A Sharp Test for the Judge Leniency Design

Online Supplementary Materials

Mohamed Coulibaly Yu-Chin Hsu Ismael Mourifié Yuanyuan Wan

B Proof of Theorem 1

Proof. Theorem 1-(i) is a direct application of Heckman and Vytlacil (2005)'s testable implications where $g(Y) = 1\{Y \in (y, y']\}$ for $y \leq y'$. We focus on part (ii).

We define some notation. Let $\mathcal{L}(\mathcal{P})$ be the set of limit points of \mathcal{P} , $\mathcal{L}^{o}(\mathcal{P})$ be a set of interior point of \mathcal{P} , and $\mathcal{C}(\mathcal{P})$ be the closure of \mathcal{P} . Furthermore, let $I(\mathcal{P}) = \mathcal{C}(\mathcal{P})/\mathcal{L}^{o}(\mathcal{P})$ be the complement of $\mathcal{L}^{o}(\mathcal{P})$ in the closure of \mathcal{P} . So $I(\mathcal{P})$ also contains isolation points. Note that $\mathcal{L}^{o}(\mathcal{P})$ can be written as a union of countable or finite exclusive open intervals: $\mathcal{L}^{o}(\mathcal{P}) = \bigcup_{j=1}^{J} (a_{j}, b_{j})$, where $(a_{j}, b_{j}) \subseteq \mathcal{P}, b_{j} < a_{j+1}$, and J can be infinity. Let $\Omega(\mathcal{P})$ be a collection of intervals belonging to (0, 1] defined as follows:

$$\Omega(\mathcal{P}) \equiv \{ (p, p'] : p, p' \in I(\mathcal{P}) \cup \{0, 1\} \text{ and for all } \tilde{p} \text{ such that } p < \tilde{p} < p', \tilde{p} \notin \mathcal{P} \}.$$

So the interior of each interval does not intersect with \mathcal{P} . $\Omega(\mathcal{P})$ contains a generic element $(c_k, d_k]$, where $c_k, d_k \in I(\mathcal{P}), d_k \leq c_{k+1}, k = 1, 2, \cdots, K$ with K possibly equals to ∞ , depending on how many isolation points there are in \mathcal{P} . Note that with above notation, for any $v \in (0, 1]$, v must belongs to one of the following categories: (i) an element of $\mathcal{L}^o(\mathcal{P})$ so that $v \in (a_j, b_j)$ for some j, (ii) $v \in \mathcal{L}(\mathcal{P})/\mathcal{L}^o(\mathcal{P})$, and (iii) there exist an integer k such that $v \in (c_k, d_k]$. The following figure illustrates the partition of the unit interval.

Figure 7: An illustration: $\mathcal{P} = \{p_1, p_2, p_5\} \cup [p_3, p_4] \cup [p_6, p_7], \mathcal{L}^o(\mathcal{P}) = (p_3, p_4) \cup (p_6, p_7),$ and $\Omega(\mathcal{P}) = \{(0, p_1], (p_1, p_2], (p_4, p_5], (p_5, p_6], (p_7, 1]\}.$

We will assume that $\mathbb{P}(y < Y \leq y', D = 1 | P = p)$ and $\mathbb{P}(y < Y \leq y', D = 0 | P = p)$ are continuously differentiable over \mathcal{L}^o as a regularity condition under which the local instrumental variable (LIV) estimand is well defined.

First, we construct \tilde{V} and \tilde{D} as follows:

$$\mathbb{P}(\tilde{V} \le t | P = p) = t, \forall (t, p) \in [0, 1] \times \mathcal{P}, \text{ and } \tilde{D} = 1\{P(Z) \ge \tilde{V}\}.$$

By construction, Assumption 2.4 is satisfied. Next, we propose the following distribution for $\tilde{Y}_1|\tilde{V}, P$. For any arbitrary $p \in \mathcal{P}$ and $v \in (0, 1]$, we define

$$\mathbb{P}(\tilde{Y}_{1} \leq y | \tilde{V} = v, P = p) = \begin{cases} \frac{\partial}{\partial t} \mathbb{P}(Y \leq y, D = 1 | P = t)|_{t=v} & \text{if } v \in \mathcal{L}^{o}(\mathcal{P}) \\ \lim_{\tilde{v} \to v} \frac{\partial}{\partial t} \mathbb{P}(Y \leq y, D = 1 | P = t)|_{t=\tilde{v}} & \text{if } v \in \mathcal{L}(\mathcal{P})/\mathcal{L}^{o}(\mathcal{P}) \\ \frac{\mathbb{P}(Y \leq y, D = 1 | P = d_{k}) - \mathbb{P}(Y \leq y, D = 1 | P = c_{k})}{d_{k} - c_{k}} & \text{if } v \notin L(P) \text{ but } v \in (c_{k}, d_{k}] \in \Omega(\mathcal{P}). \end{cases}$$

$$\mathbb{P}(\tilde{Y}_0 \leq y | \tilde{V} = v, P = p) = \begin{cases} -\frac{\partial}{\partial v} \mathbb{P}(Y \leq y, D = 0 | P = t)|_{t=v} & \text{if } v \in \mathcal{L}^o(\mathcal{P}) \\ -\lim_{\tilde{v} \to v} \frac{\partial}{\partial v} \mathbb{P}(Y \leq y, D = 0 | P = t)|_{t=\tilde{v}} & \text{if } v \in \mathcal{L}^o(\mathcal{P}) \\ \frac{\mathbb{P}(Y \leq y, D = 0 | P = c_k) - \mathbb{P}(Y \leq y, D = 0 | P = d_k)}{d_k - c_k} & \text{if } v \notin L^o(P) \text{ but } v \in (c_k, d_k] \in \Omega(\mathcal{P}). \end{cases}$$

Note that the conditioning on $\tilde{V} = v$ and P = p, the distribution of \tilde{Y}_1 does not depend on p. Hence, Assumption 2.1 is satisfied by construction.

We now show that the distribution function constructed above is well defined. We focus on $\mathbb{P}(\tilde{Y}_1 \leq y | \tilde{V} = v, P = p)$ and the verification for $\mathbb{P}(\tilde{Y}_0 \leq y | \tilde{V} = v, P = p)$ is analogous. Let \underline{y} and \overline{y} be the lower and upper bounds of the support of Y, respectively.

1. $\mathbb{P}(\tilde{Y}_1 < \underline{y} - \epsilon | \tilde{V} = v, P = p) = 0$ for all $v \in [0, 1]$ and for any arbitrarily small $\epsilon > 0$. To see this, suppose $v \notin \mathcal{L}(\mathcal{P})$, then there exists $(c_k, d_k] \in \Omega(\mathcal{P})$ such that $v \in (c_k, d_k]$, therefore,

$$\mathbb{P}(\tilde{Y}_1 \le \underline{y} - \epsilon | \tilde{V} = v, P = p)$$

=
$$\frac{\mathbb{P}(Y \le \underline{y} - \epsilon, D = 1 | P = d_k) - \mathbb{P}(Y \le \underline{y} - \epsilon, D = 1 | P = c_k)}{d_k - c_k} = \frac{0 - 0}{d_k - c_k} = 0$$

On the other hand, if $v \in \mathcal{L}^{o}(\mathcal{P})$, then $\mathbb{P}(Y \leq \underline{y} - \epsilon, D = 1 | P = \tilde{v}) = 0$ for all \tilde{v} in a

small neighborhood of v, which implies $\frac{\partial}{\partial v} \mathbb{P}(Y \leq \underline{y} - \epsilon, D = 1 | P = v) = 0$. The case that $v \in \mathcal{L}^{o}(\mathcal{P})$ follows straightforwardly.

2.
$$\mathbb{P}(\tilde{Y}_1 \leq \overline{y} | \tilde{V} = v, P = p) = 1$$
. First, if $v \in \mathcal{L}^o(\mathcal{P})$, then

$$\mathbb{P}(Y \le \overline{y}, D = 1 | P = v) = \mathbb{P}(D = 1 | P = v) = v \Rightarrow \frac{\partial}{\partial v} \mathbb{P}(Y \le \overline{y}, D = 1 | P = v) = 1.$$

On the other hand, if $v \notin \mathcal{L}(\mathcal{P})$, then

$$\mathbb{P}(\tilde{Y}_1 \leq \overline{y} | \tilde{V} = v, P = p) = \frac{\mathbb{P}(Y \leq \overline{y}, D = 1 | P = d_k) - \mathbb{P}(Y \leq \overline{y}, D = 1 | P = c_k)}{p' - p} = \frac{d_k - c_k}{d_k - c_k} = 1$$

3. $\mathbb{P}(\tilde{Y}_1 \leq y | \tilde{V} = v, P = p)$ is nondecreasing in y. For y < y' we have

$$\mathbb{P}(\tilde{Y}_{1} \leq y' | \tilde{V} = v, P = p) - \mathbb{P}(\tilde{Y}_{1} \leq y | \tilde{V} = v, P = p)$$

$$= \begin{cases} \frac{\partial}{\partial t} \mathbb{P}(y < Y \leq y', D = 1 | P = t) |_{t=v} \geq 0 & \text{if } v \in \mathcal{L}^{o}(\mathcal{P}), \\ \lim_{\tilde{v} \to v} \frac{\partial}{\partial t} \mathbb{P}(y < Y \leq y, D = 1 | P = t) |_{t=\tilde{v}} \geq 0 & \text{if } v \in \mathcal{L}(\mathcal{P}) / \mathcal{L}^{o}(\mathcal{P}) \\ \frac{\mathbb{P}(y < Y \leq y', D = 1 | P = d_{k}) - \mathbb{P}(y < Y \leq y', D = 1 | P = c_{k})}{d_{k} - c_{k}} \geq 0 & \text{if } v \notin L^{o}(P) \text{ but } v \in [c_{k}, d_{k}] \in \Omega(\mathcal{P}), \end{cases}$$

where the last inequalities hold whenever the testable implications hold, i.e. $\mathbb{P}(y < Y \leq y', D = 1 | P = p)$ is a non-decreasing function for all $p \in \mathcal{P}$ and all y < y', and by the continuous differentiability of $\mathbb{P}(y < Y \leq y', D = 1 | P = p)$ over $\mathcal{L}(\mathcal{P})$.

Finally, we show that $(\tilde{V}, \tilde{Y}_d, P(Z)), d \in \{0, 1\}$ is observationally equivalent to $(V, Y_d, P(Z))$ $d \in \{0, 1\}$. For this, we show that the conditioning distribution of (\tilde{Y}, \tilde{D}) given P(Z) is the same as the conditioning of (Y, D) given P(Z). Take an arbitrary $p \in \mathcal{P}$.

Suppose first $p \notin \mathcal{L}^{o}(\mathcal{P})$, then (0, p] can be expressed as unions of exclusive intervals $\left(\bigcup_{j=1}^{J^{*}}(a_{j}, b_{j})\right) \cup \left(\bigcup_{k=1}^{K^{*}}(c_{k}, d_{k}]\right)$ for some J^{*} and K^{*} , where $(a_{j}, b_{j})s$ are connected subsets of

 \mathcal{P} . Therefore,

$$\begin{split} \mathbb{P}(\tilde{Y} \leq y, \tilde{D} = 1 | P = p) &= \mathbb{P}(\tilde{Y}_1 \leq y, \tilde{V} \leq p | P = p) = \int_0^p \mathbb{P}(\tilde{Y}_1 \leq y | \tilde{V} = v, P = p) dv \\ &= \sum_{j=1}^{J^*} \int_{a_j}^{b_j} \mathbb{P}(\tilde{Y}_1 \leq y | \tilde{V} = v, P = p) dv + \sum_{k=1}^{K^*} \int_{c_k}^{d_k} \mathbb{P}(\tilde{Y}_1 \leq y | \tilde{V} = v, P = p) dv \\ &= \sum_{j=1}^{J^*} \left(\mathbb{P}(Y \leq y, D = 1 | P = b_j) - \mathbb{P}(Y \leq y, D = 1 | P = a_j) \right) \\ &+ \sum_{k=1}^{K^*} \left(\mathbb{P}(Y \leq y, D = 1 | P = d_k) - \mathbb{P}(Y \leq y, D = 1 | P = c_k) \right) \\ &= \mathbb{P}(Y \leq y, D = 1 | P = p) - \mathbb{P}(Y \leq y, D = 1 | P = 0) = \mathbb{P}(Y \leq y, D = 1 | P = p), \end{split}$$

where the first equality is by construction that \tilde{V} satisfies Assumption 2.4, the third equality holds because (0, p] can be expressed as unions of exclusive intervals $\left(\bigcup_{j=1}^{J^*}(a_j, b_j)\right) \cup \left(\bigcup_{k=1}^{K^*}(c_k, d_k]\right)$, the fourth equality is obtained by inserting the constructed counterfactural distributions, and the last one holds because $\mathbb{P}(Y \leq y, D = 1 | P = 0) = 0$.

Suppose that $p \in (a_{j^*}, b_{j^*}) \subseteq \mathcal{L}^0(\mathcal{P})$ for some j^* , then the right hand side equals to

$$\begin{split} \mathbb{P}(\tilde{Y} \leq y, \tilde{D} = 1 | P = p) &= \mathbb{P}(\tilde{Y}_1 \leq y, \tilde{V} \leq p | P = p) = \int_0^p \mathbb{P}(\tilde{Y}_1 \leq y | \tilde{V} = v, P = p) dv \\ &= \int_0^{a_{j^*}} \mathbb{P}(\tilde{Y}_1 \leq y | \tilde{V} = v, P = p) dv + \int_{a_{j^*}}^p \mathbb{P}(\tilde{Y}_1 \leq y | \tilde{V} = v, P = p) dv \\ &= \mathbb{P}(Y \leq y, D = 1 | P = a_{j^*}) + \int_{a_{j^*}}^p \frac{\partial}{\partial v} \mathbb{P}(Y \leq y, D = 1 | P = v) dv \\ &= \mathbb{P}(Y \leq y, D = 1 | P = a_{j^*}) + \mathbb{P}(Y \leq y, D = 1 | P = p) - \mathbb{P}(Y \leq y, D = 1 | P = a_{j^*}) \\ &= \mathbb{P}(Y \leq y, D = 1 | P = a_{j^*}) + \mathbb{P}(Y \leq y, D = 1 | P = p) - \mathbb{P}(Y \leq y, D = 1 | P = a_{j^*}) \\ &= \mathbb{P}(Y \leq y, D = 1 | P = a_{j^*}) + \mathbb{P}(Y \leq y, D = 1 | P = p), \end{split}$$

where the $\int_0^{a_{j^*}} \mathbb{P}(\tilde{Y}_1 \leq y | \tilde{V} = v, P = p) dv = \mathbb{P}(Y \leq y, D = 1 | P = a_{j^*})$ holds by the above argument and the fifth equality holds by inserting the constructed counterfactural distributions. This completes the proof.

C Proof of Theorem 2

We begin by listing a few regularity conditions for the proof of Theorem 2.

Assumption C.1 The observations $\{(Y_i, D_i, Z_i, X_i)\}_{i=1}^n$ are *i.i.d.* across *i*.

Assumption C.2 We impose the following smoothness conditions:

- 1. The conditional density of (Y, D) given $P(Z, \theta_0) = p$, denoted by $f_{Y,D|P}(y, d|p)$, is Lipschitz continuous both in p on \mathcal{P} and in y on \mathcal{Y} for d = 0, 1.
- 2. For all $z \in \mathcal{Z}$, $P(z, \theta)$ is continuously differentiable in θ at θ_0 with bounded derivatives.

Note that Assumption C.2-(1) does not exclude the case of discrete propensity score. When P is discrete and \mathcal{P} contains finite many distinguished elements, any convergent sequence in \mathcal{P} must be a constant sequence eventually, and in that case Assumption C.2-(1) holds automatically. Assumption C.2-(1) implies that the functions m_d and ω , defined in Equations (A.1) to (A.3), are continuous functions of ℓ . Assumption C.2-(2) implies that the class of functions $\{1(p \leq P(Z, \theta) \leq p + r_p) : \theta \in \Theta, p \in [0, 1], r_p \in [0, 1]\}$ is a Vapnik-Chervonenkis (VC) class of function.

Assumption C.3 The parameter space Θ for θ_0 is compact, and θ_0 is in the interior of Θ . The estimator $\hat{\theta}$ admits an influence function of the following form,

$$\sqrt{n}(\hat{\theta} - \theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n s(D_i, Z_i, \theta_0) + o_p(1),$$
(C.1)

where $s(\cdot, \cdot, \cdot)$ is measurable, satisfying $\mathbb{E}[s(D_i, Z_i, \theta_0)] = 0$, $\mathbb{E}[\sup_{\theta} |s(D_i, Z_i, \theta)|] < \infty$, and $V(\sup_{\theta} |s(D_i, Z_i, \theta)|) < \infty$.

Assumption C.3 is satisfied for common maximum likelihood estimators and parametric binary response models. For example, if one estimates θ_0 by Probit model $D_i = 1[Z'_i\theta_0 \ge V_i]$, with $V_i \sim N(0, 1)$, then

$$s(D_i, Z_i, \theta_0) = \frac{\phi((2D_i - 1)Z'_i\theta_0)}{\Phi((2D_i - 1)Z'_i\theta_0)}Z_i.$$

If the Logit model is used, then

$$s(D_i, Z_i, \theta_0) = \left(D_i - \frac{\exp(Z'_i \theta_0)}{1 + \exp(Z'_i \theta_0)}\right) Z_i.$$

Assumption C.4 The estimator $\hat{\theta}^b$ satisfies that

$$\sqrt{n}(\hat{\theta}^b - \hat{\theta}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (W_i - 1) \cdot s(D_i, Z_i, \theta_0) + o_p(1),$$
(C.2)

where $s_{\theta}(\cdot)$ is the same as in Assumption C.3.

Assumption C.4 is satisfied under our weighted bootstrap procedure.

The proof of Theorem Theorem 2 follows from the same arguments as Theorems 5.1 and 5.2 of Hsu (2017) once Lemmas D.1 to D.4 are established, and is omitted for the sake of brevity.

D Lemmas and Intermediary Results

This section collects useful Lemmas, intermediary results, and additional assumptions for establishing the asymptotic results in Theorem 2.

Lemma D.1 Suppose Assumptions C.2 and C.3 are satisfied, then uniformly in $\ell \in \mathcal{L}$,

$$\sqrt{n}(\hat{m}_{1}(y, r_{y}, p, r_{p}, \hat{\theta}) - m_{1}(y, r_{y}, p, r_{p}, \theta_{0})) \\
= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi_{m_{1},i}(y, r_{y}, p, r_{p}, \theta_{0}) + o_{p}(1) \\
\equiv \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (m_{1,i}(y, r_{y}, p, r_{p}, \theta_{0}) - m_{1}(y, r_{y}, p, r_{p}, \theta_{0}) + \nabla_{\theta} m_{1}(y, r_{y}, p, r_{p}, \theta_{0}) \cdot s(D_{i}, Z_{i}, \theta_{0})) + o_{p}(1). \\$$
(D.1)

$$\sqrt{n}(\hat{m}_{0}(y, r_{y}, p, r_{p}, \theta) - m_{0}(y, r_{y}, p, r_{p}, \theta_{0})) \\
= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi_{m_{0},i}(y, r_{y}, p, r_{p}, \theta_{0}) + o_{p}(1) \\
\equiv \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (m_{0,i}(y, r_{y}, p, r_{p}, \theta_{0}) - m_{0}(y, r_{y}, p, r_{p}, \theta_{0}) + \nabla_{\theta} m_{0}(y, r_{y}, p, r_{p}, \theta_{0}) \cdot s(D_{i}, Z_{i}, \theta_{0})) + o_{p}(1),$$
(D.2)

$$\sqrt{n}(\hat{w}(p,r_{p},\hat{\theta}) - w(p,r_{p},\theta_{0})) \\
= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi_{w,i}(p,r_{p},\theta_{0}) + o_{p}(1) \\
\equiv \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (w_{i}(p,r_{p},\theta_{0}) - w(p,r_{p},\theta_{0}) + \nabla_{\theta}w(p,r_{p},\theta_{0}) \cdot s(D_{i},Z_{i},\theta_{0})) + o_{p}(1) \quad (D.3)$$

where functions m_d and w are defined in Equations (A.1) to (A.3) and

$$\begin{split} m_{1i}(y, r_y, p, r_p, \theta) &= D_i 1(y \le Y_i \le y + r_y) 1(p \le P(Z_i, \theta) \le p + r_p), \\ m_{0i}(y, r_y, p, r_p, \theta) &= (D_i - 1) 1(y \le Y_i \le y + r_y) 1(p \le P(Z_i, \theta) \le p + r_p), \\ w_i(p, r_p, \theta) &= 1(p \le P(Z_i, \theta) \le p + r_p). \end{split}$$

Proof. Let $f_P(p)$ denote the density function of $P(Z; \theta_0)$. Following Hsu and Lieli (2021), we calculate the derivatives for $m_d(y, r_y, p, r_p, \cdot)$ and $w(p, r_p, \cdot)$ as:

$$\nabla_{\theta} m_1(y, r_y, p, r_p, \theta_0) = \mathbb{E}[D1(y \le Y \le y + r_y) | P(Z, \theta_0) = p] \cdot f_P(p) \mathbb{E}[\nabla_{\theta} P(Z, \theta_0) | P(Z, \theta_0) = p] - \mathbb{E}[D1(y \le Y \le y + r_y) | P(Z, \theta_0) = p + r_p] \cdot f_P(p + r_p) \mathbb{E}[\nabla_{\theta} P(Z, \theta_0) | P(Z, \theta_0) = p + r_p],$$

$$\nabla_{\theta} m_0(y, r_y, p, r_p, \theta_0) = \mathbb{E}[(D-1)1(y \le Y \le y + r_y)|P(Z, \theta_0) = p] \cdot f_P(p)\mathbb{E}[\nabla_{\theta} P(Z, \theta_0)|P(Z, \theta_0) = p] - \mathbb{E}[(D-1)1(y \le Y \le y + r_y)|P(Z, \theta_0) = p + r_p] \cdot f_P(p + r_p)\mathbb{E}[\nabla_{\theta} P(Z, \theta_0)|P(Z, \theta_0) = p + r_p],$$

$$\nabla_{\theta} w(p, r_p, \theta_0) = f_P(p) \mathbb{E}[\nabla_{\theta} P(Z, \theta_0) | P(Z, \theta_0) = p] - f_P(p + r_p) \mathbb{E}[\nabla_{\theta} P(Z, \theta_0) | P(Z, \theta_0) = p + r_p].$$

Now we prove Equation (D.1), the results for Equations (D.2) and (D.3) are similar. Note that

$$\begin{split} &\sqrt{n}(\hat{m}_{1}(y,r_{y},p,r_{p},\hat{\theta})-m_{1}(y,r_{y},p,r_{p},\theta_{0}))\\ =&\sqrt{n}(\hat{m}_{1}(y,r_{y},p,r_{p},\hat{\theta})-m_{1}(y,r_{y},p,r_{p},\hat{\theta}))+\sqrt{n}(m_{1}(y,r_{y},p,r_{p},\hat{\theta})-m_{1}(y,r_{y},p,r_{p},\theta_{0}))\\ =&\sqrt{n}(\hat{m}_{1}(y,r_{y},p,r_{p},\hat{\theta})-m_{1}(y,r_{y},p,r_{p},\hat{\theta}))+\nabla_{\theta}m_{1}(y,r_{y},p,r_{p},\theta_{0})'\sqrt{n}(\hat{\theta}-\theta_{0})+o(\sqrt{n}\|\hat{\theta}-\theta_{0}\|)\\ =&\sqrt{n}(\hat{m}_{1}(y,r_{y},p,r_{p},\hat{\theta})-m_{1}(y,r_{y},p,r_{p},\hat{\theta}))+\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\nabla_{\theta}m_{1}(y,r_{y},p,r_{p},\theta_{0})s(D_{i},Z_{i},\theta_{0})+o_{p}(1) \end{split}$$

$$(D.4)$$

where the second equality holds because $m_1(\ell, \theta)$ is continuously differentiable in θ under Assumption C.2-(2), and the third equality is due to Assumption C.3.

Let
$$\mathbb{G}_{m_1}(\theta, \ell) \equiv \sqrt{n}(\hat{m}_1(y, r_y, p, r_p, \theta) - m_1(y, r_y, p, r_p, \theta)), \ \theta \in \Theta, \ell \in \mathcal{L}$$
. It remains to show

that $\sup_{\ell \in \mathcal{L}} |\hat{\mathbb{G}}_{m_1}(\hat{\theta}, \ell) - \hat{\mathbb{G}}_{m_1}(\theta_0, \ell)| = o_p(1).$

By Assumption C.2-(ii), the class of functions $\{1(p \leq P(Z,\theta) \leq p + r_p) : \theta \in \Theta, p \in [0,1], r_p \in [0,1]\}$ is a Vapnik-Chervonenkis (VC) class of function. Therefore, the class of functions $\{1\{y \leq Y \leq y + r_y\} \times 1(p \leq P(Z,\theta) : \theta \in \Theta, p \in [0,1], r_p \in [0,1], r_y \in [0,1]\}$ is also VC class. Hence, the process $\hat{\mathbb{G}}_{m_1}$ is stochastically equicontinuous with respect to (θ, ℓ) . Note $\hat{\theta} \xrightarrow{p} \theta_0$, then there exist $\delta_n \downarrow 0$ such that with probability approaching one, $(\hat{\theta}, \ell) \in B((\theta_0, \ell), \delta_n)$, where $B((\theta_0, \ell), \delta_n)$ is a ball in $\Theta \times \mathcal{L}$ centered at (θ_0, ℓ) with radius δ_n . Therefore,

$$\sup_{\ell \in \mathcal{L}} |\sqrt{n}(\hat{m}_{1}(y, r_{y}, p, r_{p}, \hat{\theta}) - m_{1}(y, r_{y}, p, r_{p}, \hat{\theta})) - \sqrt{n}(\hat{m}_{1}(y, r_{y}, p, r_{p}, \theta_{0}) - m_{1}(y, r_{y}, p, r_{p}, \theta_{0}))| \\
= \sup_{\ell \in \mathcal{L}} |\hat{\mathbb{G}}_{m_{1}}(\hat{\theta}, \ell) - \hat{\mathbb{G}}_{m_{1}}(\theta_{0}, \ell)| \\
\leq \sup_{\theta_{0} \in \Theta, \ell \in \mathcal{L}} \sup_{(\theta', \ell') \in B((\theta_{0}, \ell), \delta_{n})} |\hat{\mathbb{G}}_{m_{1}}(\theta', \ell') - \hat{\mathbb{G}}_{m_{1}}(\theta_{0}, \ell)| = o_{p}(1). \tag{D.5}$$

where the last equality is by the stochastic equicontinuity of the process $\hat{\mathbb{G}}_{m_1}$. Combine both Equations (D.4) and (D.5), the result then follows. \Box

Lemma D.2 Suppose Assumptions 2.1 to 2.4, C.2 and C.3 are satisfied, then uniform in ℓ ,

$$\sqrt{n}(\hat{\nu}_1(y, r_y, p_1, p_2, r_p, \hat{\theta}) - \nu_1(y, r_y, p_1, p_2, r_p, \theta_0)) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \phi_{\nu_1, i}(y, r_y, p_1, p_2, r_p, \theta_0) + o_p(1),$$
(D.6)

$$\sqrt{n}(\hat{\nu}_0(y, r_y, p_1, p_2, r_p, \hat{\theta}) - \nu_0(y, r_y, p_1, p_2, r_p, \theta_0)) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \phi_{\nu_0, i}(y, r_y, p_1, p_2, r_p, \theta_0) + o_p(1),$$
(D.7)

where

$$\begin{split} \phi_{\nu_1,i}(y,r_y,p_1,p_2,r_p,\theta_0) &= w(p_1,r_p,\theta_0) \cdot \phi_{m_1,i}(y,r_y,p_2,r_p,\theta_0) + m_1(y,r_y,p_2,r_p,\theta_0) \cdot \phi_{w,i}(p_1,r_p,\theta_0) \\ &- w(p_2,r_p,\theta_0) \cdot \phi_{m_1,i}(y,r_y,p_1,r_p,\theta_0) - m_1(y,r_y,p_1,r_p,\theta_0) \cdot \phi_{w,i}(p_2,r_p,\theta_0), \\ \phi_{\nu_0,i}(y,r_y,p_1,p_2,,r_p,\theta_0) &= w(p_1,r_p,\theta_0) \cdot \phi_{m_0,i}(y,r_y,p_2,r_p,\theta_0) + m_0(y,r_y,p_2,r_p,\theta_0) \cdot \phi_{w,i}(p_1,r_p,\theta_0) \\ &- w(p_2,r_p,\theta_0) \cdot \phi_{m_0,i}(y,r_y,p_1,r_p,\theta_0) - m_0(y,r_y,p_1,r_p,\theta_0) \cdot \phi_{w,i}(p_2,r_p,\theta_0). \end{split}$$

Furthermore,

$$\sqrt{n}(\widehat{\nu}_1(\cdot,\widehat{\theta}) - \nu_1(\cdot,\theta_0)) \Rightarrow \Phi_{\nu_1}(\cdot), \quad \sqrt{n}(\widehat{\nu}_0(\cdot,\widehat{\theta}) - \nu_0(\cdot,\theta_0)) \Rightarrow \Phi_{\nu_0}(\cdot),$$

where $\Phi_{\nu_1}(\cdot)$ and $\Phi_{\nu_0}(\cdot)$ are Gaussian processes with variance-covariance kernel generated by $\phi_{\nu_1}(\cdot, \theta_0)$ and $\phi_{\nu_0}(\cdot, \theta_0)$, respectively.

Proof. We show Equation (D.6). Equation (D.7) holds analogously. Recall

$$\hat{\nu}_1(\ell) = \hat{m}_1(y, r_y, p_2, r_p, \hat{\theta}) \cdot \hat{w}(p_1, r_p, \hat{\theta}) - \hat{m}_1(y, r_y, p_1, r_p, \hat{\theta}) \cdot \hat{w}(p_2, r_p, \hat{\theta})$$

To save space, for generic ℓ , we write $\hat{m}_1(\hat{\theta}) \equiv \hat{m}_1(\ell, \hat{\theta})$ and $\hat{w}(\hat{\theta}) \equiv \hat{w}(\ell, \hat{\theta})$. Similarly, $m_1(\theta_0) \equiv m_1(\ell, \theta_0)$ and $w(\theta_0) \equiv w(\ell, \theta_0)$. Then,

$$\begin{split} \hat{m}_{1}(\hat{\theta})\hat{w}(\hat{\theta}) - m_{1}(\theta_{0})w(\theta_{0}) &= (\hat{m}_{1}(\hat{\theta}) - m_{1}(\theta_{0}) + m_{1}(\theta_{0}))(\hat{w}(\hat{\theta}) - w(\theta_{0}) + w(\theta_{0})) - m_{1}(\theta_{0})w(\theta_{0}) \\ &= (\hat{m}_{1}(\hat{\theta}) - m_{1}(\theta_{0}))w(\theta_{0}) + (\hat{w}(\hat{\theta}) - w(\theta_{0}))m_{1}(\theta_{0}) + (\hat{m}_{1}(\hat{\theta}) - m_{1}(\theta_{0}))(\hat{w}(\hat{\theta}) - w(\theta_{0})) \\ &= (\hat{m}_{1}(\hat{\theta}) - m_{1}(\theta_{0}))w(\theta_{0}) + (\hat{w}(\hat{\theta}) - w(\theta_{0}))m_{1}(\theta_{0}) + o_{p}\left(\frac{1}{\sqrt{n}}\right), \end{split}$$

where the last equality is because $\hat{m}_1(\hat{\theta}) - m_1(\theta_0) = O_p(1/\sqrt{n})$ and $\hat{w}(\hat{\theta}) - w(\theta_0) = O_p(1/\sqrt{n})$ by Lemma D.1. Then we have

$$\begin{split} \hat{\nu}_{1}(\ell) - \nu_{1}(\ell) = & w(p_{1}, r_{p}, \theta_{0}) \cdot (\hat{m}_{1}(y, r_{y}, p_{2}, r_{p}, \hat{\theta}) - m_{1}(y, r_{y}, p_{2}, r_{p}, \theta_{0})) \\ &+ m_{1}(y, r_{y}, p_{2}, r_{p}, \theta_{0}) \cdot (\hat{w}(p_{1}, r_{p}, \hat{\theta}) - w(p_{1}, r_{p}, \theta_{0})) \\ &- w(p_{2}, r_{p}, \theta_{0}) \cdot (\hat{m}_{1}(y, r_{y}, p_{1}, r_{p}, \hat{\theta}) - m_{1}(y, r_{y}, p_{1}, r_{p}, \theta_{0})) \\ &- m_{1}(y, r_{y}, p_{1}, r_{p}, \theta_{0}) \cdot (\hat{w}(p_{2}, r_{p}, \hat{\theta}) - w(p_{2}, r_{p}, \theta_{0})) + o_{p}\left(\frac{1}{\sqrt{n}}\right). \end{split}$$

Equation (D.6) then follows by inserting Equations (D.1) to (D.3) to the above equation.

Finally, under Assumption C.2, each element of $\nabla_{\theta}m_1(y, r_y, p, r_p, \theta_0)$ is Lipschitz continuous in y, r_y , p, r_p and it implies that $\{\partial m_1(y, r_y, p, r_p, \theta_0) / \partial \theta_j : (y, r_y, p, r_p) \in [0, 1]^4\}$ is a VC class of functions for each j. Similarly, each element of $\nabla_{\theta}w(p, r_p, \theta_0)$ is Lipschitz continuous in p, r_p . It follows that $\{\phi_{m_1}(y, r_y, p, r_p, \theta_0) : (y, r_y, p, r_p) \in [0, 1]^4\}$, $\{\phi_{m_0}(y, r_y, p, r_p, \theta_0) :$ $(y, r_y, p, r_p) \in [0, 1]^4\}$ and $\{\phi_w(p, r_p, \theta_0) : (p, r_p) \in [0, 1]^2\}$ are all VC classes of functions. weak convergence follows from the fact that $\{\phi_{\nu_0}(y, r_y, p_1, p_2, r_p, \theta_0) : (y, r_y, p_1, p_2, r_p) \in [0, 1]^5\}$ and $\{\phi_{\nu_0}(y, r_y, p_1, p_2, r_p, \theta_0) : (y, r_y, p_1, p_2, r_p) \in [0, 1]^5\}$ are both VC classes of functions. Therefore, we have

$$\sqrt{n}(\widehat{\nu}_1(\cdot,\widehat{\theta}) - \nu_1(\cdot,\theta_0)) \Rightarrow \Phi_{\nu_1}(\cdot), \quad \sqrt{n}(\widehat{\nu}_0(\cdot,\widehat{\theta}) - \nu_0(\cdot,\theta_0)) \Rightarrow \Phi_{\nu_0}(\cdot).$$

Lemma D.3 Suppose Assumptions 2.1 to 2.4 and C.2 to C.4 are satisfied, then uniform in ℓ over \mathcal{L} ,

$$\begin{split} &\sqrt{n}(\hat{\nu}_{1}^{b}(y,r_{y},p_{1},p_{2},r_{p},\hat{\theta}^{b}) - \hat{\nu}_{1}(y,r_{y},p_{1},p_{2},r_{p},\hat{\theta})) \\ = &\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (W_{i}-1)\phi_{\nu_{1},i}(y,r_{y},p_{1},p_{2},r_{p},\theta_{0}) + o_{p}(1), \\ &\sqrt{n}(\hat{\nu}_{0}^{b}(y,r_{y},p_{1},p_{2},r_{p},\hat{\theta}^{b}) - \hat{\nu}_{0}(y,r_{y},p_{1},p_{2},r_{p},\hat{\theta})) \\ = &\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (W_{i}-1)\phi_{\nu_{0},i}(y,r_{y},p_{1},p_{2},r_{p},\theta_{0}) + o_{p}(1), \end{split}$$
(D.8)

where $\phi_{\nu_1,i}(y,r_y,p_1,p_2,r_p,\theta_0)$ and $\phi_{\nu_0,i}(y,r_y,p_1,p_2,,r_p,\theta_0)$ are the same as in Lemma D.2.

The proof to Lemma D.3 is similar to Lemma D.2 and is therefore omitted.

Lemma D.4 Suppose Assumptions 2.1 to 2.4 and C.2 to C.4 are satisfied, then $\hat{\sigma}_d^2(\ell)$ defined in (3.8) satisfies that for d = 0, 1, $\sup_{\ell} |\hat{\sigma}_d^2(\ell) - \sigma_d^2(\ell)| = o_p(1)$. **Proof.** Recall that for a given $\ell \in \mathcal{L}$,

$$\hat{\sigma}_d^2(\ell) = \frac{n}{B} \sum_{b=1}^B \left(\hat{\nu}_d^b(\ell) - \overline{\hat{\nu}_d^b}(\ell) \right)^2, \text{ where } \overline{\hat{\nu}}_d^b(\ell) = \frac{1}{B} \sum_{b=1}^B \hat{\nu}_d^b(\ell).$$

It can be written as

$$\hat{\sigma}_{d}^{2}(\ell) = \frac{n}{B} \sum_{b=1}^{B} \left(\hat{\nu}_{d}^{b}(\ell) - \hat{\nu}_{d}(\ell) \right)^{2} + 2\frac{n}{B} \sum_{b=1}^{B} \left(\hat{\nu}_{d}^{b}(\ell) - \hat{\nu}_{d}(\ell) \right) \left(\hat{\nu}_{d}(\ell) - \overline{\hat{\nu}_{d}^{b}}(\ell) \right) + \frac{n}{B} \sum_{b=1}^{B} \left(\hat{\nu}_{d}(\ell) - \overline{\hat{\nu}_{d}^{b}}(\ell) \right)^{2}$$
(D.10)

We first consider the second term on the right-hand side of Equation (D.10). Let $\overline{W}_i = \frac{1}{B} \sum_{b=1}^{B} W_i^b$, Using Lemma D.3, we know that for a given $b = 1, 2, \dots, B$, and uniformly over

 $\ell \in \mathcal{L}$,

$$\hat{\nu}_d^b(\ell) - \hat{\nu}_d(\ell) = \frac{1}{n} \sum_{i=1}^n (W_i^b - 1) \phi_{\nu_d,i}(\ell, \theta_0) + o_p(1).$$

So it can be written as

$$\begin{split} &\frac{n}{B}\sum_{b=1}^{B}\left(\hat{\nu}_{d}^{b}(\ell)-\hat{\nu}_{d}(\ell)\right)\left(\hat{\nu}_{d}(\ell)-\overline{\hat{\nu}_{d}^{b}}(\ell)\right) \\ &=\frac{1}{B}\frac{1}{n}\sum_{b=1}^{B}\left(\sum_{i=1}^{n}(W_{i}^{b}-1)\phi_{\nu_{d},i}(\ell,\theta_{0})\right)\left(\sum_{i=1}^{n}(\bar{W}_{i}-1)\phi_{\nu_{d},i}(\ell,\theta_{0})\right)+o_{p}(1) \\ &=\frac{1}{B}\frac{1}{n}\sum_{b=1}^{B}\sum_{i=1}^{n}(W_{i}^{b}-1)(\bar{W}_{i}-1)\phi_{\nu_{d},i}^{2}(\ell,\theta_{0})+\frac{1}{B}\frac{1}{n}\sum_{b=1}^{B}\sum_{i\neq j}^{n}(W_{i}^{b}-1)(\bar{W}_{j}-1)\phi_{\nu_{d},i}(\ell,\theta_{0})\phi_{\nu_{d},j}(\ell,\theta_{0})+o_{p}(1) \\ &=\frac{1}{B^{2}}\frac{1}{n}\sum_{b=1}^{B}\sum_{i=1}^{n}(W_{i}^{b}-1)^{2}\phi_{\nu_{d},i}^{2}(\ell,\theta_{0})+\frac{1}{B^{2}}\frac{1}{n}\sum_{b=1}^{B}\sum_{b\neq j}^{B}\sum_{i=1}^{n}(W_{i}^{b}-1)(W_{j}^{b}'-1)\phi_{\nu_{d},i}^{2}(\ell,\theta_{0}) \\ &+\frac{1}{B}\frac{1}{n}\sum_{b=1}^{B}\sum_{i\neq j}^{n}(W_{i}^{b}-1)(\bar{W}_{j}-1)\phi_{\nu_{d},i}(\ell,\theta_{0})\phi_{\nu_{d},j}(\ell,\theta_{0})+o_{p}(1) \end{split}$$

The first right-hand side term is of order $\frac{1}{B}$ and is negligible as $B \to \infty$. The second term on the right-hand side is negligible because $E[(W_i^b - 1)(W_i^{b'} - 1)|(Y, D, Z)] = 0$ as long as $b \neq b'$. The third term on the right-hand side is negligible because $E[(W_i^b - 1)(W_j^b - 1)|(Y, D, Z)] = 0$ as long as $i \neq j$. For similarly reasoning, the third right-hand side term of Equation (D.10) is also negligible as $B \to \infty$.

Now consider the first term on the right-hand side of Equation (D.10). Uniformly over ℓ ,

$$\frac{n}{B} \sum_{b=1}^{B} \left(\hat{\nu}_{d}^{b}(\ell) - \hat{\nu}_{d}(\ell) \right)^{2} = \frac{1}{B} \frac{1}{n} \sum_{b=1}^{B} \left(\sum_{i=1}^{n} (W_{i}^{b} - 1)\phi_{\nu_{d},i}(\ell,\theta_{0}) \right)^{2} + o_{p}(1)$$

$$= \frac{1}{B} \frac{1}{n} \sum_{b=1}^{B} \sum_{i=1}^{n} (W_{i}^{b} - 1)^{2} \phi_{\nu_{d},i}^{2}(\ell,\theta_{0}) + \frac{1}{B} \frac{1}{n} \sum_{b=1}^{B} \sum_{i=1}^{n} \sum_{j \neq i}^{n} (W_{i}^{b} - 1)(W_{j}^{b} - 1)\phi_{\nu_{d},i}(\ell,\theta_{0})\phi_{\nu_{d},j}(\ell,\theta_{0}) + o_{p}(1).$$

Conditioning on the sample, because W_i^b are i.i.d. across b and i, has expectation and variance equal to one, we know $E[(W_i^b - 1)(W_j^b - 1)|(Y, D, Z)] = 0$ and $E[(W_i^b - 1)^2|(Y, D, Z)] = 1$. As $B \to \infty$, the right-hand side converges in probability (with respect to the distribution of $\{W^b\}_{b=1}^B$) to $\frac{1}{n} \sum_{i=1}^n \phi_{\nu_d,i}^2(\ell, \theta_0) + o_p(1)$, which in turn converges to $\sigma_d^2(\ell)$ uniformly over ℓ as $n \to \infty$.

E The influence function with covariate case

In this subsection, we derive the influence function for estimating $\nu_d(\ell)$ in the presence of covariates. First, we estimate $\theta_0 \equiv (\theta_{0z}, \theta_{0x})$ by MLE,

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} \log f(Y_i, D_i, Z_i, X_i, \theta)$$
$$\equiv \underset{\theta \in \Theta}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} D_i \log P(Z_i, X_i, \theta) + (1 - D_i) \log(1 - P(Z_i, X_i, \theta)).$$
(E.1)

where $P(z, x, \theta)$ is parameterized and depends on (z, x) and $\theta \equiv (\theta'_z, \theta'_x)'$ through $z'\theta_z + x'\theta_x$. For example, $P(z, x, \theta) = \Phi(z'\theta_z + x'\theta_x)$ for Probit or $P(z, x, \theta) = \frac{exp(z'\theta_z + x'\theta_x)}{1 + exp(z'\theta_z + x'\theta_x)}$ for Logit. As in Appendix D, we make the following assumptions.

Assumption E.1 Assuming following conditions hold

- 1. The conditional density of (Y, X, D) given $P(Z, X, \theta_0) = p$, denoted by $f_{Y,X,D|P}(y, x, d|p)$, is Lipschitz continuous in (y, x, p) over the joint support of (Y, X, P) for d = 0, 1.
- 2. For all $z \in \mathbb{Z}$ and $x \in \mathcal{X}$, $P(z, x, \theta)$ is continuously differentiable in θ at θ_0 with bounded derivatives.

Assumption E.2 The estimator $\hat{\theta}$, $\hat{\beta}_1$, $\hat{\beta}_0$ admits an influence function of the following form,

$$\sqrt{n}(\hat{\theta} - \theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n s_{\theta_0}(D_i, Z_i, X_i, \theta_0) + o_p(1),$$
(E.2)

$$\sqrt{n}(\hat{\beta}_1 - \beta_1) = \frac{1}{\sqrt{n}} \sum_{i=1}^n s_{\beta_1}(D_i, Y_i, Z_i, X_i, \beta_1) + o_p(1),$$
(E.3)

$$\sqrt{n}(\hat{\beta}_0 - \beta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n s_{\beta_0}(D_i, Y_i, Z_i, X_i, \beta_0) + o_p(1),$$
(E.4)

where $s_{\theta_0}(\cdot)$, $s_{\beta_1}(\cdot)$ and $s_{\beta_0}(\cdot)$ are measurable, satisfying $E[s_{\theta_0}(D_i, Z_i, X_i, \theta_0)] = 0$, $E[s_{\beta_1}(D_i, Y_i, Z_i, X_i, \beta_1)] = 0$, $E[s_{\beta_0}(D_i, Y_i, Z_i, X_i, \beta_0)] = 0$, $E[sup_{\theta} ||s_{\theta_0}(D_i, Z_i, \theta)||^{2+\delta}] < \infty$, $E[sup_{\beta} ||s_{\beta_1}(D_i, Y_i, Z_i, X_i, \beta)||^{2+\delta}] < \infty$, and $E[sup_{\beta} ||s_{\beta_0}(D_i, Y_i, Z_i, X_i, \beta)||^{2+\delta}] < \infty$ for some $\delta > 0$.

Note that under similar conditions as in Section 4 of Hsu, Liao and Lin (2022, Econometric Reviews), (E.3) and (E.4) would hold. We define the following quantities for generic $(y, r_y, p, r_p, b, \theta)$:

$$\begin{split} m_1(y, r_y, p, r_p, b, \theta) &= \mathbb{E}[D1(y \le Y - X'b \le y + r_y)1(p \le P(Z, X, \theta) \le p + r_p)], \\ m_0(y, r_y, p, r_p, b, \theta) &= \mathbb{E}[(D - 1)1(y \le Y - X'b \le y + r_y)1(p \le P(Z, X, \theta) \le p + r_p)], \\ w(p, r_p, \theta) &= \mathbb{E}[1(p \le P(Z, X, \theta) \le p + r_p)]. \end{split}$$

Let $f_P(p)$ denote the density function of $P(Z, X, \theta_0) \equiv \mathbb{P}(D = 1 | X, Z; \theta_0)$. Following the calculation in Hsu and Lieli (2021), we can analogously obtain the derivatives with respect to θ , evaluating at the true parameter values $(\beta_1, \beta_0, \theta_0)$ as

$$\begin{split} &\nabla_{\theta} m_{1}(y, r_{y}, p, r_{p}, \beta_{1}, \theta_{0}) \\ =&\mathbb{E}[D1(y \leq Y - X'\beta_{1} \leq y + r_{y})|P(Z, X, \theta_{0}) = p] \cdot f_{P}(p)\mathbb{E}[\nabla_{\theta}P(Z, X, \theta_{0})|P(Z, X, \theta_{0}) = p] \\ &- \mathbb{E}[D1(y \leq Y - X'\beta_{1} \leq y + r_{y})|P(Z, X, \theta_{0}) = p + r_{p}] \cdot f_{P}(p + r_{p})\mathbb{E}[\nabla_{\theta}P(Z, X, \theta_{0})|P(Z, X, \theta_{0}) = p + r_{p}], \\ &\nabla_{\theta} m_{0}(y, r_{y}, p, r_{p}, \beta_{0}, \theta_{0}) \\ =&\mathbb{E}[(D - 1)1(y \leq Y - X'\beta_{0} \leq y + r_{y})|P(Z, X, \theta_{0}) = p] \cdot f_{P}(p)\mathbb{E}[\nabla_{\theta}P(Z, X, \theta_{0})|P(Z, X, \theta_{0}) = p] \\ &- \mathbb{E}[(D - 1)1(y \leq Y - X'\beta_{0} \leq y + r_{y})|P(Z, X, \theta_{0}) = p + r_{p}] \cdot f_{P}(p + r_{p})\mathbb{E}[\nabla_{\theta}P(Z, X, \theta_{0})|P(Z, X, \theta_{0}) = p + r_{p}] \\ &\nabla_{\theta} w(p, r_{p}, \theta_{0}) \\ =&f_{P}(p)\mathbb{E}[\nabla_{\theta}P(Z, X, \theta_{0})|P(Z, X, \theta_{0}) = p] - f_{P}(p + r_{p})\mathbb{E}[\nabla_{\theta}P(Z, X, \theta_{0})|P(Z, X, \theta_{0}) = p + r_{p}]. \end{split}$$

In addition, let $f_{u_d|zxd}(y|z, x, d)$ denote the conditional density of U_d conditional on (Z, X, D) = (z, x, d), then the derivatives with respect to β , evaluating at the true parameter values $(\beta_1, \beta_0, \theta_0)$ are

$$\nabla_{\beta} m_{1}(y, r_{y}, p, r_{p}, \beta_{1}, \theta_{0})$$

$$= \mathbb{E}[P(Z, X, \theta_{0})(f_{u_{1}|zxd}(y + r_{y}|Z, X, 1) - f_{u_{1}|zxd}(y|Z, X, 1)X \cdot 1(p \leq P(Z, X, \theta) \leq p + r_{p})]],$$

$$\nabla_{\beta} m_{0}(y, r_{y}, p, r_{p}, \beta_{0}, \theta_{0})$$

$$= \mathbb{E}[(1 - P(Z, X, \theta_{0}))(f_{u_{0}|zxd}(y + r_{y}|Z, X, 0) - f_{u_{0}|zxd}(y|Z, X, 0)X \cdot 1(p \leq P(Z, X, \theta) \leq p + r_{p})]].$$

Let the estimators for $m_1(y, r_y, p, r_p, \beta, \theta), m_0(y, r_y, p, r_p, \beta, \theta)$ and $w(p, r_p, \theta)$ be

$$\begin{split} \hat{m}_1(y,r_y,p,r_p,\beta,\theta) &= \frac{1}{n} \sum_{i=1}^n m_{1,i}(y,r_y,p,r_p,\beta,\theta), \\ \hat{m}_0(y,r_y,p,r_p,\beta,\theta) &= \frac{1}{n} \sum_{i=1}^n m_{0,i}(y,r_y,p,r_p,\beta,\theta), \\ \hat{w}(p,r_p,\theta) &= \frac{1}{n} \sum_{i=1}^n w_i(p,r_p,\theta). \end{split}$$

where

$$m_{1,i}(y, r_y, p, r_p, \beta, \theta) = D_i 1(y \le Y_i - X_i \beta \le y + r_y) 1(p \le P(Z_i, X_i, \theta) \le p + r_p),$$

$$m_{0,i}(y, r_y, p, r_p, \beta, \theta) = (1 - D_i) 1(y \le Y_i - X_i \beta \le y + r_y) 1(p \le P(Z_i, X_i, \theta) \le p + r_p),$$

$$w_i(p, r_p, \theta) = 1(p \le P(Z_i, X_i, \theta) \le p + r_p),$$

and

$$\begin{split} &\sqrt{n}(\hat{m}_{1}(y,r_{y},p,r_{p},\hat{\beta}_{1},\hat{\theta}) - m_{1}(y,r_{y},p,r_{p},\beta_{1},\theta_{0})) \\ = &\frac{1}{\sqrt{n}} \sum_{i=1}^{n} m_{1,i}(y,r_{y},p,r_{p},\beta_{1},\theta_{0}) - m_{1}(y,r_{y},p,r_{p},\beta_{1},\theta_{0}) + \nabla_{\theta} m_{1}(y,r_{y},p,r_{p},\beta_{1},\theta_{0}) \cdot s(D_{i},Z_{i},X_{i},\theta_{0}) \\ &+ \nabla_{\beta} m_{1}(y,r_{y},p,r_{p},\beta_{1},\theta_{0}) \cdot s_{\beta_{1}}(D_{i},Y_{i},Z_{i},X_{i},\beta_{1}) + o_{p}(1) \\ \equiv &\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi_{m_{1},i}(y,r_{y},p,r_{p},\beta_{1},\theta_{0}) + o_{p}(1), \end{split}$$

$$\begin{split} &\sqrt{n}(\hat{m}_{0}(y,r_{y},p,r_{p},\hat{\beta}_{0},\hat{\theta})-m_{0}(y,r_{y},p,r_{p},\beta_{0},\theta_{0})) \\ =& \frac{1}{\sqrt{n}}\sum_{i=1}^{n}m_{0,i}(y,r_{y},p,r_{p},\beta_{0},\theta_{0})-m_{0}(y,r_{y},p,r_{p},\beta_{0},\theta_{0})+\nabla_{\theta}m_{0}(y,r_{y},p,r_{p},\beta_{0},\theta_{0})\cdot s(D_{i},Z_{i},X_{i},\theta_{0}) \\ &+\nabla_{\beta}m_{0}(y,r_{y},p,r_{p},\beta_{0},\theta_{0})\cdot s_{\beta_{0}}(D_{i},Y_{i},Z_{i},X_{i},\beta_{0})+o_{p}(1) \\ \equiv& \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi_{m_{0},i}(y,r_{y},p,r_{p},\theta_{0})+o_{p}(1), \end{split}$$

$$\begin{split} &\sqrt{n}(\hat{w}(p,r_{p},\hat{\theta})-w(p,r_{p},\theta_{0})) \\ = &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}w_{i}(p,r_{p},\theta_{0})-w(p,r_{p},\theta_{0})+\nabla_{\theta}w(p,r_{p},\theta_{0})\cdot s(D_{i},Z_{i},X_{i},\theta_{0})+o_{p}(1) \\ \equiv &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi_{w,i}(p,r_{p},\theta_{0})+o_{p}(1). \end{split}$$

By Assumption E.1, all elements of $\nabla_{\theta} m_1(y, r_y, p, r_p, \beta_1, \theta_0)$, $\nabla_{\beta} m_1(y, r_y, p, r_p, \beta_1, \theta_0)$, $\nabla_{\theta} m_0(y, r_y, p, r_p, \beta_0, \theta_0)$, and $\nabla_{\beta} m_0(y, r_y, p, r_p, \beta_0, \theta_0)$, are Lipschitz continuous in y, r_y, p, r_p, r_p , and each element of $\nabla_{\theta} w(p, r_p, \theta_0)$ is Lipschitz continuous in p, r_p . It follows that $\{\phi_{m_1}(y, r_y, p, r_p, \beta_1 \theta_0) : (y, r_y, p, r_p) \in [0, 1]^4\}$, $\{\phi_{m_0}(y, r_y, p, r_p, \beta_0, \theta_0) : (y, r_y, p, r_p) \in [0, 1]^4\}$ and $\{\phi_w(p, r_p, \theta_0) : (p, r_p) \in [0, 1]^2\}$ are all VC classes of functions. Finally, let

$$\nu_{1}(y, r_{y}, p_{1}, p_{2}, r_{p}, \beta_{1}, \theta_{0}) = m_{1}(y, r_{y}, p_{2}, r_{p}, \beta_{1}, \theta_{0}) \cdot w(p_{1}, r_{p}, \theta_{0}) - m_{1}(y, r_{y}, p_{1}, r_{p}, \beta_{1}, \theta_{0}) \cdot w(p_{2}, r_{p}, \theta_{0}),$$

$$\nu_{0}(y, r_{y}, p_{1}, p_{2}, r_{p}, \beta_{1}, \beta_{0}, \theta_{0}) = m_{0}(y, r_{y}, p_{2}, r_{p}, \beta_{0}, \theta_{0}) \cdot w(p_{1}, r_{p}, \theta_{0}) - m_{0}(y, r_{y}, p_{1}, r_{p}, \beta_{0}, \theta_{0}) \cdot w(p_{2}, r_{p}, \theta_{0}),$$

$$\hat{\nu}_{1}(y, r_{y}, p_{1}, p_{2}, r_{p}, \hat{\beta}_{1}, \hat{\theta}) = \hat{m}_{1}(y, r_{y}, p_{2}, r_{p}, \hat{\beta}_{1}, \hat{\theta}) \cdot \hat{w}(p_{1}, r_{p}, \hat{\theta}) - \hat{m}_{1}(y, r_{y}, p_{1}, r_{p}, \hat{\beta}_{1}, \hat{\theta}) \cdot \hat{w}(p_{2}, r_{p}, \hat{\theta}),$$

$$\hat{\nu}_{0}(y, r_{y}, p_{1}, p_{2}, r_{p}, \hat{\beta}_{0}, \hat{\theta}) = \hat{m}_{0}(y, r_{y}, p_{2}, r_{p}, \hat{\beta}_{0}, \hat{\theta}) \cdot \hat{w}(p_{1}, r_{p}, \hat{\theta}) - \hat{m}_{0}(y, r_{y}, p_{1}, r_{p}, \hat{\beta}_{0}, \hat{\theta}) \cdot \hat{w}(p_{2}, r_{p}, \hat{\theta}).$$

Lemma E.1 Suppose Assumptions 2.1 to 2.4, 3.3, E.1 and E.2 are satisfied, then,

$$\sqrt{n}(\hat{\nu}_1(y, r_y, p_1, p_2, r_p, \hat{\beta}_1, \hat{\theta}) - \nu_1(y, r_y, p_1, p_2, r_p, \beta_1, \theta_0)) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \phi_{\nu_1, i}(y, r_y, p_1, p_2, r_p, \beta_1, \theta_0) + o_p(1),$$
(E.5)

$$\sqrt{n}(\hat{\nu}_0(y, r_y, p_1, p_2, r_p, \hat{\beta}_0, \hat{\theta}) - \nu_0(y, r_y, p_1, p_2, r_p, \beta_0, \theta_0)) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \phi_{\nu_0, i}(y, r_y, p_1, p_2, r_p, \beta_0, \theta_0) + o_p(1),$$
(E.6)

where

$$\begin{split} \phi_{\nu_{1},i}(y,r_{y},p_{1},p_{2},r_{p},\beta_{1},\theta_{0}) \\ =& w(p_{1},r_{p},\theta_{0}) \cdot \phi_{m_{1},i}(y,r_{y},p_{2},r_{p},\beta_{1},\theta_{0}) + m_{1}(y,r_{y},p_{2},r_{p},\beta_{1},\theta_{0}) \cdot \phi_{w,i}(p_{1},r_{p},\theta_{0}) \\ & - w(p_{2},r_{p},\theta_{0}) \cdot \phi_{m_{1},i}(y,r_{y},p_{1},r_{p},\beta_{1},\theta_{0}) + m_{1}(y,r_{y},p_{1},r_{p},\beta_{1},\theta_{0}) \cdot \phi_{w,i}(p_{2},r_{p},\theta_{0}), \\ \phi_{\nu_{0},i}(y,r_{y},p_{1},p_{2},r_{p},\beta_{0},\theta_{0}) \\ =& w(p_{1},r_{p},\theta_{0}) \cdot \phi_{m_{0},i}(y,r_{y},p_{2},r_{p},\beta_{0},\theta_{0}) + m_{0}(y,r_{y},p_{2},r_{p},\beta_{0},\theta_{0}) \cdot \phi_{w,i}(p_{1},r_{p},\theta_{0}) \\ & - w(p_{2},r_{p},\theta_{0}) \cdot \phi_{m_{0},i}(y,r_{y},p_{1},r_{p},\beta_{0},\theta_{0}) + m_{0}(y,r_{y},p_{1},r_{p},\beta_{0},\theta_{0}) \cdot \phi_{w,i}(p_{2},r_{p},\theta_{0}). \end{split}$$

The proofs are similar to those in Appendix D, so we omit the details.