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B Proof of Theorem 1

Proof. Theorem 1-(i) is a direct application of Heckman and Vytlacil (2005)’s testable impli-
cations where ¢(Y) = 1{Y € (y,4']} for y < y'. We focus on part (ii).

We define some notation. Let L£(P) be the set of limit points of P, L°(P) be a set of
interior point of P, and C(P) be the closure of P. Furthermore, let I(P) = C(P)/L°(P) be the
complement of £L°(P) in the closure of P. So I(P) also contains isolation points. Note that £L°(P)
can be written as a union of countable or finite exclusive open intervals: L°(P) = U}-Izl(aj, b;),
where (aj,b;) € P, bj < aj+1, and J can be infinity. Let Q(P) be a collection of intervals

belonging to (0, 1] defined as follows:
QP) = {(p,p] : p,p' € I(P)U{0,1} and for all p such that p <p < p',p ¢ P}.

So the interior of each interval does not intersect with P. €(P) contains a generic element (cg, di],
where ¢, di, € I(P), di, < cg41, k = 1,2,--- , K with K possibly equals to oo, depending on
how many isolation points there are in P. Note that with above notation, for any v € (0, 1],
v must belongs to one of the following categories: (i) an element of £°(P) so that v € (aj,b;)
for some j, (ii) v € L(P)/L°(P), and (iii) there exist an integer k such that v € (ck,dy]. The

following figure illustrates the partition of the unit interval.
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Figure 7 An illustration: P = {p17p27p5} U [p37p4] ) [p67p7]7 £0(7)) = <p37p4) U (p67p7)7
and Q(P) - {<Oap1]7 (p17p2]7 (p47p5]7 <p57p6]7 (p'?) 1]}
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We will assume that P(y <Y <3y, D =1|P =p) and P(y <Y < ¢/,D = 0|P = p) are
continuously differentiable over £° as a regularity condition under which the local instrumental
variable (LIV) estimand is well defined.

First, we construct V and D as follows:
P(V < t|P =p) =t,Y(t,p) €[0,1] x P, and D = 1{P(Z) > V}.

By construction, Assumption 2.4 is satisfied. Next, we propose the following distribution for

Y1|V, P. For any arbitrary p € P and v € (0,1], we define

SP(Y <y,D=1|P =t)|y=y ifve L(P)

P(Yi <ylV=0v,P=p) = {lim, 2P(Y <y, D =1|P=1)|s ifv e L(P)/L(P)

P<YS%D:1'P=d;;2ijEYS%D:“P“k) if v ¢ L(P) but v € (cg, dy] € QP).

—IAP(Y <y, D=0|P =t)}=, ifveL(P)

P <y, D=0P=cr) PV <y.D=0IP=dr) jf, ¢ [0(P) but v € (cx, di] € QUP).

di—cy

Note that the conditioning on V = v and P = p, the distribution of ¥; does not depend on p.
Hence, Assumption 2.1 is satisfied by construction.

We now show that the distribution function constructed above is well defined. We focus on
P(Y; < y|[V = v, P = p) and the verification for P(Yy < y|V = v, P = p) is analogous. Let y and

7 be the lower and upper bounds of the support of Y, respectively.

1. P(Yi <y—¢|V =v,P=p)=0forallve [0,1] and for any arbitrarily small e > 0. To see
this, suppose v ¢ L(P), then there exists (¢, di] € Q(P) such that v € (¢, di], therefore,

P(Yi <y—¢€lV=u0vP=p)

P(Y<y—-eD=1P=d)—P(Y<y—eD=1P=c¢) 0-0 0
N dk—ck _dk—ck_ ’

On the other hand, if v € L°(P), then P(Y <y —¢,D = 1|{P = ©) = 0 for all ¥ in a
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small neighborhood of v, which implies %P(Y <y—¢D=1|P=v)=0. The case that
v € LO°(P) follows straightforwardly.

2. P(Y; <g|V =v, P =p) = 1. First, if v € L°(P), then
_ 0 _
P(YSy,D:1\P:v):IP’(D:1|P:v):v:a—P(ng,D:HP:U):l.
v

On the other hand, if v ¢ L(P), then

~ ~ PY <y, D=1|P=d;,) —P(Y <wy,D=1|P = dp —
IP’(Y1§Q|V:U,P:p): ( =Y, ‘ k), ( =Y, ‘ Clc) _ k Ck -1
P—p d — ¢k

3. P(Y; < y|V = v, P = p) is nondecreasing in y. For y < ¢/ we have

]P’(f/l §y’\‘7:v,P:p)—P(ﬁ gyW:v,P:p)
SP(y<Y <y,D=1|P=t)[i—, >0 if v e L(P),

= limg 2Py <Y <y, D=1P=1t);—5 >0 if v e L(P)/L(P)

P(y<Y <y',D=1|P=d;)—P(y<Y <y/,D=1|P=c})
di—cy

> 0if v ¢ L°(P) but v € [cg, di] € Q(P),

where the last inequalities hold whenever the testable implications hold, i.e. P(y <Y <
y',D = 1|P = p) is a non-decreasing function for all p € P and all y < ¢/, and by the
continuous differentiability of P(y <Y < y', D = 1|P = p) over L(P).

Finally, we show that (V,Yy, P(Z)), d € {0,1} is observationally equivalent to (V, Yy, P(Z))
d € {0,1}. For this, we show that the conditioning distribution of (Y, D) given P(Z) is the
same as the conditioning of (Y, D) given P(Z). Take an arbitrary p € P.

Suppose first p ¢ L°(P), then (0,p] can be expressed as unions of exclusive intervals

(U‘j];l(aj,bj)) U (UK, (ck, dg]) for some J* and K*, where (a;,b;)s are connected subsets of
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P. Therefore,

- ~ - - P - -
P(Y <y,D=1P=p) =P, <y,V <plP=p)= /]P’(Yléy!V—v,P—p)dv
_Z/ P(Y; <y|V =0,P = pdv+2/ P(Yy <y|V =v, P =p)dv
a
ZZ(P(Yﬁy,DZ1|P=bj)—P(Y§y,D=1!P=aj))

+Y (P(Y <y, D=1|P=dy) —P(Y <y, D =1|P = }))
=P(Y<y,D=1P=p)—P(Y <y,D=1P=0)=P(Y <y,D =1|P = p),

where the first equality is by construction that V satisfies Assumption 2.4, the third equality
holds because (0, p] can be expressed as unions of exclusive intervals <U3];1 (aj,b; )) U(UEZ, (e, di])
the fourth equality is obtained by inserting the constructed counterfactural distributions, and

the last one holds because P(Y <y,D =1|P =0) = 0.

Suppose that p € (aj«, bj+) C LO(P) for some j*, then the right hand side equals to

- - - P - -
P(Y <y,D=1|P =p)=P(Y; <y7V<pIP=p)=/ P(Y1 < y|V =wv,P = p)dv
0

Qa ;* ~ ~ §Y ~ ~
:/] P(Y1§y|V:v,P:p)dv+/ P(Y7s <y|V =v,P =p)dv
0

a

sk

J

Py
:]P’(ng,D:HP:aj*)—l—/ 5 B(Y <y, D=1P =v)dv

aj*

=PY <y,D=1P=qaj<)+PY <y,D=1P=p)-PY <y,D =1|P = a;-)

where the [(7"P(Y; < y|V = v,P = p)dv = P(Y < y,D = 1|P = aj+) holds by the above

argument and the fifth equality holds by inserting the constructed counterfactural distributions.

This completes the proof.[]

C Proof of Theorem 2

We begin by listing a few regularity conditions for the proof of Theorem 2.
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Assumption C.1 The observations {(Y;, D;, Z;, X;)}I'y are i.i.d. across i.

Assumption C.2 We impose the following smoothness conditions:

1. The conditional density of (Y, D) given P(Z,0y) = p, denoted by fy,p|p(y,d|p), is Lipschitz

continuous both in p on P and iny on Y ford=0,1.
2. For all z € Z, P(z,0) is continuously differentiable in 6 at 0y with bounded derivatives.

Note that Assumption C.2-(1) does not exclude the case of discrete propensity score. When
P is discrete and P contains finite many distinguished elements, any convergent sequence in P
must be a constant sequence eventually, and in that case Assumption C.2-(1) holds automatically.
Assumption C.2-(1) implies that the functions mg and w, defined in Equations (A.1) to (A.3),
are continuous functions of ¢. Assumption C.2-(2) implies that the class of functions {1(p <

P(Z,0)<p+rp):0€0,pe|0,1],r, € [0,1]} is a Vapnik-Chervonenkis (VC) class of function.

Assumption C.3 The parameter space © for 6y is compact, and 6y is in the interior of ©.

The estimator 0 admits an influence function of the following form,

~

Vi — 60) = \}ﬁzs(pi,zijeg) +o,(1), (1)
=1

where s(-,-,-) is measurable, satisfying E[s(D;, Z;,0p)] = 0, Elsupg |s(D;, Z;,0)|]] < oo, and
V (supy |s(D;, Z;,0)]) < oc.

Assumption C.3 is satisfied for common maximum likelihood estimators and parametric binary
response models. For example, if one estimates 6y by Probit model D; = 1[Z/0y > V;], with

Vi ~ N(0,1), then
((2D; — 1)Z;0)
Di, Z;, 00) = i) 7.
$(Di Z.60) = §(@D, —1)2780) 2

If the Logit model is used, then

Z'0
s(D;, Z;, ) = <D¢ — exp(Z;fh) >) Z;.

1+ exp(Z]6y

Assumption C.4 The estimator 6° satisfies that

N \} SO Wi — 1) - 5(Ds, Zir ) + 0p(1), (C.2)



where sg(-) is the same as in Assumption C.5.

Assumption C.4 is satisfied under our weighted bootstrap procedure.
The proof of Theorem Theorem 2 follows from the same arguments as Theorems 5.1 and 5.2

of Hsu (2017) once Lemmas D.1 to D.4 are established, and is omitted for the sake of brevity.

D Lemmas and Intermediary Results

This section collects useful Lemmas, intermediary results, and additional assumptions for estab-

lishing the asymptotic results in Theorem 2.

Lemma D.1 Suppose Assumptions C.2 and C.3 are satisfied, then uniformly in £ € L,

~

\/ﬁ(ml (y7 Ty;p; rpa 0) —my (y7 7,y7p7 Tpa 90))

n
Z ¢m1, Y, ryapa Tpa 90) + Op(l)

n
=— Z mll y7ry7pvrp790) ml(yary7p7rp790)+v9m1(y7 7,y7p77ap700) ‘S(DhZian))—i_Op(l)'

(D.1)

\/ﬁ(mO(yv Ty, Dy Tp, 9) - mO(ya Ty, D, Tp, 00))

1 n
:% Z Qsmo,i(ya Ty, P, Tps 00) + 0p<1)
i=1

1 n
E% Z (mﬂ,i(y7 Ty, D, Tp, 90) - mO(ya Ty, D, Tp, 00) + VGmO(ya Ty, D, Tp, 00) : S(Dia Zia 00)) + Op(l)a
i=1

(D.2)

\/ﬁ(w(pa Tp, é) - w(p¢ Tp, 00))

V-

Gw,i(p,Tp, 00) + 0p(1)
1

7

Sl 5=
-

(wl(p7 Tp, 90) - ’lU(p,Tp, 00) + ng(p, Tp, 00) : S(Di7 Zi7 90)) + Op(1> (DS)

=1
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where functions mq and w are defined in Equations (A.1) to (A.3) and

mli(yaryvpa Tpae) = Dll(y S sz S Yy + Ty)l(p é P(Z’Lae) S p + Tp),
moi(y,ry,p, 7",,,9) = (Dz - 1)1(y <Y, <y+ Ty)l(p < P(ZZ-,H) <p+ 7"10)7

wi(pa 7“],,9) = 1(p < P(Zhe) < p‘i‘rp)-

Proof. Let fp(p) denote the density function of P(Z;6y). Following Hsu and Lieli (2021), we

calculate the derivatives for mq(y,ry, p,7p, ) and w(p,rp,-) as:

Vomi(y,ry, p,7p, 00) = E[D1(y <Y <y +1y)|P(Z,600) = pl - fr(P)E[VeP(Z,60)|P(Z,00) = p]

—E[D1(y <Y < y+ry)\P(Z, to) :PJFTP] 'fP(p+Tp)]E[V6’P(Z, to)|P(Z,00) :p+rp],

ngo(y,ry,p, TP’GO) = E[(D_l)l(y <Y < y+Ty)|P(Z7 90) = p]-fp(p)E[VgP(Z, GO)IP(Z? 00) = p]

—E[(D-Dl(y <Y <y+1y)|P(Z,00) =p+rp] fr(p+1p)E[VeP(Z,00)|P(Z,00) = p+ 1],

Vow(p,rp,00) = fr(p)E[VeP(Z,00)|P(Z,00) = p]—fr(p+rp)E[VeP(Z,00)|P(Z,00) = p+rp].

Now we prove Equation (D.1), the results for Equations (D.2) and (D.3) are similar. Note

that

~

\/ﬁ(ml(y7ry7pvrp7e> - ml(y7ryapa Tp, 90))
:\/ﬁ(ml(YJ,Ty;vap,é) - ml(y7ry7p7 /rpa é)) + \/ﬁ(ml(y7ry7p7 74[)7 é) - ml(yﬂ”y;p? rp: 00))

A~

:\/ﬁ(ml(y7 Ty7p7 rp7 9) - ml(ya Ty;p; rpa é)) + v0m1 (y7 ry7p7 Tpa 00)/\/ﬁ(é - 90) + O(\/ﬁHé - 90”)

. ; N 1 &
:\/ﬁ(ml(y7ry7parp79) - ml(y7ryapa Tp, 9)) + 7 Z veml(yvry7p7 Tp, QO)S(Dia Zia 00) + Op(l)
=1

Vn 4
(D.4)

where the second equality holds because mi(¢,0) is continuously differentiable in 6 under As-
sumption C.2-(2), and the third equality is due to Assumption C.3.
Let Gml(e,e) = vn(mi(y,ry,p,rp, 0) — mi(y,ry,p,1p,0)), 0 € ©,0 € L. It remains to show
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that supye £ |Gy (0,€) — Gy (60, £)] = 0p(1).

By Assumption C.2-(ii), the class of functions {1(p < P(Z,0) < p+1p) : 0 € O,p €
[0,1],r, € [0,1]} is a Vapnik-Chervonenkis (VC) class of function. Therefore, the class of
functions {1{y <Y <y+r,} x1(p < P(Z,0):0€c0,pel0,1],r €[0,1],r, € [0,1]} is also
VC class. Hence, the process Gm is stochastically equicontinuous with respect to (6,¢). Note
0 2 0y, then there exist 6, | 0 such that with probability approaching one, (é, 0) € B((6o,¢),0n),
where B((0o,£),0r) is a ball in © x L centered at (0y, ) with radius 6,,. Therefore,

2115 |\/ﬁ(ml(yaryap7 Tp, é) - ml(:’/a Ty, Py Tp, 0)) - \/ﬁ(ml(yvrgnp? Tp, 00) - ml(y>ry7pa Tp, 90))’
(S

=sup |G, (6,0) — G, (60, 0)]
lel

< sup sup Gy (0, ) = Gy (60, 0)| = 0,(1). (D.5)
00€O,LeL (0" £/)EB((00,£),0n)

where the last equality is by the stochastic equicontinuity of the process Gm1~ Combine both

FEquations (D.4) and (D.5), the result then follows. O

Lemma D.2 Suppose Assumptions 2.1 to 2.4, C.2 and C.3 are satisfied, then uniform in £,

~

X 1 ¢
\/ﬁ(yl(y)ry7pl7p2)rp79) - Vl(yvryuplap27rp790)) = % Z¢V1,i(y7ry7plvp27rp500) + Op(]-)7
i=1

(D.6)

X 1 ¢
\/H(VO(gﬁryvplva?Tpa 0) - Z/O(yvryaplap27rp700)) = % Z ¢Vo,i(y7ryaplap27rpa 00) + Op(]-)7
i=1

(D.7)

where

Gun i (Y Tys P1, D25 Ty O0) = W(P1,7p, 00) * Biny i (Y, Tys P2, Tp, O0) + M1 (Y, 7ys P2, 7, 00) + Pwi(P1, 7, 00)

—w(p2,7p,00) - By i (Ys Ty, 1,7, 00) — M (Y, 7y, P1, 7y 00) - i (P2, 7p, o),

Gu,i(Ys Tys P15 D25 s Ty 00) = W(P1, 7, 00) * P i (Y, Tys P2,y O0) + M0(Ys Tys D25 T, 00) - i (P15 7, 00)
(

—w p27rp7 00) : (z)mo,i(ya ry7p17 Tpv 00) - mO(y7ry7p17rp7 00) : wa,’i(pQ)Tpa 00)
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Furthermore,

~ -~

\/ﬁ(ﬁl(ve) - 1/1("‘90)) = (I)lll(')a \/ﬁ(/V\O(ae) - VU('aGO)) = (I)l/o(')v

where ®,, (1) and ®,,(-) are Gaussian processes with variance-covariance kernel generated by

¢u, (+,00) and ¢y, (-, 00), respectively.
Proof. We show Equation (D.6). Equation (D.7) holds analogously. Recall

A~ A~ A~

191(6) = ml(yvry7p27rp)9) : w(plvrp)a) - ml(y7ry7p17rp)0) : w(p27rpaé)

To save space, for generic £, we write i (0) = m1(£,0) and w(0) = 0 (¢, ). Similarly, my(6y) =

m1 (¢, 0p) and w(fy) = w(l,by). Then,

1

Vi)’

where the last equality is because 1h1(6) — mi(6o) = Op(1/v/n) and w(h) — w(f) = O,(1/y/n)
by Lemma D.1. Then we have

ﬁl(f) - Vl(f) :w(plvrpae(J) : (ml(ya ryap27rp7é) - ml(ya ryap27rp700))
+ ml(yvryap%rpv 90) : (w(pl’rpv é) - w(pla Tp, 90))

A~

- w(anr;heO) : (ml(y7ryap17Tpa9) - ml(yvryaplanaeo))

N A 1
- ml(yvrznplarpv 90) : (w(p%rpv 9) - w(an Tp, 90)) + Op <\/ﬁ> .

Equation (D.6) then follows by inserting Equations (D.1) to (D.3) to the above equation.
Finally, under Assumption C.2, each element of Vemi(y,ry,p,rp,00) is Lipschitz contin-
wous in y, Ty, p, Tp and it implies that {Om1(y, 1y, p,7p,00)/00; : (y,ry,p,7p) € [0,1]1} is a
VC class of functions for each j. Similarly, each element of Vow(p,rp,6o) is Lipschitz contin-
wous in p, rp. It follows that {dm, (Y, 7y, 0,7, 00) = (Y, 7y, 0,7p) € [0, 14}, {dmg (s 7y Dy 7 00)
(y,7y,0,7p) € [0,1*} and {pw(p,7p, 00) : (p,7p) € [0,1]2} are all VC classes of functions. weak
convergence follows from the fact that {¢y, (Y, Ty, P1, D2y Tp, 00) = (Y, 7y, P1,D2,7p) € [0,1]°} and
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{bvo (y, Ty, P1, 02, ,7p, 00) : (y, 7y, P1,D2,7p) € [0, 1]5} are both VC classes of functions. Therefore,

we have

-~ ~

V@i (5 0) = v1(00) = 0, (), Vn(@o(-,0) = o(-,00)) = Do ().
O

Lemma D.3 Suppose Assumptions 2.1 to 2.4 and C.2 to C.4 are satisfied, then uniform in £

over L,

~ A~

\/ﬁ<ﬁi}(y7 ry’pl b2, /rp7 eb) - ﬁl(y7ry7p17p27rp7 6))

\/*Z ¢l/1, y7ry7p17p27rp790) +0p(1) (DS)
\/’E(ﬁg(ya Ty, P1,P2,Tp, éb) - DO(ya Ty, P1,P2, Tp, é))
IZ D) bug.i(Ys Ty, D1, D2, 7p, 00) + 0p(1), (D.9)
where ¢y, i (Y, Ty, D1, D2, Tp, 00) and ¢y i(y, Ty, P1,D2,,Tp, 00) are the same as in Lemma D.2.
The proof to Lemma D.3 is similar to Lemma D.2 and is therefore omitted.

Lemma D.4 Suppose Assumptions 2.1 to 2.4 and C.2 to C.4 are satisfied, then Ud( ) defined
in (3.8) satisfies that for d = 0,1, sup, |63(€) — o2(£)| = op(1).
Proof. Recall that for a given £ € L,

B o B B
530 = 5 3 (0h(0) ~ 40, where Tit) = 1 >~ (o).

We first consider the second term on the right-hand side of Equation (D.10). Let W; =

% 25:1 Wib, Using Lemma D.3, we know that for a given b = 1,2,---, B, and uniformly over
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e L,
Y0 = 2alt) = 5 S WE = 1ouaalt, 00) + 0p(1).

=1
So it can be written as
n 5 ~b
5 2 (750 = 2a(0)) (2a(t) — 74(0))
b=1
11 N o
= (O = 166, 00)) (3 (Wi = (L 60) + 0 (1)
b=1 =1 =1
11N, _ 1o
=5 > (W = (Wi~ 1)6f, (¢, 60) + EHZZ (Wj = 1)¢u,i(£; 00) w5 (€, o) + 0p(1)
b=1 i=1 b=1 i#j
11 B n B B n ’
=53 2 2 (W = 1)}, (.60) + ZZZ — 1)¢7,.4(¢, 60)
b=1 i=1 b: b'#£b i=1
11 B n B
B l; ;Wf = D(Wj = Dui(£, 00) 9,5 (¢, 60) + 0p(1)

The first right-hand side term is of order % and is negligible as B — oco. The second term on
the right-hand side is negligible because E[(W? — 1)(WY — 1)|(Y, D, Z)] = 0 as long as b # V.
The third term on the right-hand side is negligible because E[(W} — 1)(le-’ -H|(Y,D,Z)] =0
as long as i # j. For similarly reasoning, the third right-hand side term of Equation (D.10) is
also negligible as B — oo.

Now consider the first term on the right-hand side of Equation (D.10). Uniformly over ¢,

B B n
PN )~ 2a(0)” = 5 S (DW= Duill,60))” + 0p(1)
b=1 =1 11=1
B n n o n
S S W~ 126, (0 00) - LSS S W 1)V 1100 (£.80)60, (1. 00) + (D).
b=1 i=1 b=1 i=1 j#i

Conditioning on the sample, because Wl-b are i.1.d. across b and i, has expectation and variance

equal to one, we know E[(W} — 1)(W]Z-’ —D|(Y,D,2)] =0 and E[(W} — 1)?|(Y,D,Z)] = 1. As
B — o0, the right-hand side converges in probability (with respect to the distribution of{Wb}le)

to Ly, ¢Vd (£,00) + 0,(1), which in turn converges to a%({) uniformly over £ as n — oco. O
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E The influence function with covariate case

In this subsection, we derive the influence function for estimating v4(¢) in the presence of co-

variates. First, we estimate 6y = (6., 0p,) by MLE,

0 = argmax — Zlogf Yi, Di, Zi, Xi,6)

gce M
= argmax — ZD log P(Z;, X3,0) + (1 — D;) log(1 — P(Z;, X;,0)). (E.1)
gco M

where P(z,x,6) is parameterized and depends on (z,z) and 6 = (6., 6,)" through 2’6, + 2'6,.

For example, P(z,z,0) = ®(2'0, + 2'0,) for Probit or P(z,z,0) = % for Logit.

As in Appendix D, we make the following assumptions.

Assumption E.1 Assuming following conditions hold

1. The conditional density of (Y, X, D) given P(Z, X,0) = p, denoted by fy x pp(y,,d|p),
is Lipschitz continuous in (y,x,p) over the joint support of (Y, X, P) ford=0,1.

2. Forall z € Z and x € X, P(z,x,0) is continuously differentiable in 6 at 6y with bounded

derivatives.

Assumption E.2 The estimator 0, 81, By admits an influence function of the following form,

Vil —6y) = f2390 Di, Zi, Xi,00) + 0p(1), (E.2)

VB — pr) = stﬁl (D, Yi, Zi, X, B1) + 0p(1), (E.3)
=1

Vn(Bo — o) = WZ% (Ds, Yi, Zi, Xi, o) + 0p(1), (E.4)

where s, (+), sp, (-) and s, (-) are measurable, satisfying E[sq,(D;, Z;, X;,60)] = 0,E[sg, (D;,Y;, Z;, X;, p1)] =
0, Esg,(Di,Yi, Zi, Xi, Bo)] = 0, E[supy ||s6,(Ds, Zs, 0)||*T°] < 0o, E[supg ||sp, (D, Ys, Zi, Xi, B)|I*+0] <
oo, and E[supg 58, (Ds, Yi, Ziy Xi, B)||?19] < 00 for some § > 0.

Note that under similar conditions as in Section 4 of Hsu, Liao and Lin (2022, Econo-

metric Reviews), (E.3) and (E.4) would hold. We define the following quantities for generic
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(y7 Ty, D, Tp, b, ‘9)3

m1(y,ry,p, Tpvbve) = E[Dl(y <Y - X'b <y +Ty)1(p < P(Z7X7‘9) < p—|—’l°p)],
mo(y, 7y, p,7p,0,0) =E[(D —1)1(y <Y — X'b <y +1y)l(p < P(Z,X,0) < p+rp)],

w(p,rp,0) =E[L(p < P(Z,X,0) <p+rp)].

Let fp(p) denote the density function of P(Z, X, 6y) = P(D = 1|X, Z;6,). Following the cal-
culation in Hsu and Lieli (2021), we can analogously obtain the derivatives with respect to 6,

evaluating at the true parameter values (1, 5o, 00) as

Vomi(y, ry, 0, 7p, B1, b0)

=E[D1(y <Y — X'B1 <y +1y)|P(Z,X,00) = p| - fr(p)E[VeP(Z, X,00)|P(Z, X, 00) = p]
—E[D1(y <Y = X'B1 <y +ry)|P(Z,X,00) = p+rp] - fp(p+1p)E[VeP(Z, X, 00)| P(Z, X, 00) = p+ 1),
Vomo(y, 1y, Ps Tp, Bo, 0o)

=E[(D - 1)l(y <Y — X'By <y +ry)|P(Z,X,00) =] - fr(p)E[VeP(Z, X,600)|P(Z, X, 60) = p
—E[(D -1y <Y — X'Bo <y +1y)|P(Z,X,00) = p+1p]- fr(p+1p)E[VeP(Z, X,00)|P(Z, X,00) = p +1p]
Vow(p, p, 0o)

=fp(P)E[VeP(Z, X,00)|P(Z, X, 00) = p] — fp(p + 1p)E[VeP(Z, X, 00)|P(Z, X, 00) = p + 1p].

In addition, let f,,|.2q(y|2, ¥, d) denote the conditional density of Uy conditional on (Z, X, D) =
(z,x,d), then the derivatives with respect to 3, evaluating at the true parameter values (31, 5o, 0o)

are

vﬂml(yvry7p) Tpaﬁlyao)
:E[P(Za X, 00)(fu1\zmd(y +Ty|Za Xa 1) - fu1|zxd(y|ZvX7 1)X ! 1(p < P(Za Xa 0) < p—i—rp)]],

vﬂmo(ya’ry?p7 TpaﬁOaGO)
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Let the estimators for my(y, ry,p, rp, 5,0), mo(y, ry,p,7p, 8,0) and w(p,rp,d) be

A RN
ml(?/ﬂ"yap; rp7ﬁ70) = n;ml,i(yﬂ 7’y7p77"p,ﬂ’ 9)7
1=
1 n
mO(yvryupa Tpleue) = nz;mO,i(ya Ty7pvrpaﬁa 9)7
1=
1 n
w(parpve) = E Zwl(pa rpag)'
i=1
where

ml,i(y7ry7p7 Tp,,870) = Dll(y S }/; - XZ/B S Yy +Ty)1<p S P(Z’MXZ;H) S p+ rp)a
mo,i(yaryapu Tpaﬂve) = (1 - Dl)l(y S Y; - Xlﬁ S Y + Ty)l(p S P(ZZ)XHH) S p+ rp)7

wi(p,rp,0) = 1(p < P(Z;, Xi,0) < p+rp),

and

\/ﬁ(ml(y7ryapvrp7317 é) - ml(yﬂﬂy:par]hﬂlv 90))
1 n
:% Zml,i(yvryvpv’rp7ﬁla 00) - ml(yvryapa TmeMGO) + veml(y7ry7pa’rp)5la 00) : S(Di7 ZiaXia 90)
=1
+ vﬁml(y7ry7pvrp7ﬁlu 00) : 861 (Divyvlﬁ Zithﬁl) + Op(l)

n

1
== 2 mail b7, 01, 00) + 0p(1),
=1
\/ﬁ(mo(y, Tyapa Tp, BO, é) - mo(y, Ty7p’ Tps 60’ 00))
1 n
= > "m0y, ry, s Tps Bos 00) — m0(Y, Ty Dy T, Bo, 00) + Toma(y, Ty, b, 1, Bo, b0) - $(Di, Ziy X, 00)
=1
+ Vﬁmo(y,ry,pjrp,ﬁo, 00) : Sﬁo(DhE? Zi7Xi7/BO) + Op(l)

1 &
Eﬁ Z ¢m07i(y7 TysDs T'ps 90) + Op(1>v
=1
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\/ﬁ(’lf)(p, Tp, é) - ’U)(p, Tp, 90))

3

wz(l% Tpa 00) - w(parp790) + Vew(P, Tpa 00) : S(Di7 ZiaXia 90) + Op(l)

Il
M:

Sl 5=
)

¢w,i(pa Tp, 90) + OP(l)'

.
Il
—

By Assumption E.1, all elements of Vom1 (y, 7y, D, 7p, B1,00), Vami(y, 7y, 0, Tp, B1,00), Vemo(y, 7y, P, p, Bo, 6o),
and Vgmo(y, 7y, D, p, Bo,00), are Lipschitz continuous in y, ry, p, 7, and each element of
Vow(p, 1p, 8o) is Lipschitz continuous in p, 7. It follows that {¢m, (v, ry, P, 7p, £100) = (Y, ry, P, 7p) €
[0, 114}, {dm, (, Ty, Dy Tp, B0, 00) : (Y, 7y, 0,7p) € [0, 11*} and {¢w(p, rp0o) : (p,7p) € [0,1]?} are

all VC classes of functions. Finally, let

v1(y, Ty, P1, P2, Tps B1, 00) = ma(y, 1y, P2, T, B1,00) - w(p1, 7p, 00) — mi(y, 7y, 1,7, B1,00) - w(p2, 7p, 00),
VO(yaryaplvp%rp?Bla BO» 90) = mO(y7Ty7p2arp7 607 00) : w(plarpv 90) - mO(ya’ryaplv rpaBOa 00) . w(va Tp, 90)7

ﬁl(yaryaplvp%’rp?Bla é) = ml(y7ry7p2774p7 317 é) : w(plv T'p, é) - ml(yaryaplv rpaBla é) ' w<p27Tp7 é)a
ﬁ0<y7Ty7p17p27Tp7307 é) - mO(?J?Ty:PQana 307 é) . w(plv rp7 é) - m()(yaryaplv rp7607 é) : UA)(PQJ’pa é)

Lemma E.1 Suppose Assumptions 2.1 to 2.4, 3.3, E.1 and E.2 are satisfied, then,

X - 1 O
\/ﬁ(yl(yvryaplvp27rpa Blv 9) - Vl(y7ry7p17p27rpa Blv 90)) - % Z ¢V1,i(ya Ty7pl7p25 7,‘])7/617‘90) + Op(]-)7
i=1
(E.5)
1 n
\/ﬁ(ﬁ[)(yvryaplap%rpa BO? 9) - Z/U(yvryaplap%rpa BO? 90)) - % quvo,i(ya Ty>p1»p2a TpvﬁOvao) + Op(]-)a
i=1

(E.6)
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where

Gur,i(Y, Ty, P1, D2, T, 1, 00)
=w(p1,7p,00) * Dimy i (Y, Ty, D2, Ty B1,00) + M (Y, 1y, P2, 7, B, 00) - Guw,i (P15 7, O0)
—w(p2,Tp,00) - Gy i (Ys Ty, 1,7, B1,00) +m1(y, 7y, D157, B1, 00) - Puw,i (P2, 7, 00),
Buo,i (Y, Ty, P1, D2, T, Bo, Oo)
=w(p1,7p,00) * Bimg,i (Y, Ty, P2, Tp, Bo, 00) + mo(Y, Ty, P2, T, Bos 00) - duw,i(P1,7p, 00)

- w(p?a Tp, 00) : ¢m0,i(y7ryap17rp7ﬁ07 00) + mO(yaryaphrp)ﬂUa 00) : d)’w,i(an Tp, 90)

The proofs are similar to those in Appendix D, so we omit the details.
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