a result, cI
` and cI

u are unknown. In this subsection, we propose an algorithm to

obtain consistent estimates for cI
` and cI

u. We highlight the big picture in the main text and leave the

4 If there are multiple solutions to Equation (3), we use an arbitrary one.
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detailed algorithm in Appendix E (Algorithm 2). Throughout this subsection, it is assumed that there

are
√

n–consistent estimates available. The whole vector θ` can then be estimated by θ̂` = (θ̂1`, θ̂′2)
′,

where

θ̂2 =
∫

θ2∈Θ2

θ2 fn(θ̂1`, θ2)dθ2. (4)

To estimate th critical values cI
` (cI

u similar), we consider to approximate the distribution of ξ` by

drawing random numbers from

ξ̂` =
∫
{h:h1≤0}

exp(−‖γ̂(θ̂`)⊗ (∆̂(θ̂`) + Q̂(θ̂`)h)‖2
+)dh. (5)

We use γ̂ to estimate the moment selection vector γ∗. In particular, γ̂(θ̂`) is a J–vector of weights

with

γ̂j(θ̂`) =
exp(−βn| 1n ∑n

i=1 m(j)(Wi, θ̂`)|2)
exp(−βn| 1n ∑n

i=1 m(j)(Wi, θ̂`)|2+)
. (6)

By construction, each element γ̂j ∈ (0, 1]. As is shown in Lemma C.1, for any θ ∈ ΘI , the weight

γ̂j(θ) converges to one if the j–th moment is binding at θ; it converges to zero otherwise.5

∆̂(θ̂`) is a J-dimensional normal random vector whose variance V̂ is a consistent estimator of

V(θ`) = Em1(θ`)m′1(θ`). For example, V(θ`) can be estimated by a sample analog and θ` can be

replaced by θ̂`. Q̂ = ∂m̄(θ)/∂θ|θ=θ̂`
.

Given the random draws from ξ̂`, we construct Θ̂I
α by replacing the unknown parts in Equation (3)

with their estimates. We add Assumption 4.3 to ensure that Q̂ converges in probability to its

population counterpart. Assumption 4.3 implies that Assumptions 3.4 and 3.8 are satisfied.

Assumption 4.3. For each w ∈ W , m(w, θ) is continuously differentiable at each θ ∈ Θ. There

exists a d(w) such that ‖∂m(w, θ)/∂θ‖ < d(w) for all θ ∈ Θ and Ed(W1) < ∞.

Theorem 4.2. Suppose that Assumptions 3.1 to 3.3, 3.5, 3.7, 3.9 and 4.1 to 4.3 are satisfied; then

lim
n→∞

inf
θ01∈[θ1`,θ1u]

P(θ01 ∈ Θ̂I
α) = 1− α. (7)

Proof. See Appendix C.3. �

5When the j-th moment is nearly binding at θ∗, that is, when Em(j)(θ
∗) = λ/

√
n for some λ ∈ (−∞, 0), γ̂j(θ

∗)
converges in distribution to a random variable that takes value from (0, 1). In this paper, we consider pointwise asymptotics
only.
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Several points about Theorem 4.2 are worth noting. First, Θ̂I
α is constructed directly from the mar-

ginal quasi-posterior rather than as a projection of a high-dimensional confidence set. Constructing

Θ̂I
α does not require resampling procedures, instead, we just need to obtain random draws from ξ̂`

and ξ̂u. As shall be clear in Algorithm 2, each random draw involves only computing a d-dimensional

integral whose integrand is a parametric function of a Gaussian process. Second, our weighting

method picks out the binding moments asymptotically. Third, we introduce an additional “shrinkage

term” to accommodate the point identification case.

4.2. Constructing a confidence set for the interval [θ1`, θ1u]. Our method can be used to construct

confidence sets for [θ1`, θ1u]. For any 0 < α < 1/2, let (cII
` , cII

u ) be a solution to the following

problem:

(cII
` , cII

u ) = argmin
(c`,cu)∈R+×R+

∣∣∣∣F−1
1n

(
c`

nd/2Dn

)
− F−1

1n

(
1− cu

nd/2Dn

)∣∣∣∣
s.t. P (c` ≤ ξ`, cu ≤ ξu) = 1− α.

Let ΘII
αn =

[
F−1

1n
(
cII
` /nd/2Dn

)
, F−1

1n
(
1− cII

u /nd/2Dn
)]

.

Theorem 4.3. Suppose that Assumptions 3.1 to 3.3, 3.5, 3.8, 3.9, 4.1 and 4.2 are satisfied. Then

lim
n→∞

P([θ1`, θ1u] ⊆ ΘII
αn) = 1− α.

Proof. See Appendix C.4. �

5. EXPERIMENT

This section illustrates the integration-based inference approach using Example B, in which partial

identification arises as a consequence of multiple equilibria.

Example B (Entry game). We consider a complete information game with two players (j = 1, 2)

and two actions (Yij = 0, 1) (Bugni, Canay, and Guggenberger, 2010, Example 2.2). An example

of this game is that two oligopoly firms decide to enter a local market simultaneously. The index i

indicates an observation (a market). The profit for firm j when choosing action Yij = 0 is normalized

to be zero regardless of the choice of the other firm (Yi,−j). The profit for firm j when choosing action

1 is

πij = uij − θ0j1[Yi,−j = 1],
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where uij is the profit shock, which is uniformly distributed on unit interval and is i.i.d. across i and

j. θ0j measures the competition effect. We assume that θ0j ∈ [0, 1].

The realizations of profit shocks and the value of (θ01, θ02) are known to both players. Players

play pure strategy Nash equilibria. Researchers observe outcome {(Yi1, Yi2)}n
i=1 and know the

distribution of {(ui1, ui2)}. The object of interest is to make inferences about θ01 while being

agnostic about the equilibrium selection mechanism.

As is illustrated in Figure 2, depending upon the realization of ui1 and ui2, there may be multiple

equilibria in this game. When (ui1, ui2) belongs to area A, B, or C, the model predicts a unique

equilibrium; on the contrary, when (ui1, ui2) belongs to area M, both (0, 1) and (1, 0) could be

equilibrium outcomes.

0 1

1

0.5

0.5

M: (0, 1) or (1, 0)

C: (0, 1) A: (1, 1)

B: (1, 0)

u1

u2

Multiple Equilibria

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

eq. (8)

eq. (10)

eq. (9)

θ1

θ2

Identified Set

ΘI

FIGURE 2. Multiple equilibria and the identified set

We can write a set of moment equations based on the model restrictions. The probability of

observing outcome (1, 1) is equal to the probability of (ui1, ui2) belongs to area A, which delivers

one moment equation (or two moment inequalities):

P{(1, 1)} = P{A} = (1− θ01)(1− θ02). (8)

The probability statement for outcome (1, 0) is more complicated. Since the equilibrium selection

mechanism is unspecified, one can only derive bounds of P{(1, 0)}: it is larger than the mass of
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area B, but smaller than the mass of area B ∪M. Hence, we have two more moment inequalities:

P{(1, 0)} ≤ P{B ∪M} = θ02. (9)

(1− θ01)θ02 = P{B} ≤ P{(1, 0)}. (10)

Equation (8), inequalities (9) and (10) characterize a set of parameters that is consistent with the

model restriction and distribution of observed data. This set is the identified set ΘI .6

To generate random samples from this model, we specify θ01 = θ02 = 0.5. When there are

multiple equilibria, an equilibrium is selected by tossing a coin (unknown to researchers). Given

this design, we can calculate that θ1` = 0.375 and θ1u = 0.6. We consider three sample sizes:

n = 200, 400, and 800.

We use a random walk Metropolis Hasting (MH) algorithm to make random draws from the

marginal quasi-posterior, as shown in Algorithm 1.7 Figure 3 shows the construction of a quasi-

posterior. It also plots the last 5, 000 draws from the marginal quasi-posterior.

Algorithm 1. Estimation.

(1) Construct quasi-posterior fn as in Equation (1).

(2) Draw a sequence of vectors from fn,
{

θ1, θ2, · · · , θB}, as follows:

(a) θ0 = (θ0
1 , θ0

2) = (0, 0).

(b) Update θ1, holding θ0
2 fixed.

• θ
temp
1 = θ0

1 + ε, θ
temp
2 = θ0

2 , ε ∼ N(0, 0.04).

• a ∼ U[0, 1].

• θ1
1 = θ

temp
1 if a ≤ fn(θtemp)/ fn(θ0); θ1

1 = θ0
1 otherwise.

(c) Update θ2, holding θ1
1 fixed.

(d) ......

(e) Reach θB.

(3) Let B1 = B/2 be the burn-in period.

(4) Take the first components of the chain after the burn-in period:
{

θB1+1
1 , · · · , θB

1

}
.

6Note that the identified set is not convex.
7See Robert and Casella (2004) for a comprehensive summary of MCMC algorithms.
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FIGURE 3. MCMC draws

(5) θ̂1` is determined by

θ̂1` = F−1
1n

{
c

nDn

}
for some constant c > 0.

Algorithm 1 does not specify how to choose the tuning parameter c. Although θ̂1` = F−1
1n {c/(nDn)}

is a
√

n-consistent estimator for any fixed value of c, its finite sample performance will be af-

fected. Figure 4 reports the mean squared error (MSE) and standard deviation of θ̂1` for c ∈
{0.5, 1.0, · · · , 5.5, 6.0} under different sample sizes (based on 1, 000 replications). The figure for

θ̂1u is similar and is therefore omitted. There are some interesting points worth noting. First,

MSEs are small. When the sample size is doubled, MSEs roughly decease by half—support the
√

n-convergence rate. In larger samples, the MSE curve is more flat and the choice of c matters

less. Second, it seems that there is a value of c minimizing MSEs. Note that the standard deviations
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FIGURE 4. Mean squared errors under different choices of c

curve are flat in c; hence the U-shape MSE curve is mainly caused by the finite sample biases. It

is intuitive in the sense that at a fixed sample size, c ↑ implies c/(nDn) ↑ 1, then θ̂1` will be close

to the maximum of the support of the marginal quasi-posterior. This induces positive-valued bias.

If c ↓ 0, then θ̂1` is the minimum of the support of the marginal quasi-posterior, which leads to

negative-valued bias.

Although deriving an “optimal” choice of c is beyond the scope of this paper, we propose a heuristic

rule for choosing c that significantly reduces the biases in our example. Recall that the rescaled tail

mass nDnFn(θ1`)
d→ ξ`. If we choose c = ξ`,[0.5], the median of the ξ`, then asymptotically θ̂1` will

be greater than θ1` with a probability of 0.5:

P(θ̂1` > θ1`) = P(nDnFn(θ1`) < ξ`,[0.5])→ 0.5.

We can hence achieve a “balance” between the positive-valued bias caused by large c and the negative-

valued bias caused by small c. The median ξ`,[0.5] is unknown, but can be consistently estimated

based on first stage estimates and the simulation procedure described in Algorithm 2. Following
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this rule, we re-estimate the model by choosing c = 1 in the first stage and c = ξ̂`,[0.5] in the second

stage. For the ease of comparison, we plot the results on the right end of Figure 4 (numbers are in

Tables 2 and 3 of Appendix E). We can see that this method of choosing c produces MSE no greater

than any other fixed choices of c.

Table 1 compares three inference methods when the object of interest is constructing confidence

intervals for θ1`. The first two columns report the coverage probability of projected confidence

intervals where the joint confidence sets are constructed following the method in CHT2007 (with

simulated critical values). Columns 3–7 are based on methods of profiling out nuisance parameters

(Romano and Shaikh, 2008), with critical values obtained from subsampling. The last column reports

the results of our inference procedure.

TABLE 1. Coverage frequency

Joint Proj.-based Profiling out & subsampling Int.-based
Subs. size 10 12 15 17 20
95% level
n = 200 95.6% 99.7% 97.9% 97.7% 98.9% 98.5% 97.4% 93.8%
n = 400 94.7% 99.9% 98.6% 97.8% 95.8% 97.6% 97.0% 94.8%
n = 800 95.1% 99.8% 97.5% 97.9% 96.0% 95.6% 98.8% 95.2%
90% level
n = 200 90.2% 99.5% 92.9% 94.1% 95.0% 94.8% 94.0% 88.2%
n = 400 90.7% 99.4% 92.2% 91.1% 94.4% 95.4% 94.0% 89.7%
n = 800 89.9% 99.5% 92.3% 93.2% 90.4% 90.9% 95.8% 89.9%

Based on 1, 000 replications.

We can see from the table that the joint confidence sets performances well across three sample sizes;

however, the projections are very conservative. The method of profiling out nuisance parameters

and subsample critical values has coverage probabilities close to the desirable levels under suitable

choices of subsample sizes. For example, at the 95% level, the choice of 12, 15, and 17 delivers the

best results for sample sizes of 200, 400, and 800, respectively. At the 90% level, the choices of 10,

12 and 15 work better than others. The last column shows the performance of our method, which

performances reasonably well.

We also documented the computation time of different methods. For the projection method and

the integration-based method, we estimate the critical values by making 10, 000 random draws from

the (plug-in) limiting distributions. For the method of profiling out nuisance parameters, we generate
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10, 000 subsamples. The numerical precision of simulating critical values is therefore comparable

across three methods. For our method, we construct an MCMC chain with a length of 500, 000. With

the acceptance rate at around 32%, the chain explores about 160, 000 points in the parameter space

[0, 1]× [0, 1] and is comparable to 400× 400 grids.8 We approximate the integral in Equation (2) by

drawing (h1, h2) 10, 000 times from a bivariate normal distribution. Under these configuration, with

a sample of size 800, it takes the projection method about 367 CPU seconds to finish one replication

(inverts 400× 400 hypothesis tests). The computation time for the profiling-out method is about 35

seconds (inverts 400 hypothesis tests, and for each test draws 10, 000 subsamples). Our method takes

about 21 seconds.9

There are several points worth noting. First, our method does not require the choice of subsample

sizes. Second, our method is expected to have more computational advantage when parameters

are high-dimensional. In large samples, “quasi-posterior mass” concentrates on the identified set.

Making MCMC draws from the quasi-posterior is numerically similar to making MCMC draws from

a muti-dimensional uniform distribution. The running time for a random walk MH algorithm can be

bounded by polynomial orders of parameter dimension (e.g., Beskos and Stuart, 2009; Lovasz and

Vempala, 2005).10

8Most of the MCMC draws are located around the identified set, as opposed to the evenly distributed grid points.
9We ran programs at SciNet, a Canadian supercomputer center (http://www.scinethpc.ca/).
10If th quasi-posterior approaches to a normal density (e.g., when the model is point-identified), the running time of a
random walk MH algorithm is bounded in probability by the order of d2 (see Belloni and Chernozhukov, 2008).
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Lastly, Figure 5 shows the coverage probability for alternatives θh = θ1` − h/
√

n in 1, 000

replications as a function of h. It shows that the inference procedure has non-trivial power against

local alternatives.

6. DISCUSSIONS AND CONCLUSION

6.1. Extreme points are not singletons. In this subsection, we discuss the
√

n-consistent estima-

tion of θ1` when ΘI2(θ1`) is not necessarily a singleton, that is, without Assumption 3.7. The shape

of ΘI(θ1`) turns out to be important for the
√

n-estimation of θ1`. Lemma 6.1 below illustrate in the

two dimensional case that to obtain a
√

n-consistent estimator for θ1`, the choice of τ̂` shall depend

on the shape of ΘI2(θ1`).

Lemma 6.1. Suppose that Assumptions 3.1, 3.2, 3.3, 3.5, 3.6, 3.8, 3.9 and 4.1 are satisfied. Suppose

that d = 2. Let τ̂a
` = ĉ/(nDn) and τ̂b

` = ĉ/(
√

nDn). If ΘI2(θ1`) contains an interval with positive

length, then

(1) for any K > 0, limn→∞ P(
√

n(θ1` − F−1
1n (τ̂a

` )) > K) = 1.

(2)
√

n(θ1` − F−1
1n (τ̂b

` )) = Op(1).

Proof. See Appendix D.1. �

The implication of Lemma 6.1 is that we have to choose different quantiles according to the shape

of ΘI(θ1`) to obtain
√

n–consistency. Since ΘI2(θ1`) is unknown, it is desirable to construct an

estimator θ̂∗1` that can automatically adapt to the shape of ΘI2(θ1`). This is feasible because the

quasi-posterior provides corresponding information. To see this, consider an infeasible version θ̃∗1` of

the estimator θ̂∗1`:

θ̃∗1` = F−1
1n (τ̂`(θ1`)) , with τ̂`(θ1`) =

ĉUn(θ1`)√
nDn

,

where

Un(θ1) =
∫

θ2

exp(−n‖m̄(θ1, θ2)‖2
+)dθ2.

By construction, supθ1
Un(θ1) ≤ C for some C > 0. It can be shown (similar to the proof

of Theorem 3.2) that when ΘI2(θ1`) is a singleton, U1n(θ1`) = Op(1/
√

n), in which case we

essentially use a probability level decreasing at the rate of n; however if ΘI2(θ1`) is an interval,

U1n(θ1`) = Op(1), and we use a probability level decreasing at the rate 1/
√

n. The quantity
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U1n(θ1`) hence automatically picks out the correct rate. This idea generalizes to any finite dimension

d.

In practice, U1n(θ1`) is unknown because it depends on θ1`; a feasible version of θ̃∗1` is available:

θ̂∗1` = F−1
1n
(
τ̂`(θ̂

∗
1`)
)

, τ̂`(θ̂
∗
1`) =

ĉUn(θ̂∗1`)√
nDn

. (11)

Alternatively, it can be written as
f1n(θ̂

∗
1`)

F1n(θ̂∗1`)
=

√
n

ĉ
, (12)

that is, choosing θ̂∗1` such that the ratio of the density and the distribution function of the marginal

quasi-posterior is proportional to
√

n.

Proposition 6.1. Suppose that Assumptions 3.1 to 3.3, 3.5, 3.6, 3.8, 3.9 and 4.1 are satisfied. Let θ̂∗1`
satisfies Equation (11) or (12); then

√
n(θ̂∗1` − θ1`) = Op(1).

Proof. See Appendix D.2. �

6.2. Disconnected identified set. When the identified is disconnected, the proposed estimators for

θ1` and θ1u are consistent and confidence intervals for θ10 are asymptotically valid with a modification

to Algorithm 1.

To illustrate this, we consider Example B in Section 5 again but expand the parameter space

to [0, 2] × [0, 2]. We can see from the top two panels of Figure 6 that the identified set is the

union of two disconnected curves. The projection of the identified set to the θ1 dimension is

ΘI1 = [0.375, 0.6] ∪ [1.25, 2]. The minimum and maximum values that θ01 can possibly take are

θ1` = 0.375, θ1u = 2. In this case, the quasi-posterior resembles a multi-modal density.

To make random draws from this multi-modal density, we follow Guan, Fleibner, and Joyce (2006)

and use an MH algorithm with “small-world proposals”. The idea is to add large jumps to the MCMC

chain with a small probability, so the chain can explore all the important area of a multi-modal

distribution. As illustrated in Figure 6, we can still consistently estimate θ1` = 0.375 and θ1u = 2 by

taking two extreme quantiles from the marginal quasi-posterior. For inference, confidence intervals

can be constructed following the same procedure as described in previous sections. Note that such

confidence intervals have correct asymptotic coverage probability for θ01, satisfying Equation (7),

although they will cover the redundant interval (0.6, 1.25).
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FIGURE 6. MCMC draws with a disconnected identified set

6.3. Conclusion. In this paper, we propose integration-based estimation and inference methods for

moment inequality models. Our confidence intervals cover each component of the true parameter

vector with pre-specified probability and are easy to compute.

There are issues of potential interest that are not studied in this paper. First, one may be interested

in models where the number of moment equations is large (Menzel, 2008),11 models characterized by

conditional moment inequalities (Andrews and Shi, 2013), or models not characterized by moment

inequalities (maximum score estimator when the support condition is violated). Second, we focus

on a single element of the parameter vector. In some applications, researchers may be interested

in a joint confidence set for a subvector, in which case one needs to study the asymptotic behavior

11Henry, Meango, and Queyranne (2012) propose a combinatorial inference methods for identified sets that reduces the
computational complexity caused by a large number of moments. My paper focuses on inferences on parameter values and
aims to reduce the computational burden caused by the high dimensionality of parameters.
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of the marginal quasi-posterior of the corresponding subvector. In this case confidence set can be

constructed as a level set of the marginal quasi-posterior. Third, it is challenging but interesting to

extend the current framework to allow for the presence of infinite-dimensional nuisance parameters.
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APPENDIX A. SOME LEMMAS

We first present some lemmas which will be used for the proofs in Sections 3 and 4. A maintained

assumption in Appendix A is that ΘI belongs to the interior of parameter space. Lemma A.1 deals with the

denominator of the quasi-posterior and lemmas A.2 to A.7 deal with the numerator. All the Lemmas are

written for deriving the asymptotics around θ1`; they are similar for θ1u and are omitted.

Lemma A.1 says that nd/2Dn is bounded away from 0 with probability approaching one. Lemma A.1 will

be used in the proof for consistency.

Lemma A.1. Suppose that Assumptions 3.1, 3.4 and 3.5 are satisfied, then for any ε > 0, there exists a

C∗ > 0 such that limn→∞ P(nd/2Dn < C∗) < ε.

Proof. Assumption 3.1 ensures that Dn is well defined. For a C1 > 0, define set An = {θ : d(θ, ΘI) ≤ C1√
n}.

Note that An is compact. Then, by Assumption 3.4, there exist C2 > 0 such that

max
j

sup
θ∈An

|Em(j)(W1, θ)|+ ≤ C2 sup
θ∈An

d(θ, ΘI) ≤ C2C1/
√

n.

Let µ(An) be the Lebesgue measure of An, then there exist C3 > 0 such that µ(An) ≥ C3/nd/2. Let ι be a

J–vector of ones, for any C > 0,

P
{

nd/2Dn < C
}
≤ P

{
nd/2 inf

θ∈An
exp(−n‖m̄(θ)‖2

+)µ(An) < C
}

≤ P

{
C3 inf

θ∈An
exp(−‖∆n(θ) +

√
nEm1(θ)‖2

+) < C
}
≤ P

{
‖ sup

θ∈An

∆n(θ) + C1C2ι‖2
+ > log(C3/C)

}
.

The limit of right hand side is bounded by ε by letting C decrease to zero because supθ∈An
∆n(θ) is bounded

in probability by Assumption 3.5. �
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Lemmas A.2 to A.7 say that when sample size increases to infinity, the integral of the numerator of

the quasi-posterior outside of the identified set has the same distribution as a “localized” integral within a
√

n-neighborhood (but outside) of the identified set. The proof follows the same idea as in CH2003 for the

point identification case. Define

Nn(h) = Dn fn(θ1` +
h1√

n
, θ2` +

h2√
n
), N∞(h) = exp(−‖∆J (θ`) + QJ (θ`)h‖2

+).

By Assumptions 3.1 and 3.2, we can define a integration region for the local parameter h =
√

n(θ − θ`) as

Hn = {h : −√n(θ1` − θ1) ≤ h1 ≤ 0,−√n(θ2` − θ2) ≤ h2 ≤
√

n(θ2 − θ2`)}. Note that Hn corresponds

to the integration region for θ: {θ ∈ Θ : θ1 ≤ θ1`}. We separate Hn into three parts: H1n = {h : ‖h‖ ≤
M, h1 ∈ Hn}, H2n = {h : M < ‖h‖ ≤ M∗

√
n, h ∈ Hn} and H3n = {h : ‖h‖ ≥ M∗

√
n, h ∈ Hn} for

some M∗, M > 0. In the rest part of Appendix A, we drop the sup-script J to simplify the notation. By

assumption Assumption 3.2, Hn converges to R− ×R in the Painleve–Kuratowski sense.12

Lemma A.2. Suppose that Assumptions 3.1, 3.2, 3.5 and 3.8 are satisfied, then for any M > 0,∫
‖h‖≤M

Nn(h)dh d→
∫
‖h‖≤M

N∞(h)|dh.

Proof. Note that Em1(θ1`, θ2`) = 0. It follows

Nn(h) = Dn fn(θ1` +
h1√

n
, θ2` +

h2√
n
)

= exp(−‖∆n(θ1` +
h1√

n
, θ2` +

h2√
n
) +
√

nEm1(θ1` +
h1√

n
, θ2` +

h2√
n
)‖2

+)

= exp(−‖∆n(θ1` +
h1√

n
, θ2` +

h2√
n
) + Q(θ`)h + Rn(h1, h2)‖2

+),

where

Rn(h1, h2) =
√

nEm1(θ1` +
h1√

n
, θ2` +

h2√
n
)−Q(θ`)h.

Note also that

sup
‖h‖≤M

‖∆n(θ`)− ∆n(θ1` +
h1√

n
, θ2` +

h2√
n
)‖ = op(1)

since ∆n
w→ ∆ by Assumption 3.5. In addition, by Assumption 3.8 (continuous differentiability), maxj sup‖h‖≤M Rn,j(h) =

o(‖h‖) ≤ o(M) = o(1). The result holds by continuous mapping theorem. �

12See discussion in Kaido (2010).
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Lemma A.3. Suppose that Assumptions 3.1, 3.2, 3.5, 3.8 and 3.9 are satisfied, then for any ε > 0, there exists

an 0 < M < ∞ such that

P

{∫
‖h‖≥M,h1≤0

N∞(h)dh ≤ 2ε

}
> 1− 2ε.

Proof. Let a and b be scalars. Then |a + b|2+ ≥ |a|2+ − |b|2 unless a ≥ 0, b < 0 and a + b > 0. This can be

verified as follows.

Case 1, a ≥ 0, b ≥ 0. |a + b|2+ ≥ |a|2+ − |b|2 holds obviously.

Case 2, a < 0, b < 0. |a + b|2+ = 0 > |a|2+ − |b|2 holds obviously.

Case 3, a < 0, b ≥ 0. |a + b|2+ ≥ 0 ≥ −|b|2 = |a|2+ − |b|2.

Case 4, a ≥ 0, b < 0. In this case, if a + b < 0, then |a + b|2+ = 0 ≥ |a|2 − |b|2 = |a|2+ − |b|2.

For every given ω in the sample space, we divide the integration region into HA
n and HB

n , where HA
n =

{‖h‖ ≥ M, h1 ≤ 0, Q(θ`)h + ∆(θ`) ≥ 0} and HB
n be the complement. Note

P

{∫
HA

n ∪HB
n

N∞(h)dh ≤ 2ε

}
≥ P

{∫
HA

n

N∞(h)dh ≤ ε,
∫

HB
n

N∞(h)dh ≤ ε

}
≥ 1−P

{∫
HA

n

N∞(h)dh > ε

}
−P

{∫
HB

n

N∞(h)dh > ε

}
.

For region HA
n , since Q(θ`)h + ∆(θ`) ≥ 0, we have

lim
M→+∞

P

{∫
HA

n

N∞(h)dh > ε

}
= lim

M→+∞
P

{∫
HA

n

exp(−‖∆(θ`) + Q(θ`)h‖2
+)dh > ε

}
≤ lim

M→+∞
P

{∫
‖h‖>M

exp(−‖∆(θ`) + Q(θ`)h‖2)dh > ε

}
= 0.

The right hand side term converges to zero because Q(θ`) has full column rank by Assumption 3.9 and

∆(θ`) is bounded in probability by Assumption 3.5.

Now consider region HB
n . Let HB

nj be the region of h such that the first element of ∆(θ`) + Q(θ`)h is

smaller than zero, that is, ∆j(θ`) + Qj(θ`)h < 0, where Qj is the j-th row of Q. So HB
n = ∪J

j=1HB
nj. We

show the conclusion is hold for the integral over HB
n1. The others are similar. Treating ∆1(θ`) as the “b”, and

Q1(θ`) as the “a” at the beginning of this lemma, we have

∫
h∈HB

n1

N∞(h)dh ≤
∫

h∈HB
n1

exp(−|Q1(θ`)h|2+ + |∆1(θ`)|2)dh

= exp(|∆1(θ`)|2)
∫

h∈HB
n1

exp(−|Q1(θ`)h|2+)dh ≤ exp(|∆1(θ`)|2)
∫
{h:‖h‖≥M,h1≤0}

exp(−|Q1(θ`)h|2+)dh.
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Since |∆1(θ`)| is bounded in probability by Assumption 3.5, to complete the proof of this lemma, we just

need to show

lim
M→+∞

∫
{h:‖h‖≥M,h1≤0}

exp(−|Q1(θ`)h|2+)dh = 0.

This is true because by Assumption 3.3, there exists at least one element Q1d∗(θ`) in Q1(θ`) such that

Q1d∗(θ`) < 0.

�

Lemma A.4. Suppose that Assumptions 3.1, 3.2, 3.5, 3.8 and 3.9 are satisfied, then for any ε > 0, there exists

M∗ and M such that

lim
n→∞

P

{∫
M<‖h‖≤M∗

√
n,h1≤0

Nn(h)dh ≤ ε

}
> 1− ε.

Proof. Let ε be arbitrarily given. Note that

Nn(h) = exp(−‖∆n(θ` +
h√
n
) +
√

nEm1(θ` +
h√
n
)‖2

+)

= exp(−‖∆n(θ`) + Q(θ`)h + Ra
n(h1, h2) + Rb

n(h1, h2)‖2
+),

where

Ra
n(h1, h2) = ∆n(θ` +

h√
n
)− ∆n(θ`),

Rb
n(h1, h2) =

√
nEm1(θ` +

h√
n
)−Q(θ`)h = O(‖h‖/

√
n).

For any M > 0 and ε∗ > 0, by Assumption 3.5, there exists M∗ such that:

lim sup
n→∞

P

 sup
{h:M≤‖h‖≤√nM∗ ,h1≤0}

‖∆n(θ` +
h√
n )− ∆n(θ`)‖

1 + ‖h‖ > ε∗

 < ε∗. (13)

Hence with probability at least 1− ε∗, we have

Nn(h) ≤ exp

(
−∑

j

{∥∥∆nj(θ`) + Qj(θ`)h
∥∥2
+
+

1
2
‖Qj(θ`)h‖

})
,

Taking ε∗ = ε
2 , the results holds by following similar arguments in Lemma A.3. �

Lemma A.5. Suppose that Assumptions 3.1 and 3.3 to 3.5 are satisfied, then for any ε > 0, and each M∗ > 0,

lim
n→∞

P

{∫
H3n

Nn(h)dh ≤ ε

}
> 1− ε.

Proof. Recall that H3n = {h : ‖h‖ ≥ M∗
√

n, h ∈ Hn}. Let M∗ > 0 be arbitrary. For any h ≥
M∗
√

n, let θ1 = θ1` +
h1√

n and θ2 = θ2` +
h2√

n , let H∗3n be corresponding integration region for θ. Then
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infθ∈H∗3n
d(θ, ΘI) ≥ M∗. By Assumption 3.3, there exists at least one j∗ and some δm > 0 such that

Em(j∗)(W1, θ) ≥ δm uniformly over H∗3n.

sup
h∈H3n

Nn(h) = sup
h∈H3n

exp(−‖∆n(θ1` +
h1√

n
, θ2` +

h2√
n
) +
√

nEm1(θ1` +
h1√

n
, θ2` +

h2√
n
)‖2

+)

= sup
θ∈H∗3n

exp(−‖∆n(θ1, θ2) +
√

nEm1(θ1, θ2)‖2
+) ≤ exp(−| inf

θ∈H∗3n

∆j∗n(θ1, θ2) +
√

nδm|2+)

Since supθ∈Θ ∆n(θ) = OP(1), for any ε > 0

lim
n→∞

P

{∫
H3n

Nn(h)dh < ε

}
≥ lim

n→∞
P

{∫
H∗3n

sup
θ∈H∗3n

exp(−|∆j∗n(θ1, θ2) +
√

nδm|2+)dθ < ε

}

≥ lim
n→∞

P

{
µ(Θ) exp(−| inf

θ∈H∗3n

∆j∗n(θ) +
√

nδm|2+)dθ < ε

}
= 1.

The right hand side converges to one because infθ∈H∗3n
∆n(θ) is bounded in probability. �

Lemma A.6. Suppose that Assumptions 3.1 to 3.5, 3.8 and 3.9 are satisfied, then for any ε > 0, there exist an

M > 0 such that

lim
n→∞

P

{∫
H2n∪H3n

|Nn(h)− N∞(h)|dh ≤ ε

}
> 1− ε.

Proof. Follows from lemmas A.2 to A.5 and triangle inequality. �

Lemma A.7. Suppose that Assumptions 3.1 to 3.5, 3.8 and 3.9 are satisfied, then∫
Hn

Nn(h)dh d→
∫

N∞(h)dh.

Proof. Follows from Lemma A.2 and Lemma A.6. �

APPENDIX B. PROOFS IN SECTION 3

B.1. Proof of Theorem 3.1.

Part 1: limn→∞ P(θ̂1` < θ1` − ε) = 0.

Let ε > 0 be arbitrary. We first show that supΘ/Θε
I

nr fn(θ) = op(1) for any r > 0. By Assumption 3.3,

infθ∈Θ/Θε
I

Em(W1, θ) > δε ≡ min{Cε, δ}. Then with probability approaching one

sup
Θ/Θε

I

nr fn(θ) =
nr

Dn
exp(− inf

Θ/Θε
I

n‖m̄(θ)‖2
+)

=
nr

Dn
exp(− inf

Θ/Θε
I

n‖m̄(θ)−Em1(θ) + Em1(θ)‖2
+) ≤

nr+d/2

nd/2Dn
exp(− Jδ2

ε n
4

) = op(1).
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The last inequality holds because for every j, supθ∈Θ |m̄(j)(θ)−Em(j)(W1, θ)| < δε/2 in probability. The

last equality holds because nd/2Dn is bounded away from 0 in probability by Lemma A.1. Therefore,

nrF1n(θ1` − ε) ≤ nr
∫

Θ/Θε
I

fn(θ)dθ ≤ sup
Θ/Θε

I

nr fn(θ)µ(Θ/Θε
I ) = op(1).

On the other hand, by Assumption 3.6, τ̂` decreases to zero at a polynomial rate. This shows that limn→∞ P(θ̂1` <

θ1` − ε) = 0.

Part 2: limn→∞ P(θ̂1` > θ1` + ε)→ 0.

There are two cases, θ1` = θ1u and θ1` < θ1u. Suppose first that θ1` = θ1u, then

P
{

θ̂1` > θ1` + ε
}
= P {τ̂` ≥ F1n(θ1` + ε)} ≤ P

{
1
2
≥ F1n(θ1` + ε)

}
.

Note that F1n(θ1` + ε)
p→ 1 by the argument in part 1. It then follows that the probability on the right hand

side coverages to 0. It remains to show same conclusion holds when θ1` < θ1u.

P
{

θ̂1` > θ1` + ε
}
= P

{
τ̂`Dn ≥

∫
{θ:θ1≤θ1`+ε}

exp(−n‖m̄(θ)‖2
+)dθ

}
≤ P

{
τ̂`Dn ≥

∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ

}
,

where Bn = {θ : θ1` ≤ θ1 ≤ θ1` + ε,
√

n‖Em1(θ)‖+ ≤ δ∗} for some δ∗ < ∞. Note that by Lipschitz

Assumption 3.4, there exists some δ∗∗ > 0 such that µ(Bn) ≥ δ∗∗ε
nd/2−1 .

It thus follows,

P

{
τ̂`Dn ≥

∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ

}
≤ P

{
τ̂`Dn ≥ nµ(Bn) inf

θ∈Bn
exp(−n‖m̄(θ)‖2

+

}
≤ P

{
ĉ ≥
√

nδ∗∗ε inf
θ∈Bn

exp(−n‖m̄(θ)‖2
+

}
To show that right hand side probability converges to zero as n increases, it sufficient to show that infθ∈Bn exp(−n‖m̄(θ)‖2

+)

is bounded away from zero with probability approaching one. This is true because

inf
θ∈Bn

exp
(
−n‖m̄(θ)‖2

+

)
= exp

(
− sup

θ∈Bn

‖
√

nm̄(θ)‖2
+

)

≥ exp

(
−‖ sup

θ∈Bn

∆n(θ) + sup
θ∈Bn

√
nEm1(θ)‖2

+

)

≥ exp

(
−‖ sup

θ∈Bn

∆n(θ)‖2
+ − ‖ sup

θ∈Bn

√
nEm1(θ)‖2

+

)
. (14)
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Note that by Assumption 3.5, ‖ supθ∈Bn
∆n(θ)‖2

+ is Op(1). Also, ‖ supθ∈Bn

√
nEm1(θ)‖2

+ is finite.

Hence the right hand side of Equation (14) bounded away from zero with probability approaching one. �

B.2. Proof of Theorem 3.2.

Part 1. We first show that limn→∞ P{√n(θ̂1` − θ1`) ≤ −K} converges to zero as K increases to +∞.

P
{√

n(θ1` − θ̂1`) ≥ K
}
= P

{
ĉ ≤ nd/2Dn

∫ θ1`− K√
n

θ1

∫
θ2∈Θ2

fn(θ1, θ2)dθ2dθ1

}

= P

{
ĉ ≤ Dn

∫ −K

−√n(θ1`−θ1)

∫ √n(θ2)−θ2`

−√n(θ2`−θ2)
fn(θ1` +

h1√
n

, θ2` +
h2√

n
)dh2dh1

}
.

Following Lemma A.7,

P

{
ĉ ≤ Dn

∫ −K

−∞

∫ √n(θ2)−θ2`

−√n(θ2`−θ2)
fn(θ1` +

h1√
n

, θ2` +
h2√

n
)dh2dh1

}

= P

{
ĉ ≤

∫
{h:h1≤−K}

Nn(h)dh
}

= P

{
c ≤

∫
{h:h1≤−K}

N∞(h)dh
}
+ o(1).

The right hand side converges to zero as K increases to infinity, as already shown in Lemma A.3.

Part 2. Now we show that limn→∞ P
{

θ̂1` > θ1` +
K√

n

}
→ 0 as K → +∞. Suppose θ1u > θ1` for now.

P

{
θ̂1` ≥ θ1` +

K√
n

}
= P

{
c + op(1) ≥ nd/2

∫
{θ:θ1≤θ1`+

K√
n }

exp(−n‖m̄(θ)‖2
+)

}

≤ P

{
c + op(1) ≥ nd/2

∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ

}
, (15)

where

Bn =

{
θ : θ1` +

K
4
√

n
≤ θ1 ≤ θ1` +

3K
4
√

n
, and d(θ, ΘI) ≤

δ∗√
n

}
.

By Assumption 3.4, there exist C1 > 0 such that

max
j

sup
θ∈Bn

|Em(j)(W1, θ)|+ ≤ sup
θ∈Bn

C1d(θ, ΘI) =
C1δ∗

4
√

n
.

Note that there exists a C2 > 0 such that µ(Bn) =
C2Kδ∗
16nd/2 . Therefore,

P

{
c + op(1) ≥ nd/2

∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ

}
≥ P

{
c + op(1) ≥ nd/2µ(Bn) inf

θ∈Bn
exp(−n‖m̄(θ)‖2

+

}
= P

{
c + op(1) ≥

C2Kδ∗

16
inf

θ∈Bn
exp(−n‖m̄(θ)‖2

+)

}
.
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It remains to show that infθ∈Bn exp(−n‖m̄(θ)‖2
+) is bounded away from zero with probability approach-

ing one. This is true since supθ∈Bn
‖√nEm1(θ)‖2

+ ≤ JC1δ∗
4 < +∞ and by the same argument as in

Equation (14).

To complete part 2, it remains to show limn→∞ P(θ̂1` > θ1` +
K√

n ) → 0 when θ1` = θ1u. In this case,

θ01 is point identified.

P

{
θ̂1` > θ1` +

K√
n

}
= P

{
τ̂` ≥ F1n(θ1` +

K√
n
)

}
≤ P

{
1
2
≥ F1n(θ1` +

K√
n
)

}
.

The probability limit of F1n(θ1` +
K√

n ) can be made arbitrarily close to one as K increases. So the conclusion

follows.

Combine part 1 and 2, the statement of the Theorem holds. �

APPENDIX C. PROOFS IN SECTION 4

Lemmas C.1 to C.4 are needed for the proofs in this section.

Lemma C.1. Suppose Assumptions 3.5 and 4.2 are satisfied. Define

γjn(θ) =
exp(−βn| 1n ∑n

i=1 m(j)(Wi, θ)|2)
exp(−βn| 1n ∑n

i=1 m(j)(Wi, θ)|2+)
.

Then for any θ ∈ ΘI , γjn(θ)
p→ 1 if Em(j)(Wi, θ) = 0; γjn(θ)

p→ 0 if there exist a δ such that

Em(j)(Wi, θ) < −δ.

Proof. Fix a θ ∈ Θ. Suppose j is a binding moment: Em(j)(Wi, θ) = 0. If 1
n ∑i m(j)(Wi, θ) ≥ 0, then

γjn(θ1`, θ2) = 1; so we only consider the case 1
n ∑i m(j)(Wi, θ) < 0.

γjn(θ) = exp

− βn

n

∣∣∣∣∣ 1√
n ∑

i
m(j)(Wi, θ)

∣∣∣∣∣
2


= exp
(
− βn

n

∣∣∣∆nj(θ) +
√

nEm(j)(Wi, θ)
∣∣∣2) p→ 1.

The convergence is because ∆nj
w→ ∆j and βn/n→ 0 by Assumption 4.2.

Now we consider the case in which there exist a δ such that Em(j)(Wi, θ) < −δ, then with probability

approaching one the following inequality holds:

γjn(θ) = exp

− βn

n

∣∣∣∣∣ 1√
n ∑

i
m(j)(Wi, θ)

∣∣∣∣∣
2
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= exp
(
− βn

n

∣∣∣∆nj(θ) +
√

nEm(j)(Wi, θ)
∣∣∣2) ≤ exp

(
− βn

n
∣∣∆nj(θ)−

√
nδ/2

∣∣2) = op(1).

The term on the right hand side converges in probability to zero because βn → ∞ by Assumption 4.2. �

Lemma C.2. Suppose that the assumptions required by Theorem 4.2 are satisfied. Let θ̂` = (θ̂1`, θ̂2) and θ̂2

be defined in Equation (4), then θ̂`
p→ θ`.

Proof. This follows from Theorem 3.1. �

Lemma C.3. Suppose that the assumptions required by Theorem 4.2 are satisfied, then ‖γ̂(θ̂`)− γn(θ`)‖ =
op(1).

Proof. It is sufficient to show the conclusion holds for each element γjn. Suppose first that Em(j)(Wi, (θ1`, θ2)) =

0. We know that in this case γjn
p→ 1. It remains to show that γ̂jn(θ̂1`, θ2)

p→ 1 too. If 1√
n ∑i m(j)(Wi, (θ̂1`, θ2)) ≥

0, γ̂jn(θ̂1`, θ2) = 1; so we only consider the case in which 1√
n ∑i m(j)(Wi, (θ̂1`, θ2)) < 0.

γ̂jn(θ̂1`, θ2) = exp

− βn

n

∣∣∣∣∣ 1√
n ∑

i
m(j)(Wi, (θ̂1`, θ2))

∣∣∣∣∣
2


= exp
(
− βn

n

∣∣∣∆nj(θ) + Em(j)(Wi, (θ1`, θ2)) + Q1(θ1`, θ2)
√

n(θ̂1` − θ1`)
∣∣∣2) p→ 1.

The convergence is because ∆nj(θ1`, θ2)
d→ ∆j(θ1`, θ2),

βn
n → 0 by Assumption 4.2, as well as

√
n(θ̂1` −

θ1`) = Op(1). Note that the convergence holds uniformly over θ2 by Assumptions 3.1 and 3.8.

Now we consider the case in which there exist a δ such that Em(j)(Wi, (θ1`, θ2)) < −δ, then for large n,

γ̂jn(θ̂1`, θ2) = exp

− βn

n

∣∣∣∣∣ 1√
n ∑

i
m(j)(Wi, (θ̂1`, θ2))

∣∣∣∣∣
2


= exp
(
− βn

n

∣∣∣∆nj(θ) +
√

nEm(j)(Wi, (θ1`, θ2)) + Q1(θ1`, θ2)
√

n(θ̂1` − θ1`)
∣∣∣2)

≤ exp
(
− βn

n
∣∣∆nj(θ)−

√
nδ/2 + Q1(θ1`, θ2)

√
n(θ̂1` − θ1`)

∣∣2) .

The term on the right hand side converges in probability to zero. �

Lemma C.4. Suppose that the assumptions required by Theorem 4.2 are satisfied, then ‖Q̂(θ̂`)−Q(θ`)‖ =
op(1).

Proof. The uniform consistency of Q̂ follows from the Assumption 4.3 and the compactness of Θ, (see lemma

2.1, Newey and McFadden, 1994). �
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C.1. proof to Lemma 4.1. The results follows from Lemma A.7. The continuity of random variable ξ` and

ξ` holds because the integration, exp(·) and ‖ · ‖+ are all continuous operations and ∆ is continuous random

process. �

C.2. Proof of Theorem 4.1 .

Case 1. T > 0. In this case, ν
(

βn/nT̂
) p→ 1 and

√
nν
(

βn/nT̂
)

diverges. The values cI
k are computed

as,

P
{

cI
` ≤ ξ`

}
= 1− α, P

{
cI

u ≤ ξu

}
= 1− α. (16)

Let θλ = λθ1` + (1− λ)θ1u, λ ∈ [0, 1]. Let Pn(λ) be the probability of θλ belongs to the confidence set.

Pn(λ) = P
{

θλ ∈ ΘI
αn

}
= P

{∫ θλ

θ1

f1n(θ1)dθ1 ≥
cI
`

nd/2Dn
,
∫ θ1

θλ

f1n(θ1)dθ1 ≥
cI

u
nd/2Dn

}

= P

{
ξ`n + nd/2Dn

∫ θλ

θ1`

f1n(θ1)dθ1 ≥ cI
`, nd/2Dn

∫ θ1u

θλ

f1n(θ1)dθ1 + ξun ≥ cI
u

}
.

Note that if T > 0, then for any λ ∈ (0, 1), nd/2Dn
∫ θ1u

θλ
f1n(θ1)dθ1 or nd/2Dn

∫ θλ
θ1`

f1n(θ1)dθ1 (or both)

diverges to infinite as sample increases. Hence Pn(λ) is minimized at λ∗ = 0 or λ∗ = 1 for large n. In both

cases limn→∞ Pn(λ∗) = 1− α because of Equation (16). This shows that

lim
n→∞

inf
λ∈[0,1]

Pn(λ) = 1− α.

Case 2. T = 0 . In this case,
√

nν
(

βn/nT̂
) p→ 0. The values cI

k are computed as,

P
{

cI
` ≤ ξ`, cI

u ≤ ξu

}
= 1− α. (17)

Again,

Pn(λ) = P
{

θλ ∈ ΘI
αn

}
= P

{∫ θλ

θ1

f1n(θ1)dθ1 ≥
cI
`

nd/2Dn
,
∫ θ1

θλ

f1n(θ1)dθ1 ≥
cI

u
nd/2Dn

}

= P

{
ξ`n + nd/2Dn

∫ θλ

θ1`

f1n(θ1)dθ1 ≥ cI
`, nd/2Dn

∫ θ1u

θλ

f1n(θ1)dθ1 + ξun ≥ cI
u

}
.

The validity is ensured by Equation (17) since θ1` = θλ = θ1u. �

C.3. Proof of Theorem 4.2. Let ξ̂` be simulated from Algorithm 2. ξ̂` and ξ` have the same distribution

in the limit is ensured by Lemmas C.3 and C.4 and by dominated convergence theorem (see theorem 16.4,

Billingsley, 1995) and the fact that exp(−‖ · ‖2
+) is integrable (since Q1(θ`) < 0 ), the convergence result

follows. �
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C.4. Proof of Theorem 4.3. When θ1` < θ1u, the conclusion follows immediately. Now consider the case

θ1` = θ1u. Let θα
u and θα

u be the two end points of the confidence set.

P({θ1`} ⊆ ΘII
αn) = P {θα

` ≤ θ1` ≤ θα
u}

= P

{∫ θ1`

θ1

f1n(θ1)dθ1 ≤ 1− cII

nd/2Dn
,
∫ θ1`

θ1

f1n(θ1)dθ1 ≥
cII

nd/2Dn

}

= P

{∫ θ1

θ1`

f1n(θ1)dθ1 ≥
cII

nd/2Dn
,
∫ θ1`

θ1

f1n(θ1)dθ1 ≥
cII

nd/2Dn

}
= P

{
ξ` ≥ cII

` , ξu ≥ cII
u

}
+ o(1) = 1− α + o(1).

�

APPENDIX D. PROOFS IN SECTION 6

D.1. Proof of Lemma 6.1.

Part 1. For the first statement in Lemma 6.1,

P
{√

n(θ1` − F−1
1n (τ̂a

` )) > K
}
= P

{
ĉ` ≤ nDn

∫ θ1`− K√
n

θ1

∫
θ2∈Θ2

fn(θ1, θ2)dθ2dθ1

}

= P

{
ĉ` ≤

√
nDn

∫ −K

−∞

∫
θ2∈Θ2

fn(θ1` + h1/
√

n, θ2)dθ2dh1

}
= P {ĉ` ≤ An + Bn} ≥ P{ĉ ≤ An} ,

where

An =
√

n
∫ −K

−∞

∫
θ2∈[θ2`,θ2u ]

Dn fn(θ1` + h1/
√

n, θ2)dθ2dh1

Bn =
√

n
∫ −K

−∞

∫
θ2 /∈[θ2`,θ2u ]

Dn fn(θ1` + h1/
√

n, θ2)dθ2dh1

We show that An diverges to +∞ with probability approaching one.

By Assumption 3.8, there exists some C1 > 0 such that (note that h1 ≤ 0 here)

0 ≤ max
j

sup
θ2∈[θ2`,θ2u ]

√
nEm(j)(W1; θ1` +

h1√
n

, θ2) ≤ |C1h1|.

Hence

An =
√

n
∫ −K

−∞

∫
θ2∈[θ2`,θ2u ]

exp(−‖∆n(θ1` +
h1√

n
, θ2) +

√
nEm1(θ1` +

h1√
n

, θ2)‖2
+)dθ2dh1

≥
√

n
∫ −K

−∞

∫
θ2∈[θ2`,θ2u ]

exp(−‖∆n(θ1`, θ2) + |C1h1|+ op(1)‖2
+)dθ2dh1.
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For every given K, An diverges in probability since the integrand is bounded away from zero with probability

approaching one.

Part 2. Now we show the second statement of Lemma 6.1. I show first that

lim
K→+∞

lim
n→∞

P
{√

n(θ1` − F−1
1n (τ̂b

` )) > K
}
= 0.

Note that

P
{√

n(θ1` − F−1
1n (τ̂b

` )) > K
}
= P

{
ĉ` ≤

√
nDn

∫ θ1`− K√
n

θ1

∫
θ2∈Θ2

fn(θ1, θ2)dθ2dθ1

}

= P

{
ĉ` ≤ Dn

∫ −K

−∞

∫
θ2∈Θ2

fn(θ1` + h1/
√

n, θ2)dθ2dh1

}
= P {ĉ` ≤ An + Bn + Cn} ,

where

An =
∫ −K

−∞

∫
θ2∈[θ2`,θ2u ]

Dn fn(θ1` + h1/
√

n, θ2)dθ2dh1,

Bn =
∫ −K

−∞

∫
θ2≥θ2u

Dn fn(θ1` + h1/
√

n, θ2)dθ2dh1,

Cn =
∫ −K

−∞

∫
θ2≤θ2`

Dn fn(θ1` + h1/
√

n, θ2)dθ2dh1.

Bn and Cn is Op(1/
√

n) by the same argument in Appendix A. It remains to show that limn→∞ P(ĉ ≤ An)

decrease to zero as K increases to infinity.

By Assumption 3.3, there exists at least one j∗ and some C2 > 0 such that for h1 < 0

inf
θ2∈[θ2`,θ2u ]

√
nEm(j∗)(W1, (θ1` +

h1√
n

, θ2)) ≥ |C2h1| > 0.

Then we know that,

An =
∫ −K

−∞

∫
θ2∈[θ2`,θ2u ]

exp(−‖∆n(θ1` +
h1√

n
, θ2) +

√
nEm1(θ1` +

h1√
n

, θ2)‖2
+)dθ2dh1

≤ (θ2u − θ2`)
∫ −K

−∞
exp(−| inf

θ2∈[θ2`,θ2u ]
∆j∗n(θ1`, θ2) + |C2h1|+ op(1)|2+)dh1 ≡ An.

So we have

lim
n→∞

P(ĉ ≤ An) ≤ lim
n→∞

P(ĉ ≤ An)

The right hand side converges to zero as K → +∞ because ĉ
p→ c > 0 and infθ2∈[θ2`,θ2u ]

∆n(θ1`, θ2) is

Op(1).

It remains to show

lim
K→+∞

lim
n→∞

P
{√

n(θ̂1` − θ1`) > K
}
= 0.

38



The case in which θ1u = θ1` can be shown with similar argument as above. Suppose θ1u > θ1` for now.

P

{
F−1

1n (τ̂b
` ) ≥ θ1` +

K√
n

}
= P

{
ĉ` ≥

√
n
∫
{θ:θ1≤θ1`+

K√
n }

exp(−n‖m̄(θ)‖2
+)

}

= P

{
c` + op(1) ≥

√
n
∫
{θ:θ1≤θ1`+

K√
n }

exp(−n‖m̄(θ)‖2
+)

}

≤ P

{
c` + op(1) ≥

√
n
∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ

}
,

where Bn = {θ : θ1` ≤ θ1 ≤ θ1` +
K√

n , d(θ, ΘI) ≤ δ∗/
√

n}. It is not difficult to verify that µ(Bn) ≥ Kδ∗∗√
n

for some δ∗∗ > 0. It thus follows,

P

{
c` + op(1) ≥

√
n
∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ

}
≤ P

{
c` + op(1) ≥

√
nµ(Bn) inf

θ∈Bn
exp(−n‖m̄(θ)‖2

+

}
≤ P

{
c` + op(1) ≥ Kδ∗∗ inf

θ∈Bn
exp(−n‖m̄(θ)‖2

+

}
.

The limit probability converges to zero as K increases because infθ∈Bn exp(−n‖m̄(θ)‖2
+ is Op(1) by similar

reason as in Equation (14). �

D.2. Sketch of Proof of Proposition 6.1. Equation (11) or (12) can be written as

√
n
∫ θ̂∗1`

θ1

∫
θ2∈Θ2

exp(−n‖m̄(θ1, θ2)‖2
+)dθ2dθ1∫

θ2∈Θ2
exp(−n‖m̄(θ̂∗1`, θ2)‖2

+)dθ2
= ĉ`,

where ĉ`
p→ c > 0.

It is sufficient to show that with probability approaching one, there exists an h∗1 such that

Nn

Dn
≡
∫ h∗1
−∞

∫
θ2∈Θ2

exp(−n‖m̄(θ1` +
h1√

n , θ2)‖2
+)dθ2dh1∫

θ2∈Θ2
exp(−n‖m̄(θ1` +

h∗1√
n , θ2)‖2

+)dθ2

= c.

Note that for every ω ∈ Ω, the left hand side is a continuous function of h∗1 . We just need to show that for

every ω, the left hand side converges to zero as h∗1 diverges to −∞; and diverges when h∗1 goes to +∞.

Part 1: h∗1 → ∞. We first show that for any c > 0, there exists h∗1 such that P(Nn/Dn > c) → 1. For

some κ > 0, let κn = κ/
√

n. Let Θκn
I be the κn–expansion of ΘI , and define

Θκn
2 =

{
θ2 : ∃h1 such that (θ1` + h1/

√
n, θ2) ∈ Θκn

I
}

.
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Then it follows in a similar argument as in Lemma A.5 that

Nn

Dn
+ op(1) =

N∗n
D∗n
≡
∫ h∗1
−∞

∫
θ2∈Θκn

2
exp(−n‖m̄(θ1` +

h1√
n , θ2)‖2

+)dθ2dh1∫
θ2∈Θκn

2
exp(−n‖m̄(θ1` +

h∗1√
n , θ2)‖2

+)dθ2

.

In the meantime, let

Bn =
{
(h1, θ2) : 0 ≤ h1 ≤ h∗1 , and (θ1` + h1/

√
n, θ2) ∈ Θκn

I
}

.

Then the Lebesgue measure µ(Bn) ≥ kh∗1µ(Θκn
2 ) for some k > 0.

P(Nn/Dn > c) = P(N∗n/D∗n > c) + o(1)

≥ P

(
µ(Bn) infθ∈Θκn

I
exp

(
−n‖m̄(θ)‖2

+

)
µ(Θκn

2 ) supθ∈Θκn
I

exp
(
−n‖m̄(θ)‖2

+

) > c

)
≥ P

(
k infθ∈Θκn

I
exp

(
−n‖m̄(θ)‖2

+

)
supθ∈Θκn

I
exp

(
−n‖m̄(θ‖2

+

) >
c

h∗1

)
.

Following similar arguments in Equation (14), supθ∈Θκn
I

exp
(
−n‖m̄(θ)‖2

+

)
and infθ∈Θκn

I
exp

(
−n‖m̄(θ)‖2

+

)
are Op(1). Then the results follows since the probability can be made arbitrarily small by taking h∗1 large.

Part 2: h∗1 → −∞. Similarly, we only need to show that for any c > 0, there exists a h∗1 < 0 such that

P(N∗n/D∗n < c)→ 1.

Notice that we can separate the integration region for θ2 into ΘI2 and Θκn
2 /ΘI2. It then follows

N∗n
D∗n

=

∫
h1

∫
ΘI2
· · · dθ2dh1 +

∫
h1

∫
Θκn

2 /ΘI2
· · · dθ2dh1∫

ΘI2
· · · dθ2 +

∫
Θκn

2 /ΘI2
· · · dθ2

≤
∫

h1

∫
ΘI2
· · · dθ2dh1∫

ΘI2
· · · dθ2

+

∫
h1

∫
Θκn

2 /ΘI2
· · · dθ2dh1∫

Θκn
2 /ΘI2

· · · dθ2
≡ N∗1n

D∗1n
+

N∗2n
D∗2n

,

Consider N∗1n/D∗1n first. For a given θ2 ∈ ΘI2(θ1`),

√
nm̄(θ1 +

h1√
n

, θ2) =
√

nm̄(θ1`, θ2) + Q̄1(θ1`, θ2)h1 + Rn(h1),

where Q̄1 is the first order derivative of m̄ with respect to first element and Rn is the remainder term satisfying

for any δ > 0

sup
|h1|<δ

√
n

Rn(h1)

|h1|
p→ 0.

Let ∆n(θ1`, θ2) =
√

n(m̄(θ1`, θ2)−Em(θ1`, θ2)), and Q1 = E[Q̄1], then

N∗1n
D∗1n

=

∫ h∗1
−∞

∫
ΘI2

exp(−‖∆n(θ1`, θ2) + Q1h1‖2
+)dθ2dh1∫

ΘI2
exp(−‖∆n(θ1`, θ2) + Q1h∗1‖2

+)dθ2
+ op(1)
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=

∫
ΘI2

∫ +∞
∆n+Q1h∗1

exp(−‖t1‖2
+)dt1dθ2∫

ΘI2
exp(−‖∆n(θ1`, θ2) + Q1h∗1‖2

+)dθ2
+ op(1)

With probability approaching one, the right hand side can be made arbitrarily small by choosing h∗1 → −∞

because Q1h∗1 → +∞ as h∗1 → −∞.

Now we consider N∗2n/D∗2n. Notice that the integrand is a continuous function of θ2, hence by mean value

theorem, we have
N∗2n
D∗2n

=

∫ h∗1
−∞ exp(−n‖m̄(θ1` + h1/

√
n, θ̃2(h1))‖2

+)dh1

exp(−n‖m̄(θ1` + h∗1/
√

n, θ̃2(h∗1))‖2
+)

,

where the mean value θ̃2(·) takes value in Θκn
2 /ΘI2. Taylor expanding m̄ on both the direction of θ1 and θ2

and by a similar argument as above, with probability approaching one, N∗2n/D∗2n can be made arbitrarily

small as h∗1 → −∞. �

APPENDIX E. ALGORITHM AND TABLES

We summarize the procedure of estimation and inference in Algorithm 2. As before, we focus on the θ1`;

the procedure for θ1u is similar.

Algorithm 2. Construct confidence set by simulation. Let S = 10, 000, Q = 1, 000 and B = 500, 000.

(1) Estimation.

(a) Compute Dn by Monte Carlo integration:

Dn =
1
S

S

∑
s=1

exp (nLn(θs)) ,

where {θs}S
s are i.i.d. draws from uniform distribution over [0, 1]× [0, 1].

(b) Choose one initial value θ(0) ∈ Θ. One can choose θ(0) such that m̄(j)(θ(0)) = 0 for some j.

(c) Construct an MCMC chain {θ(b)}B
b=0 based on fn using Algorithm 1 (For more options, see

Robert and Casella, 2004, Chapter 7). Discard the first half as burn-in period.

(d) Obtain the first component θ1(b) of θ(b) for all B/2 + 1 ≤ b ≤ B. {θ1(b)}B
b=B/2+1 are used as

B/2 random draws from the marginal quasi-posterior f1n.

(e) Sort {θ1(b)}B
b=B/2 and compute θ̂1` and θ̂1u by taking two empirical quantiles of the chain, that

is,

θ̂1` = F−1
1n

{
1

nDn

}
, θ̂1u = F−1

1n

{
1− 1

nDn

}
.

(2) Draw another MCMC chain {θ2(b)}B
b=1 for θ2 from the conditional density fn(θ2|θ1 = θ̂1`) following

the same procedure as in Algorithm 1.
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(3) Compute θ̂2 = (2/B)∑B
b=B/2+1 θ2(b).

(4) Compute γ̂(θ̂1`).

(5) Estimate Q̂1(θ̂1`) =
∂m̄(θ)

∂θ1
|θ=θ̂`

.

(6) Let V̂ be a J by J matrix

1
n

n

∑
i=1

[
mi(θ̂1`)− m̄(θ̂1`)

]′ × [mi(θ̂1`)− m̄(θ̂1`)
]

.

(7) Independently draw {(h1,s, h2,s)}S
s=1 from bivariate normal distribution with identity covariance

matrix.13

(8) For q = 1, · · · , Q, independently across q,

(a) draw a J-vector mean zero normal random variable wq with (j, j′) element in the variance matrix

equals to

1
n

n

∑
i=1

[
m(j)(Wi; θ̂1`, θ̂2)− m̄(j)(θ̂1`, θ̂2)

]
×
[
m(j′)(Wi; θ̂1`, θ̂2)− m̄(j′)(θ̂1`, θ̂2)

]
.

(b) compute

ξ̂`,q =
1
S

S

∑
s=1

exp(−∑J
j=1 γ̂j(θ̂1`, θ̂2)|wj,q + Q̂′(θ̂1`, θ̂2)hs|2+)1(h1,s < 0)

φ(h1,s)φ(h2,s)
.

(9) {ξ̂`,q}Q
q=1 are used as Q independent random draws to approximate the distribution of ξ`.

(10) Obtain the simulated distribution for ξ̂u in a similar way (step 2 to step 9).

(11) Let ĉI
` and ĉI

u be computed using the maximization problem in Equation (3). If there are more than

one solutions, pick an arbitrary one.

(12) Construct the confidence interval Θ̂I
α = [F−1

1n (ĉI
`/(n

d/2Dn)), F−1
1n (1− ĉI

u/(nd/2Dn))].

(13) Compute the median ξ̂`,[0.5] of ξ̂`, and the median ξ̂u,[0.5] of ξ̂u, respectively; then obtain the updated

estimators:

θ̃1` = F−1
1n

{
ξ̂`,[0.5]

nDn

}
, θ̃1u = F−1

1n

{
1−

ξ̂u,[0.5]

nDn

}
.

�

13One can choose covariance matrix be 2(Q̂′Q̂)−1 to improve the performance.
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TABLE 2. MSE under different choices of c (for Figure 4)

θ̂1` θ̂1u
Sample Size 200 400 800 200 400 800
c = 0.5 0.00734 0.00393 0.00205 0.01771 0.00794 0.00393
c = 1.0 0.00377 0.00188 0.00105 0.01081 0.00484 0.00227
c = 1.5 0.00189 0.00105 0.00055 0.00697 0.00288 0.00154
c = 2.0 0.00119 0.00057 0.00032 0.00458 0.00219 0.00106
c = 2.5 0.00100 0.00050 0.00025 0.00374 0.00183 0.00071
c = 3.0 0.00115 0.00060 0.00030 0.00274 0.00134 0.00061
c = 3.5 0.00179 0.00089 0.00041 0.00261 0.00107 0.00052
c = 4.0 0.00274 0.00128 0.00064 0.00267 0.00113 0.00054
c = 4.5 0.00372 0.00187 0.00100 0.00285 0.00134 0.00060
c = 5.0 0.00492 0.00250 0.00130 0.00323 0.00151 0.00077
c = 5.5 0.00645 0.00341 0.00171 0.00418 0.00184 0.00092
c = 6.0 0.00870 0.00416 0.00226 0.00482 0.00251 0.00115

ξ̂`,[0.5] or ξ̂u,[0.5] 0.00124 0.00063 0.00028 0.00228 0.00099 0.00050
Based on 1, 000 replications.

TABLE 3. Standard deviation under different choices of c (for Figure 4)

θ̂1` θ̂1u
Sample Size 200 400 800 200 400 800
c = 0.5 0.03266 0.02399 0.01693 0.04839 0.03226 0.02225
c = 1.0 0.03093 0.02306 0.01655 0.04686 0.03357 0.02264
c = 1.5 0.03117 0.02260 0.01684 0.04675 0.03230 0.02329
c = 2.0 0.03072 0.02269 0.01598 0.04939 0.03361 0.02224
c = 2.5 0.03052 0.02318 0.01609 0.04997 0.03316 0.02291
c = 3.0 0.03046 0.02245 0.01629 0.04903 0.03441 0.02288
c = 3.5 0.02937 0.02156 0.01570 0.04886 0.03313 0.02258
c = 4.0 0.02947 0.02080 0.01538 0.05311 0.03387 0.02287
c = 4.5 0.02873 0.02084 0.01558 0.05055 0.03377 0.02374
c = 5.0 0.02802 0.02016 0.01538 0.05304 0.03375 0.02395
c = 5.5 0.02637 0.02064 0.01539 0.05316 0.03496 0.02443
c = 6.0 0.02644 0.02122 0.01548 0.05521 0.03602 0.02386

ξ̂`,[0.5] or ξ̂u,[0.5] 0.03520 0.02488 0.01672 0.04601 0.03080 0.02217
Based on 1, 000 replications.
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