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ABSTRACT. This paper proposes a unified approach to derive sharp bounds on conventional policy

parameters when the instrumental variables (IVs) are potentially invalid. Using a Vine Copula approach,

we propose a novel characterization of the identified sets for the marginal treatment effect (MTE) and

the policy-relevant treatment effect (PRTE) parameters. Our method has various advantages: First, it

explicitly demonstrates how imposing different IV-related assumptions with different credibility levels

affects the MTE and PRTE’s identified set. Second, it provides a basis for testing model specifications

and hypotheses about various imperfect IV-related assumptions. Third, it provides a tractable way

to inform policy choices in the presence of uncertainty of the validity of identifying assumptions.

Our approach enlarges the MTE framework’s scope by showing how it can be used to inform policy

decisions even when valid instruments are not available.
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1. INTRODUCTION

Evaluating the impact of an intervention is fundamental for policymakers. It generates knowledge

about a program’s effectiveness and determines whether it should be scaled up, down, or discontinued.

However, the program (treatment) effects may vary widely across economic agents, and expectations

about individual treatment effects may trigger strategic participation. In such an environment,

uncovering aggregate treatment effect parameters and using them as baseline information to evaluate

new policies is challenging. Heckman and Vytlacil (2005, HV05 hereafter) propose a key causal

parameter: the marginal treatment effect (MTE). The identification of the MTE allows researchers to

recover conventional causal parameters of interest, such as average treatment effect (ATE), Local

ATE (LATE), and the ATE on treated/untreated (ATT/ATUT). It also allows researchers to evaluate

new policies through the policy-relevant treatment effect parameter (PRTE). Since its introduction,

various approaches have been proposed to identify the MTE and then the PRTE. HV05 requires

the treatment selection to be defined by a single threshold crossing model —which imposed a

monotonicity restriction, see (see Vytlacil, 2002)—and a continuous instrument. Recently, Brinch,

Mogstad, and Wiswall (2017), Mogstad, Santos, and Torgovitsky (2018) shows that the MTE can be

recovered even in the presence of discrete instruments but at the cost of imposing some parametric or

shape restrictions. Lee and Salanié (2018) relaxes the single threshold selection rule and shows the

identification of the MTE in the presence of multiple thresholds.

However, all existing MTE identification strategies strongly rely on the availability of valid

instruments. The valid instruments assumption often creates much controversy among economists;

see discussions in Deaton (2009) and Deaton, Heckman, and Imbens (2010). Manski (2011)

questioned the “credibility" of policy predictions based on parameters obtained under doubtful,

contestable, or non-testable restrictions and asserted that it would harm policy choice. Furthermore,

Coulibaly, Hsu, Mourifié, and Wan (2024) recently proposed a sharp test for the MTE assumptions,

illustrating that they can fail to hold in some empirical applications. Hence, there is a clear tension

between the strength of the assumptions used to recover the MTE and the “credibility" of any policy

recommendations based on it. As advocated by Manski (2011), one way to resolve this tension is
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what he referred to as layered policy analysis. Layered policy analysis demands researchers to visit

various assumptions at different levels of credibility and analyze how this affects policy predictions.1

This paper’s first main contribution is to show how one can use a modified version of the MTE to

perform informative and credible policy analyses on conventional policy parameters, specifically

the PRTE. To accommodate possibly invalid instruments, we introduce a modified MTE parameter,

namely the disaggregated marginal treatment effect (DMTE). To fix the idea, consider the model

Y = Y1D + Y0(1 ´ D) and D = 1tν(Z) ě Ṽu, where Y1 and Y0 are potential outcomes, D is the

treatment, Y is the observed outcome, Z are (possibly invalid) instrument variables so that Z and

(Y1, Y0, Ṽ) can be correlated. We define the DMTE as the expectation of treatment effect conditioning

on the transformed error term V ” FṼ|Z(Ṽ) and the propensity score P(Z) ” P(D = 1|Z), that

is, DMTE(v, p) ” E[Y1 ´ Y0|V = v, P(Z) = p].2 We show that all the conventional policy

parameters mentioned above, including the MTE, can be expressed as a weighted integral of the

DMTE under the single threshold-crossing treatment selection rule only, making the DMTE a more

primitive parameter than the MTE. Unlike the MTE, the mapping between the DMTE and other

policy parameters does not require any element of Z to be independent with (Y1, Y0, Ṽ). Furthermore,

the weights are directly identifiable from the data. Therefore, we can partially identify any of the

conventional policy parameters as long as the identified set for DMTE is available.

Secondly, we propose a Vine Copula approach to partially identify the DMTE. We focus on the

joint distribution of (Yd, P, V) because these variables appear in the key parameter DMTE, and it

is convenient to work with the one dimensional “propensity score” P. We further show that the

dependence structure among variables (Yd, P, V) is fully captured by two copula functions. The

first one is the conditional copula of Yd and V given P, i.e. CYd,V|P(., .). This copula characterizes

the endogenous selection in the model. If CYd,V|P(., .) takes a product form, then we have a version

of “selection on observables”: The potential outcome and the treatment are independent once

the propensity score P is controlled; otherwise, “selection on unobservables” exists.3 The other

copula function is CYd,P(., .), which captures the dependence between the potential outcomes and

1Regarding the layered analysis, Manski (2011, F289) said: “A researcher who performs an instructive layered policy
analysis and exposits work clearly may see himself as having accomplished the objective of informing choice."
2Note that when Ṽ is independent with Z, as often assumed in the literature, we have V ” FṼ(Ṽ), and P(z) = ν(z).
3Masten and Poirier (2018) discussed partial identification of treatment effect parameters when the conditional indepen-
dence between Yd and D given covariates X are relaxed to the “Conditional c-Dependence”. It is different from the MTE
framework studied in our paper, where instrumental variables Z contribute the identification.
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the propensity score. This copula measures the “quality of instruments” and is a key function

that we investigate in this paper. For example, if Z is independent with (Y0, Y1), as assumed in

existing literature, then it must be the case that CYd,P(x1, x2) = x1x2. Therefore, we can view the

IV independence assumption as a shape restriction on the unknown function CYd,P(., .). Under the

copula formulation, we show that calculating the identified set of the DMTE boils down to finding

the set of conditional bivariate copulas that respect a set of equality constraints and any additional

constraints that researchers would like to impose on CYd,P(., .).

In our Vine Copula characterization, the identified set of DMTE depends on restrictions that we

impose on CYd,P(., .) in an explicit way. At one extreme, when we impose the IV-independence

assumption, the set of equality constraints pins down a unique copula CYd,V|P(., .), which allows the

point identification of the MTE and then other policy parameters. At the other extreme, where we

impose no restrictions on CYd,P(., .), our characterization recovers the sharp bounds on the DMTE

under only the single threshold crossing assumption. One can also impose restrictions that are

weaker than IV-independence. For instance, we show that imposing a version of the Monotone IV

assumption—see Manski and Pepper (2000)— is equivalent to considering only the set of copulas

CYd,P(x1, x2) that are concave in x2. We recover the sharp identified set under such monotone IV

assumption in this case. As we demonstrate in more detail in the main text, our approach, in general,

provides empirical researchers with a very flexible way to derive the identified set on the DMTE

under any dependence restrictions they are willing to impose between the IV and the potential

outcomes. From this perspective, our method shares the same spirit as the layered policy analysis

discussed in Manski (2011).

While our main identification result is nonparametric, it can also accommodate parametric as-

sumptions on the copula functions when researchers have good reason to impose them. For example,

one may assume the copula belongs to a particular parametric class and still leave the marginal

distributions unspecified. As discussed in Chen, Fan, and Tsyrennikov (2006), using this type

of semi-parametric approach to study multivariate distributions has gained popularity in diverse

fields for its flexibility and ability to circumvent the curse of dimensionality. Our semiparametric

identification result also shares a similar idea as Han and Vytlacil (2017), which employed parametric

copula with unknown marginals to study the identification and estimation of Bivariate Probit models.
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On the other hand, it still offers more flexibility than the classical parametric Roy model of Heckman

and Honoré (1990), where the distribution of (Yd, V) is assumed to be joint normal.

We organize the rest of the paper as follows. In Section 2, we introduce the intermediate quantity

DMTE and build its connection with other policy parameters. We provide general identification

results for DMTR (and hence DMTE) under various assumptions on the IV in Section 3. In

Section 4, we discuss two approaches to implement the identification results: by approximating

the unknown copula nonparametrically with Bernstein’s copula series or by parameterizing the

dependence structure. A numerical illustration is provided in Section 5. Section 6 concludes the

paper.

2. POLICY PARAMETERS AND DISAGGREGATED MTE

We adopt the framework of the potential outcomes model: Y = Y1D + Y0(1 ´ D), where

Y P Y Ď R is the observed outcome taking values from the support Y , D P t0, 1u is the observed

treatment indicator, and (Y1, Y0) are potential outcomes. Heckman and Vytlacil (1999) trace the

genealogy of this model, and we refer to them for terminology and attribution. Let Z be a vector of

covariates taking values from the support Z Ď Rdz for dz ě 1. The following Assumptions 1 and 2

are required for the point identification of the MTE nonparametrically:

Assumption 1 (Single Threshold-Crossing: STC). The selection mechanism is governed by the

following threshold crossing model D = 1tν(Z) ě rVu for some measurable and non-trivial function

ν, where the conditional distribution of rV|Z = z is absolute continuous for all z P Z .

Assumption 2 (IV Independence). Let Z be a vector of covariates is statistically independent of the

unobservables in the models, i.e. Z K (Yd, rV) for d = 0, 1.

Our main goal in this paper will be to develop a (partial) identification approach for the policy-

relevant parameters when Assumption 2 fails to hold. In practice, it is possible that the STC

assumption is also violated. This can happen when there is a heterogenous effect in the treatment

selection (see Gautier and Hoderlein, 2015) or when there are multiple thresholds (Lee and Salanié,

2018). In Appendix C.1, we discuss how to extend our analysis to multiple threshold-crossing

models. To this end, we follow Vytlacil (2002), and more recently Zhou and Xie (2019), to make the
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following useful normalization:

D = 1tν(Z) ě rVu = 1tFṼ|Z(ν(Z))
l jh n

P(Z)

ě FṼ|Z(
rV)

l jh n

V

u = 1tP(Z) ě Vu, (1)

where V is independent of Z and uniformly distributed over [0,1] by construction (see Chen and Xie,

2021, for a formal proof). Therefore, P(Z) ” P(D = 1|Z) = FṼ|Z(ν(Z)) and P(Z) is directly

recoverable from data. Note that the independence between V and P(Z) or between V and Z is

induced by the normalization; the structural unobservable rV can still be dependent on Z. When it

causes no confusion, we will use the shorthand notation P or p to denote P(Z) or P(z), respectively.

Let P Ď [0, 1] denote the support of P(Z). We restrict our attention to cases where P is continuous

for the main text. The case with discrete P is analyzed in Appendix C.2.2 at the expense of extra

notation. Here, we omit observed covariates X. Our analysis can be considered as conditioning on

the realizations of X.

In the following, we will first review why MTE, or the marginal treatment response (MTR), is not

point identified without Assumption 2. Then, we will examine the restrictions that can be used for

partial identification. Let g : Y Ñ R be a real integrable function such that E[|g(Yd)|] ă 8. Taking

d = 1 as illustration and following the identification strategy of HV05, for all p P P :

E[g(Y)D|P = p] = E[g(Y1)|D = 1, P = p]P(D = 1|P = p)

= E[g(Y1)|V ď p, P = p]P(V ď p|P = p) = E[g(Y1)|V ď p, P = p]p

=

ż p

0
E[g(Y1)|V = v, P = p]dFV|P=p =

ż p

0
E[g(Y1)|V = v, P = p]dv,

where all equalities holds only under Assumption 1. The key equation is then:

E[g(Y)D|P = p] =
ż p

0
E[g(Y1)|V = v, P = p]dv. (2)

By taking the derivative of both sides of Equation (2) respect with p, we obtain:

B

Bp
E[g(Y)D|P = p] = E[g(Y1)|V = p, P = p] +

ż p

0

B

Bp
E[g(Y1)|V = v, P = p]dv. (3)

It can be seen that the left-hand side of Equation (3), also known as the Local IV (LIV) estimand

proposed by HV05, can no longer identify the MTR (and MTE) because (i) B
Bp E[g(Y1)|V = v, P =
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p] ‰ 0, and (ii) E[g(Y1)|V = p, P = p] is in general different from E[g(Y1)|V = p] when P

and Y1 are not independent conditioning on V. Nevertheless, Equation (3) still contains useful

information about the quantity

θd
g(v, p) ” E[g(Yd)|V = v, P = p], d = 0, 1, (v, p) P [0, 1] ˆ P ,

which we refer in the rest of paper as the disaggregated marginal treatment responses with respect to

the function g and abbreviate it as DMTRg. Analogous to the relationship between MTR and MTE,

we define another intermediate quantity disaggregated marginal treatment effect (DMTE) as:

DMTE(v, p) ” E[Y1 ´ Y0|V = v, P = p], @(v, p) P [0, 1] ˆ P . (4)

DMTR implies DMTE since DMTE(v, p) = θ1
g(v, p) ´ θ0

g(v, p) with g(¨) being chosen as the

identity function.4 One can also recover the distributional version of the DMTE by choosing g(Yd) =

1[Yd ď y] to obtain P(Y1 ď y|V = v, P = p) ´ P(Y0 ď y|V = v, P = p), @(v, p) P [0, 1] ˆ P .

It is apparent from Equation (4) that the identification of MTR (hence MTE) is readily available once

DMTR is recovered since

E[g(Yd)|V = v] =
ż 1

0
E[g(Yd)|V = v, P = t] fP|V(t|v)dt =

ż

P
θd

g(v, t) fP(t)dt,

and

MTE(v) ” E[Y1 ´ Y0|V = v] =
ż

P
DMTE(v, t) fP(t)dt,

where fP|V = fP due to the normalization made when Assumption 1 holds and the density fP of P is

directly identified from data. When P(Z) K Yd|V as in HV05, the DMTE is exactly equal to the

MTE, and we have

DMTE(v, p) = DMTE(v, p1) = MTE(v), (5)

for all (p, p1) P P ˆP and v P [0, 1]. Therefore, although the DMTR and DMTE are not necessarily

parameters of direct interest, they do serve as useful intermediate quantities to identify the MTR,

4It is worth-noting that our DMTE shares a superficial resemblance with the Redefined MTE (ČMTE) introduced in the
analysis of Zhou and Xie (2019), where the IV-independence assumption is assumed to hold. In presence of a vector of
covariates X, ČMTE(v, p) = E[Y1 ´ Y0|V = v, P(Z, X) = p] while DMTE(v, p, x) = E[Y1 ´ Y0|V = v, P(Z, X) =

p, X = x]. Note also that when X is fully exogenous and is independent of all other variables, ČMTE(v, p) = MTE(v)
once conditioning on a subpopulation of X = x because P(Z, x) is independent with (Yd, V) in Zhou and Xie (2019).
This is not the case for DMTE in our setup.
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MTE, and other useful policy parameters such as the ATE, ATT, and ATUT. Specifically, we will

show in Theorem 1 below that all these mentioned parameters can be expressed as a weighted average

of DMTE under Assumption 1 only.

Remark 1. In our model, V ” FṼ|Z(Ṽ), where Ṽ is the structural error term, e.g., the disutility of

taking the treatment. If Assumption 2 holds, then it is without loss of generality to normalize the

distribution of Ṽ to uniform. In this case, Ṽ = V can be interpreted as the ranking of the dis-utility

and MTE(v) represents the average treatment effect for the sub-population whose disutility of taking

treatment ranks at the v-percentile. When Assumption 2 fails to hold, MTE(v) does not have such an

interpretation but can still serve as a useful intermediate quantity to recover other policy-relevant

parameters.

Another useful parameter that often draws interest is the policy-relevant treatment effect (PRTEg):

PRTEg ”
E[g(Y)|a1] ´ E[g(Y)|a]

E[D|a1] ´ E[D|a]
,

where a1 and a denote the alternative policy regimes under consideration and the baseline policy,

respectively. Please refer to Heckman and Vytlacil (2001), HV05, and Carneiro, Heckman, and

Vytlacil (2010) for a detailed discussion about the PRTE.

For ℓ P ta, a1u, let Aℓ be a generic random variable A under policy regime ℓ. For example, Yℓ
d is

the potential outcome under policy regime ℓ. HV05 assumes that the joint distributions of (Yℓ
d , Vℓ)

are the same across different policies, which is referred as the policy invariant assumption (PI):

(Ya1

d , Va1

) „ (Ya
d , Va) for a ‰ a1. Under Assumptions 1 and 2, and the PI, HV05 shows that

PRTEg =

ż 1

0

FPa(v) ´ FPa1 (v)
EF

Pa1 [P] ´ EFPa [P]
l jh n

wPRTE(v)

MTEg(v)dv.

where again wPRTE is a weighting function that can be directly recovered from the observed distribu-

tion of P. Under PI, PRTE can be used to evaluate the effect of a new policy that induces a change in

P, i..e Pa ‰ Pa1

but keeping the full joint distribution of latent variable unchanged from the baseline

policy to the targeting alternative policy. For our context, we propose a generalized policy invariance
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assumption and show that the PRTEg can be recovered from DMTE even when Assumption 2 fails

to hold.

Assumption 3 (Generalized Policy Invariance, GPI). Let UPℓ
” FPℓ(Pℓ) for ℓ P ta, a1u. Then

(Ya1

d , Va1

, UPa1

) „ (Ya
d , Va, UPa

).

Note that when the independence Assumption 2 holds, our GPI is equivalent to the HV05’s PI

assumption. However, GPI provides a more convenient venue to study the PRTE when Assumption 2

fails to hold. To better understand the intuition behind Assumption 3, suppose Yℓ
d and Pℓ are

continuous. By Sklar’s Theorem, the PI is equivalent to have the same copula and the same marginal

distributions for the latent variables across policies, i.e., CYa
d ,Va(x1, x2) = CYa1

d ,Va1 (x1, x2) and

Ya1

d „ Ya
d for a ‰ a1 (where Va „ Va1

by construction). This requirement was built under the

underlying assumption that the propensity score Pℓ was independent of (Yℓ
d , Vℓ). In our setup,

because we allow such dependence, we therefore requires a generalized version of the PI that

CYa
d ,Va,Pa(x1, x2, x3) = CYa1

d ,Va1 ,Pa1 (x1, x2, x3) and Ya1

d „ Ya
d , for a ‰ a1.5 In Assumption 3, Va „

Va1

and UPa
„ UPa1

hold because they follow the uniform distribution by construction.6 Beyond the

invariance of the marginal distribution of potential outcomes, what we require here is essentially the

invariance of the joint dependence structure among potential outcomes, dis-utility of taking treatment,

and propensity score, but we leave the marginal distribution of the propensity score to freely change

from the environment a to a1, i.e. FPa(¨) ‰ FPa1 (¨).

Theorem 1(iii) below shows that the PRTEg can be written as a weighted average of the DMTEg

under Assumptions 1 and 3.

Theorem 1. Suppose that Assumption 1 is satisfied, then

(i) MTEg(v) =
ş1

0 DMTEg(v, p) fP(p)dp;

5By Proposition 4(2) of Embrechts and Hofert (2013), we have CYℓ
d ,Vℓ ,Pℓ (x1, x2, x3) = CYℓ

d ,Vℓ ,UPℓ (x1, x2, x3).
6Notice, that UPℓ

is a uniform distribution since we consider that Pℓ is continuous, in the discrete case UPℓ
is not

necessarily uniformly distributed and then UPa
„ UPa1

is no longer the result of a normalization but imposes a further
restriction.
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(ii) for any s P tATEg, LATEg(u, u1), ATTg, ATUTgu7 and weights ωs(v, p) listed in Table 1 below,

we have

s =
ż 1

0

ż 1

0
ωs(v, p)DMTE(v, p)dvdp. (6)

(iii) If in addition Assumption 3 holds, and the cumulative distribution function FPℓ(¨) for l P ta, a1u

is continuous and strictly increasing, then Equation (6) holds with s = PRTE.

TABLE 1. Policy Parameters and DMTE

Parameters weights ωs(v, p)
ATEg fP(p)

ATTg
fP(p)1tvăpu

E[P]

ATUTg
fP(p)1tvąpu

E[1´P]

LATEg(u, u1)
fP(p)1tuăvďu1u

u1´u

PRTEg

[
1
!

vďF´1
Pa1 (FPa (p))

)

´1tvďpu

]
E[Pa1 ]´E[Pa]

Proof. See Appendix A.1. l

Notice that one can easily verify that when Assumption 2 holds, DMTEg(v, p) = DMTEg(v)

and then
ş1

0 ws(v, p)dp = ws(v) for any s P tATEg, LATEg(u, u1), ATTg, ATUTg, PRTEgu, with

ws(v) being exactly the weights derived in HV05. Although DMTEg itself may or may not be the

main parameter of interest, Theorem 1 shows that it plays an important role in the identification of

many common parameters of interest. As in the HV05 framework, the weights are known and can

be estimated for each value (v, p) P [0, 1] ˆ P . Thus, we can readily recover the identified sets for

any of the conventional policy parameters once we have the identified set for the DMTRg (hence

DMTEg).

7Here LATEg(u, u1) represents the average treatment effect for the group of compliers when P is externally changed from
u to u1.
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3. IDENTIFICATION

In the previous section, we show that the intermediate quantities DMTEg or DMTRg can uniquely

recover MTEg and MTRg under the single threshold crossing (STC) condition only. In this section,

our main goal will be to provide a tractable characterization of the identified set for the DMTRs.

Definition 1. For any integrable real function g(¨), the identified set ΘI for DMTRg under the

Assumption 1 (STC) is defined as follows:

ΘI =

#

(θ0
g, θ1

g) : [0, 1] ˆ [0, 1] Ñ R2 such that

E[g(Y)1tD = du|P = p] =
ż p+(1´p)1td=0u

p1td=0u

θd
g(v, p)dv for d P t0, 1u and all p P P

+

.

In the main text, we focus on the half-interval class G ” tg(¨) = 1[¨ ď y], y P Yu when

identifying DMTRs. Under the half interval class, the DMTRd
g can then be expressed as

DMTRd
g(v, p) = P[Yd ď y|V = v, P = p] ” FYd|V,P(y|v, p) d P t0, 1u.

Here, the DMTRd
g is just the conditional distribution function of Yd given P and V. Therefore, the

identification under the half-interval class also enables us to recover DMTRs for other classes of g

functions. Note that for a given distribution of (Y, D, P), the identified set for DMTRs is not the

entire parameter space. It can be better seen from the key identification Equation (3):

B

Bp
E[g(Y)D|P = p] = E[g(Y1)|V = p, P = p] +

ż p

0

B

Bp
E[g(Y1)|V = v, P = p]dv.

Suppose we observe in the data that B
Bp E[g(Y)D|P = p] ă 0, then because E[g(Y1)|V =

p, P = p] ą 0 for indicator class of function g, the joint distribution of (Y1, V, P) must make
şp

0
B

Bp E[g(Y1)|V = v, P = p]dv ă 0. In other words, B
Bp E[g(Y1)|V = v, P = p] can not be

positive for all value of v P [0, p]. Of course, under single-threshold crossing conditions only, the

identified set for DMTR and other causal parameters can be too big to be practical. Nevertheless,

this characterization and its equivalent copula characterization (see Theorem 2 below) serve as a

desirable starting point for the layered analysis.
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Before we proceed with the main identification results, we provide examples in which the IV-

independence can fail to hold.

Example 1. Violation of the IV independence restriction. Let us consider the following model used

in Carneiro, Heckman, and Vytlacil (2010) to estimate the return to education:

Y = Y1D + Y0(1 ´ D),

D = 1tP(Z) ´ V ě 0u,

where D is a binary indicator for college education, Yd represents potential wage, P(Z) measures

the predicted gain of return to college, V denotes the unobserved cost of education, which is assumed

to be independent of Z. However, finding a valid IV, i.e., Yd K Z, to point-identify the return to

college has always been a difficult task for labor economists. Willis and Rosen (1979) proposed

the parental education as an instrument. Unfortunately, the validity of this instrument is doubtful,

as parental education level may be correlated with unobserved individual productivity and hence

with potential outcomes, i.e., Yd M Z. In fact, Cunha, Heckman, and Schennach (2010) argues that

cognitive and noncognitive unobserved skills are determined in great part by parental environment

and investment, which in turn are highly correlated with parental education. Distance to college is

another “tainted” instrument for returns to education, as discussed in Card (2001) and Carneiro,

Lokshin, and Umapathi (2017). A similar concern also applies to local labor market conditions used

in Carneiro, Heckman, and Vytlacil (2010), which may drive endogenous location choices. So, many

popular instruments in the literature are potentially contestable.

Example 2. Misspecification in presence of multiple treatments. One recent and growing empirical

application using the MTE identification strategy is the Judge leniency IV designs.8 Consider a

model where two simultaneous treatments determine the outcome while researchers focus only on one

treatment and overlook the second one. This is a paramount concern in the Judge leniency IV design

literature. In this literature, researchers are interested in the causal effect of incarceration decisions

on future outcomes such as recidivism, making abstraction of other potential treatments. However,

trial decisions are multidimensional, with judges deciding on incarceration, fines, community service,

8See for instance Kling (2006); Aizer and Doyle Jr (2015); Di Tella and Schargrodsky (2013); Mueller-Smith (2015);
Dobbie, Goldin, and Yang (2018), and Bhuller, Dahl, Loken, and Mogstad (2019) among others.
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etc.9 Let us consider the following model:

Y = [Y11D2 + Y10(1 ´ D2)]
l jh n

Y1

D1 + [Y01D2 + Y00(1 ´ D2)]
l jh n

Y0

(1 ´ D1),

D1 = 1tP1 ą V1u, D2 = 1tP2 ą V2u.

where D1 denotes the incarceration decision and D2 is a second binary treatment that denotes if

the agent receives a fine or not. Yd1d2 denotes the potential outcome when the two treatments are

externally set to D1 = d1 and D2 = d2. P1 and P2 are propensity scores that measure the judge’s

stringency level for a different punishment, which are generated by two instruments, Z1 and Z2,

respectively. Assuming that the judge’s assignment to cases is entirely random, we might expect the

following IV-independence assumption (V1, V2, Yd1d2) K (P1, P2) to hold. When D2 is neglected,

researchers essentially adopt the following model:

Y = Y1D1 + Y0(1 ´ D1),

D1 = 1tP1 ą V1u.

where Yd ” [Yd1D2 + Yd0(1 ´ D2)] for d P t0, 1u. In this case, two conditions ensure IV-

independence: Yd1|V2 = v2 „ Yd0|V2 = v2 for all v2 or P1 K P2, then Yd K P1. As we shown in

Appendix A.6, in this misspecified model, Y1 is essentially a mixture of Y11 and Y10—two random

variables that are independent with P1. This first condition says that these two random variables

have the same distribution conditioning on V2; hence, any mixing between them does not change the

distribution. The second condition says the mixing weights are independent of P1, so the mixture

of Y11 and Y10 is independent of P1 as well. However, in applications, it is hard to justify Y11 and

Y10 have the same distribution conditioning on V2, and we also observe that P1 and P2 tend to be

positively correlated. Therefore, if receiving a fine or not has a direct causal impact on recidivism

and if a judge’s stringency indexes for both treatments are correlated, then the IV independence

assumption in the misspecified model is violated.

3.1. Identification under a single threshold-crossing selection rule. Once we focus on the half-

interval class of g functions, the primitive parameter of interest, as defined in Definition 1, is

9Please see Bhuller, Dahl, Loken, and Mogstad (2019)’s section 5.5) for a detailed discussion.
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the conditional distribution of Yd given V and P. While we do not know precisely the full joint

distribution, the STC structure (Assumption 1) does provide some restrictions. For instance, we know

(or can directly identify from data) the distribution of two out of the three marginal distributions, i.e.,

V and P, and we know that they are independent because of the normalization. This feature suggests

it is convenient to use copula decomposition to study the joint distribution of interest. Copula theory

is useful for separating marginal properties from properties related to the dependence structure. Here

we cite Sklar (1959)’s result:

Lemma 1 (Sklar (1959)’s Theorem). There exist a copula C : [0, 1]3 Ñ [0, 1] such that

P(Yd ď y, V ď v, P ď p) = CYd,V,P(FY1(y), FV(v), FP(p)), for all y, v, p.

Moreover, if the margins are continuous, then C is unique; otherwise it is uniquely determined on

RanFYd ˆ RanFV ˆ RanFP where RanFX = FX([´8, 8]) is the range of FX.

Using Sklar’s result, we can decompose the joint trivariate distribution into three univariate

distributions and one trivariate copula CYd,V,P(FYd(y), FV(v), FP(p)). However, working directly

with the trivariate copula is not very convenient. Unlike the bivariate copula, the dependence of

trivariate copula can be less intuitive to interpret. Also, the number of multivariate (ą 2) parametric

copula families with flexible dependence is limited. Furthermore, the STC assumption (Assumption 1)

already provides some restrictions, such as the independence of P and V, and their known marginals.

To fully take advantage of that information, we consider the Vine Copula approach, which was

introduced by Joe (1994) to break down the dependence structure of a multivariate copula into a

sequence of bivariate copulas and conditional bivariate copulas. The Vine copula approach has proven

to be useful in various existing problems such as (constrained) sampling of correlation matrices,

building non-parametric continuous Bayesian networks, and various applications in finance. Here,

we will make use of the Vine copula in our treatment effect context. To this end, we consider the

following regularity assumption:

Assumption 4. The joint distribution of (Yd, V, P) is absolutely continuous with respect to the

Lebesgue measure.

Here, we make Assumption 4 only for the ease of notation. V is continuous by construction as

long as the dis-utility of taking the treatment Ṽ is a continuous random variable, which is commonly
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assumed in the literature. P is continuous if Z contains a continuous element and ν(¨) in the treatment

selection equation is continuous in that element. It is worth noting that we do not require Z to be

independent of potential outcomes and Ṽ. Therefore, the presence of any continuous exogenous

covariates in the selection equation can ensure the continuity of P. Hence, the main restriction of

Assumption 4 is to focus the analysis on applications with continuous outcomes. It implies that both

marginal distribution and the conditioning distribution of the potential outcomes are continuous with

respect to the Lebesgue measure. Lemma 2 and theorem 2 below can be straightforwardly extended

to the case of discrete outcome variables at the cost of additional notation; see Appendix C.2.1 for

details. In Appendix C.2.2, we also discuss how to extend our method to the discrete propensity

score case.

Let CYd,V|P=p(FYd|P(y|p), FV|P(v|p); p) = FYd,V|P(y, v|p) be the conditional copula of (Yd, V)

given P = p. Note that given our assumption that V|P = p „ U[0, 1] for all p, the second term

in the parenthesis can be simplified to v since FV|P(v|p) = v, that is, CYd,V|P=p(FYd|P(y|p), v; p).

Let Yd be the conditioning support of Yd given (D, P) = (d, p). We assume it is invariant to p to

simplify notation, and the proof in Lemma 2 follows without assuming it.

Lemma 2 (Vine Copula). Let d P t0, 1u and consider a p P P . Under Assumptions 1 and 4, we

have for all y P Yd,

FYd|P(y|p) =
B

Bx2
CYd,P(x1, x2)

ˇ

ˇ

ˇ

x1=FYd
(y),x2=FP(p)

” cd,FP(p)(FYd(y)), (7)

FYd|V,P(y|v, p) =
B

Bx2
CYd,V|P=p(x1, x2)

ˇ

ˇ

ˇ

x1=FYd|P(y|p),x2=v
(8)

Furthermore, there exists strictly increasing mappings Ψ1,p and Ψ0,p such that

P[Y ď y, D = 1|P = p] = Ψ1,p(FY1(y)) ” CY1,V|P=p

(
c1,FP(p)(FY1(y)), p

)
. (9)

P[Y ď y, D = 0|P = p] = Ψ0,p(FY0(y))

” c0,FP(p)(FY0(y)) ´ CY0,V|P

(
c0,FP(p)(FY0(y)), p

)
. (10)

That is, the observed probability P[Y ď y, D = d|P = p] depends on y only through FYd(y).

Proof. See Appendix A.2. l
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We have some remarks on the usefulness of the Lemma 2. First, the parameter of interest DMTR

can be explicitly characterized by a mapping from observed data distribution P[Y ď y, D = d|P =

p], where the mapping only depends on the copula CYd,V|P=p. To see this, let τ(2)(x1, x2) be the

derivative of CYd,V|P=p(x1, x2) with respect to the second argument, and let r´1
(1) be the inverse of

CYd,V|P=p(x1, x2) with respect to the first argument. The inverse is well-defined by Assumption 4.

Then by using Equations (8) and (9) we have

FYd|V,P(y|v, p) = τ(2)

(
r´1
(1)(P[Y ď y, D = d|P = p], p), v

)
” Ξd,p,v(P[Y ď y, D = d|P = p]).

(11)

Therefore, once we know CYd,V|P=p, we can uniquely recover the DMTR.

Secondly, Equations (9) and (10) in the second part of Lemma 2 provide a link between CYd,V|P=p

and CYd,P, and the observed data distribution. Interestingly, given Ψd,p is invertible (see Appen-

dix A.3), one can “solve” FYd(y) = Ψ´1
d,p(P[Y ď y, D = d|P = p]) from Equations (9) and (10).

Meanwhile, since FYd(y) does not depends on p, it should be the case that for any y P Yd,

Ψ´1
d,p(P[Y ď y, D = d|P = p]) = Ψ´1

d,p1(P[Y ď y, D = d|P = p1]), @(p, p1) P P2. (12)

One can show any pair of copulas CYd,V|P and CYd,P that satisfy Equations (9) and (10) can be

rationalized by the data and the model structure.

The above discussions imply that we can now focus on characterizing the identified set for the two

bivariate copulas. Once this identified set is given, we can obtain the identified set for DMTR and

FYd immediately from the two mappings Ξd,p,v and Ψ´1
d,p. To be more specific, let Cc

d be the set of

conditional copulas containing the true value CYd,V|P, and Cd be the set of copulas containing the true

CYd,P. These sets can be collections of all copula intersects with any prior restrictions researchers

may impose. The identified set for DMTRs is summarized by the following theorem.

Theorem 2. Under Assumptions 1 and 4, the identified set ΘI in Definition 1 can be equivalently

expressed as:

ΘI =

#

FYd(y|p, v) : FYd(y|p, v) = Ξd,p,v(P[Y ď y, D = d|P = p]), (CYd,V|P, CYd,P) P Λd

+

,
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where Ξd,p,v is defined in Equation (11) and Λd is the identified set for the copula functions, given by

Λd =

#

(CYd,V|P, CYd,P) P Cc
d ˆ Cd : Equation (12) holds @y P Yd

+

.

Proof. See Appendix A.3. l

Theorem 2 characterizes the identified set for DMTR under the STC restriction imposed on the

treatment selection alone. It says that any pair of copulas (CYd,V|P, CYd,P) such that the mapping

Ψ´1
d,p produces a flat function in p, can be rationalized by the observed data and the STC model.

Meanwhile, the theorem also provides a convenient characterization of the identified set for subvectors

of the parameters. For instance, the projection of the identified set for copulas are determined by

Equation (12), and once (CYd,V|P, CYd,P) are fixed, DMTRs and FYd are point identified. In particular,

Equation (12) essentially uses the fact that the marginal distribution of potential outcome is invariant

to the propensity score. This identification approach has some similarity with the identification

restriction of Arellano and Bonhomme (2017, Lemma 1) in their study of the sample selection

model. Since the marginal distributions of potential outcomes are uniquely determined given

(CYd,V|P, CYd,P), one can expect that the assumptions that one imposes on the dependence structure

among these variables largely determine the identification power of the model. Not surprisingly,

Theorem 2 reduces to the identification equation in HV05 when Assumption 2 holds, that is when P

is independent with Yd given V. The following corollary summarizes this observation.

Corollary 1. Suppose Assumptions 1, 2 and 4 hold, then the identification equation postulated in

Theorem 2 coincides with the identification result of HV05, that is,

BP[Y ď y, D = 1|P = p]
Bp

= P[Y1 ď y|V = p].

and

´
BP[Y ď y, D = 0|P = p]

Bp
= P[Y0 ď y|V = p].

Proof. See Appendix A.4.

Remark 2. Suppose a researcher hopes to impose the selection on observables assumption such that

Yd K Ṽ|Z. In our framework, this assumption implies that Yd K V|Z and together with V K Z (by

construction), we have Yd K V|P. Therefore, “selection on observables” boils down to imposing a
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functional form restriction on the copula: CYd,V|P(x1, x2) = x1x2. We can easily see from the proof

of Lemma 2 that it recovers the well-known identification result under selection on observables, i.e.,

FYd|P(y|p) = P(Y ď y|D = d, P = p).

3.2. Nonparametric identification with Imperfect IVs. In Theorem 2, we characterize the iden-

tified set for the DMTR and DMTE by only imposing the STC assumption. We also showed in

Corollary 1 that if we additionally impose the independence assumption, we recover the HV05

point identification results for the MTE and subsequent parameters. While the IV-independence

assumption can be controversial in many empirical contexts (see, for instance, Deaton, Heckman,

and Imbens, 2010), a relaxed and more credible IV-independence assumption can be credible and

can be used to identify trustworthy results that are more informative than not using IVs. For example,

Manski and Pepper (2000) proposed the monotone IV assumption and derived tighter bounds for

the ATE. However, their approach is not easily extendable to other parameters of interest, especially

the PRTE. In this subsection, we will further explore in this direction and study the identification of

DMTR under imperfect IVs. Here, we refer to “imperfect IVs” as any covariates in the selection

equation that could be dependent on the potential outcomes, with the type of dependence being

restricted by the economic theory or the empirical context under study. We will borrow the idea of

monotone IV (Manski and Pepper, 2000, MIV) as the main motivating example and show that these

restrictions can be easily implemented in our approach to derive sharp bounds on the DMTR and,

therefore, on all conventional policy parameters. To this end, the discussion in this subsection also

contributes to Manski and Pepper (2000); indeed, using the DMTR as a bridge, our unified approach

allows the researcher to recover sharp bounds on a variety of parameters of interest under various IV

dependence assumptions, a nice feature inherited from the classical MTE framework. This will free

applied researchers from case-by-case constructions.

In the absence of valid IVs, applied researchers often consider a parametric model (functional forms

and/or parametric distributions) and look for point identification (by functional form), especially in

the presence of exogenous covariates X. This practice is usually entertained by considering variants

of Heckman’s (1976, 1979) classic two-step (“Heckit”) estimator that impose a joint normality

assumption between Yd and Ṽ given covariates X.10 In these scenarios, point or set identification is

often obtained because of an over-restriction of the individual treatment effect, i.e., Y1 ´ Y0 and also

10Please see Sartori (2003) and Wilde (2000) for a discussion.
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the joint normality assumption imposed on the unobservables (see Kline and Walters, 2019). Our

current approach is more flexible since it keeps the individual treatment effect entirely unrestricted

and allows for a wider class of dependence structures.11

Definition 2 (Monotone IV). We say P is a monotone IV (MIV) if for any pair (p1, p) P P ˆ P

such that p1 ě p, and for d P t0, 1u, we have Yd|P = p1 ľFSD Yd|P = p, where ľFSD denotes

“first order stochastic dominate”. In other terms, P(Yd ď y|P = p) is non-increasing in p for all

y P Y . This property is also referred as Yd being positively regression dependent on P.

Note that our Definition 2 differs from the classical monotone IV definition of Manski and Pepper

(2000) in two aspects. First, ours is defined on the conditional distribution of Yd given P, instead

of Yd given Z. This definition is easier to work with, particularly when Z is multi-dimensional. In

Appendix A.5, we provide primitive conditions under which the FSD of the conditional distribution

of Yd given P can be implied by the FSD of the conditional distribution of Yd given Z. Second,

our definition is the conditional distribution, whereas Manski and Pepper (2000) focuses on the

conditional mean. Despite these differences, the two definitions share the same spirit. We, therefore,

still refer to our assumptions as monotone IV (MIV). Before presenting our main result, we revisit

Examples 1 and 2 to further motivate the MIV assumption.

Example 1 Cont’d. Mourifie, Henry, and Meango (2020) argued that even if the parental ed-

ucation is not independent of the children’s unobserved skills, an increase in parental education

cannot worsen potential labor market outcomes; therefore, it would be reasonable to consider that

P(Yd ą y|P = p) is non-decreasing in p. Similar shape restrictions could be invoked for other

potentially “tainted” instruments: the distance to college and college fees. The FSD is also used in

other scenarios. For example, Blundell, Gosling, Ichimura, and Meghir (2007) uses it to model the

positive selection into the labor market by assuming that the wage distribution of workers first-order

stochastically dominates those who do not work.

11Our approach could also be used to analyze how much identification is obtained by restricting the individual treatment
effect, i.e., Y1 ´ Y0 versus the selection on unobservables.
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Example 2 Cont’d. Now suppose the researcher indeed ignores the second treatment and focuses on

the following model:

Y = Y1D1 + Y0(1 ´ D1), (13)

D1 = 1tP1 ą V1u. (14)

where again Yd ” [Yd1D2 + Yd0(1 ´ D2)] for d P t0, 1u. In this case, the quantity E[Y1 ´ Y0|V1 =

v1] measures the total causal effect of incarceration on recidivism for an individual at the margin

that is mediated by fining. Please see Pearl (2013) for a detailed discussion. Let’s presume that we

are interested in identifying the total effect. Under the IV independence (V1, V2, Yd1d2) K (P1, P2),

where d1 P t0, 1u, d2 P t0, 1u, we have the following results.

Lemma 3. Considering the model (13, 14), where Yd ” [Yd1D2 + Yd0(1 ´ D2)] for d P t0, 1u,

D2 = 1tP ą V2u and (V1, V2, Yd1d2) K (P1, P2). Then:

(i) If Yd1|V2 = v2 „ Yd0|V2 = v2 for all v2 or P1 K P2, then Yd K P1.

(ii) If Yd0|V2 = v2 ľFSD Yd1|V2 = v2 for all v2 P [0, 1] and

(a) P2|P1 = p1
1 ľFSD P2|P = p1 for all p1

1 ě p1, then Yd|P1 = p1 ľFSD Yd|P1 = p1
1 for

all p1
1 ě p1.

(b) P2|P1 = p1 ľFSD P2|P = p1
1 for all p1

1 ě p1, then Yd|P1 = p1
1 ľFSD Yd|P1 = p1 for

all p1
1 ě p1.

(iii) If Yd1|V2 = v2 ľFSD Yd0|V2 = v2 for all v2 P [0, 1] and

(a) P2|P1 = p1
1 ľFSD P2|P = p1 for all p1

1 ě p1, then Yd|P1 = p1
1 ľFSD Yd|P1 = p1 for

all p1
1 ě p1.

(b) P2|P1 = p1 ľFSD P2|P = p1
1 for all p1

1 ě p1, then Yd|P1 = p1 ľFSD Yd|P1 = p1
1 for

all p1
1 ě p1.

Proof. See Appendix A.6.

Lemma 3 (i) reiterates the sufficient conditions under which the IV-independence assumption

remains to hold even when the model is misspecified. Lemma 3 (ii) and (iii) show that while the

IV-independence assumption is violated, we can invoke a monotone IV assumption under some

reasonable restrictions. For instance, if the researcher is willing to assume:(i) Y10|V2 = v2 ľFSD

Y11|V2 = v2 which means that conditionally on V2, being externally assigned to both punishments

20



(incarceration and fines), make someone less likely to re-offend than someone who is externally

assigned to incarceration but with no fines; and (ii) P2|P1 = p1
1 ľFSD P2|P = p1 for p1

1 ą p1

—suggesting that the level of Judge’s stringency is positively dependent for two types of punishments;

then she could invoke a specific direction for the MIV. Notice that while the second condition is

directly testable, the first one is not, but alternative directions could also be investigated, as shown

by Lemma 3(iii). Below, we will show how we could bound the MTE in such an empirical context

using the monotone IV assumption. l

Here, we state the main result of this section.

Theorem 3. P is an MIV in Definition 2 if and only if CYd,P(x1, x2) is concave in x2 for all

x1 P [0, 1], that is,
B2CYd,P(x1, x2)

Bx2
2

ď 0. (15)

If in addition Assumptions 1 and 4 are satisfied, then the identified set under the MIV restriction is

given by

ΘMIV
I =

#

FYd(y|p, v) : FYd(y|p, v) = Ξd,p,v(P[Y ď y, D = d|P = p]), (CYd,V|P, CYd,P) P ΛMIV
d

+

,

where ΛMIV
d is the identified set for the copula functions under MIV restrictions, given by

ΛMIV
d =

#

(CYd,V|P, CYd,P) P Cc
d ˆ Cd : Equations (12)and(15) holds, @y P Yd,p

+

.

Theorem 3 has a significant practical advantage since it allows us to see how the identified set

for the DMTRs under the STC assumption shrinks under MIV. We only need to intersect the set

of copulas that rationalize the model under the STC with the set of copulas that respect the MIV

restriction. The set of equality restrictions that are used to identify DMTRs do not change with

how we specify CYd,P. For instance, if we have a sequence of restrictions (r1, ..., rJ) on the copula

CYd,P(., .) such that rj is more restrictive than rl for l ă j, we would have ΘrJ
I Ď .... Ď Θr1

I . This

provides a convenient way to operationalize Manski’s “Layered Policy Analysis” when applied

researchers want to impose different layers of assumptions on CYd,P.

Specifically, motivated by MIV, one may consider different levels of positive dependence. The

MIV is a particular type of positive dependence restriction, which requires that Yd is more likely to
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take on larger values when P increases. We may also consider Affiliated IV (AIV), which means

that it is more likely that the pair of realizations of Yd and P simultaneously take high values or low

values than for Yd to take a high (resp. low) realization while P take a low (resp. high) realization.

When researchers have knowledge regarding the tail behaviors, possible choices also include the

right tail increasing IV ( RTI-IV), which captures the fact that Yd is more likely to take on larger

values when P takes high values as well, and the left tail decreasing IV ( LTD-IV), which captures

that Yd is more likely to take lower values when P takes low values. One can also define a positive

quadrant dependent IV (PQD-IV, see Bhattacharya, Shaikh, and Vytlacil, 2012, for discussions

about positive quadrant dependence in treatment effect analysis). As we shown in Appendix A.7,

each of these positive dependence assumptions is equivalent to a certain shape restriction on CYd,P,

and they nest each other as follows (Joe, 1997, Theorem 2.3):

Affiliated IV ñ MIV ñ LTD-IV ñ PQD-IV,

Affiliated IV ñ MIV ñ RTI-IV ñ PQD-IV.

The analysis in Theorem 3 immediately implies ΘAIV
I Ď ΘMIV

I Ď ΘRTI-IV
I (or ΘLTD-IV

I ) Ď

ΘPQD-IV
I . As previously discussed, the identified set for

(
FY1 , FY0 , CY1,V|P, CY0,V|P, CY1,P, CY0,P

)
has

a particular structure that once the copulas are fixed, the marginal distributions of potential outcomes

are uniquely determined. The “size” or “volume” of the projected identified set for (FY1 , FY0) is

then determined by how many or what kind of restrictions one would like to impose on the copulas.

For example, if we assume IV-independence as in HV05, (FY1 , FY0) become point-identified, see

Corollary 1. If we do not make any assumptions on the dependence between Yd and P, either

conditioning on V or not, then we obtain the identified set as shown in Theorem 2. If we are willing

to take a middle ground on the “perfectness” of the instrument P or have prior information on the

type of selection into treatment, we can use an analogous version of Theorem 3 that applies to the

context and then obtain directly the identified set that corresponds to it.

Remark 3. While we focus the statement of Theorem 3 and the following discussion on the copula

CYd,P(., .), a similar analysis also applies to any restrictions the researcher would like to impose on

either CYd,V|P(., .). For instance, the HV05 identification assumptions can be transformed into our

context by assuming CYd,V|P(., .) = CYd,V(., .) and CYd,P(x1, x2) = x1x2.
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3.3. Semiparametric identification with unknown marginals. In this subsection, we will consider

an alternative approach by parametrizing the copulas with a finite-dimensional parameter θ. However,

we will leave the marginals fully nonparametric.12 As discussed in Chen, Fan, and Tsyrennikov

(2006), such a semi-parametric approach has gained popularity in studying some features of multi-

variate distributions in diverse fields. It is flexible and circumvents the curse of dimensionality. It is

worth noting that if one further (i) assumes independence between (Yd, V) and P, (ii) restricts the

copula between (Yd, V) to be Gaussian copula, and (iii) assumes the marginal distribution of Yd to

be normal, then our model recovers the classical normal Roy selection model discussed by Heckman

and Honoré (1990). Our semi-parametric identification strategy thus offers additional flexibility over

the full parametric one.

To fix the idea, suppose there exists finite dimensional vector θd ” (βd, δd) such that CYd,P(x1, x2) =

CYd,P(x1, x2; βd) and CYd,V|P=p(x1, x2) = CYd,V(x1, x2; σd(p)) where σd(p) is known up to a finite

number of parameters δd, d P t0, 1u. With this copula parametrization, our key unknown parameters

of interest are θd and FYd(y), d P t0, 1u. The mapping Ψ´1
d,p(P[Y ď y, D = d|P = p]; βd, δd) is now

known up to the finite dimensional parameter (βd, δd). The identification of the infinite-dimensional

parameter FYd boils down to the identification of a finite-dimensional parameter (βd, δd). The sharp

identification region of (βd, δd) is characterized by a set of equality constraints, which are easy to

work with because they only contain finite-dimensional parameters and known quantities.

Assumption 5 (Parametric Copula). There exists finite dimensional copula parameters (βd, δd) P

rΛd Ă RT such that CYd,P(x1, x2; βd) is known up to βd and CYd,V|P=p(x1, x2; σd(p; δd)) is known

up to a finite number of parameters δd.

Corollary 2. Under Assumptions 1, 4 and 5, the identified set for DMTR is characterized as follows:

ΘSP
I =

#

FYd(y|p, v) : FYd(y|p, v) = Ξd,p,v(P[Y ď y, D = d|P = p]; (βd, δd)), (βd, δd) P ΛSP
d

+

,

12In principle, one can consider a fully parametric model in which the joint distribution of (Yd, P, V) is set to know up to a
finite-dimensional parameter. We do not consider this approach.
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where Ξd,p,v is defined in Equation (11) and ΛSP
d is the identified set for the copula parameters,

given by

ΛSP
d =

#

(β̃d, δ̃d) P rΛd : Ψ´1
d,p(P[Y ď y, D = d|P = p]; β̃d, δ̃d) is flat in p

+

.

Corollary 2 is a straightforward extension of Theorem 2. In the next section, we will provide a

concrete example of how to implement Corollary 2.

3.4. Discussion: Specification test. Recently, there have been an increasing number of papers that

develop specifications tests for the assumptions usually maintained to identify causal effects, see

for instance Kitagawa (2015), Huber and Mellace (2015), Mourifié and Wan (2017), Kédagni and

Mourifié (2017), and Machado, Shaikh, and Vytlacil (2019). Our approach provides a unified way to

do specification tests for the assumptions the researcher is willing to maintain in the MTE framework.

Indeed, each of the identified sets proposed in Theorems 2 and 3 and Corollary 2 (and those with

other layers of IV assumptions) can be empty if we cannot find copulas that respect the equality

constraints. The “largest” identified set that imposes the minimum structure so far is the one derived

in Theorem 2. If empty, this means imposing the STC specification for treatment selection is too

stringent for the data.

4. COMPUTATION OF THE IDENTIFIED SET

Theorem 3 and corollary 2 provide general nonparametric identification results, where we either

impose non-parametric shape restrictions on copulas or semi-parametric restrictions. In this section,

we propose two concrete approaches to operationalize the identification results. For the first approach,

we approximate the unknown copula functions nonparametrically by Bernstein copula. It has the

advantage of approximating unknown copula when the order is large and being able to represent the

identified set of copula parameters by polynomial constraints. For the semi-parametric approach, we

show some parametrization that allows us to derive a closed-form solution for the identified set of

potential outcome distributions as a function of copula parameters.

4.1. Approximation using Bernstein Copula. The following condition assumes that CYd,V|P and

CYd,P takes a form of Bernstein copula used in Dou, Kuriki, Lin, and Richards (2021).
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Assumption 6 (Bernstein Copula).

(i)CYd,V|P(x1, x2; p) = CYd,V|P(x1, x2; αααd(p)) = KdLd

Kd
ÿ

k=1

Ld
ÿ

ℓ=1

αd
kℓ(p)Bk´1,Kd´1(x1)Bℓ´1,Ld´1(x2)

(ii)CYd,P(x1, x2) = CYd,P(x1, x2; βββd) = RdSd

Rd
ÿ

r=1

Sd
ÿ

s=1

βd
rsBr´1,Rd´1(x1)Bs´1,Sd´1(x2)

where Bi,I(u) =
şu

0 bi,I(t)dt for u P [0, 1], bi,I(u) = (I
i)u

i(1 ´ u)I´i, and αd
kℓ ě 0 and βd

rs ě 0

are unknown parameters that satisfy Kd
řLd

ℓ=1 αd
kℓ(p) = 1, Ld

řKd
k=1 αd

kℓ(p) = 1, Sd
řRd

r=1 βd
rs = 1,

Rd
řS

s=1 βd
rs = 1.

The Bernstein copula is very useful since it can approximate any copula uniformly over [0, 1]2 for

Kd and Ld being sufficiently large, see Sancetta and Satchell (2004, Theorem 4). When parameters

αd
kℓ(p) do not depend on p, then the joint distribution of Yd and V depends on P through the marginal

distribution FYd|P. One special case of Assumption 6-(i) is analogous to “selection on observable”,

which happens when Kd = Ld = 1, so that FYd,V|P = CYd,V|P(FYd|P, FV|P) = FYd|P ˆ FV|P. On

the other hand, if we take Rd = Sd = 1, then Assumption 6-(ii) implies FYd,P = CYd,P(FYd , FP) =

FYd ˆ FP. In this case, the IV is valid and is independent with the potential outcomes.

In Theorem 4 relegated in Appendix B.1, we characterize the identified set of the DMTRg for

arbitrary fixed values of Rd, Sd, Kd, Ld, d P t0, 1u. If we fix orders Kd, Sd, Rd, and Ld, then the

Bernstein copula is essentially parametric; however, as shown in Sancetta and Satchell (2004), it can

uniformly approximate any copula (subject to certain smoothness conditions) if we allow the orders

to increase. Hence, the result in Theorem 4 can be viewed as a nonparametric approximation of the

identified set if one is willing to consider larger orders.

We present below the special case where Rd = Sd = Kd = Ld = 2, for d P t0, 1u. Because αd
kℓ

and βd
kℓ are positive and must satisfy Kd

řLd
ℓ=1 αd

kℓ(p) = 1, Ld
řKd

k=1 αd
kℓ(p) = 1, Sd

řRd
r=1 βd

rs = 1,

Rd
řS

s=1 βd
rs = 1, it turns out that we only need to redefine parameters σd(p) ” 4αd

11(p) ´ 1 P

[´1, 1] and βd ” 4βd
11 ´ 1 P [´1, 1]. This reparameterization is convenient because σd(p) = 0

represents “selection on observables” and βd = 0 represents valid IV. Imposing the MIV assumption

is equivalent to narrowing the range of βd from [´1, 1] to [0, 1] because MIV requires

B2CYd,P(x1, x2)

Bx2
2

= 2(4βd
11 ´ 1)(x2

1 ´ x1) ď 0, @x1 P [0, 1]
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This is equivalent to assume βd
11 ě 1

4 . We also assume σd(p) is known up to finite-dimensional

parameter δd.13 Let rΛd = t(β̃, δ̃d) : σd(p; δ̃d) P [´1, 1], β̃d P [´1, 1]u be the parameter space of

copula parameters.

Corollary 3. Suppose Assumptions 1 and 4 hold. Consider Assumption 6 is satisfied with Rd =

Sd = Kd = Ld = 2, and the reparameterization of σd(p; δd) ” 4αd
11(p) ´ 1 and βd ” 4βd

11 ´ 1.

Then, the DMTR is characterized by

FYd|P,V(y|p, v) = Hd + σd(p; δd)Hd(1 ´ Hd ´ 2σd(p; δd)Hd(1 ´ Hd)v,

where

H1 =
A1 ´ p +

b

(A1 ´ p)2 + 4A1FY,D|P(y, 1|p)

2A1
, A1 = σ1(p; δ1)p(1 ´ p)

H0 =
A0 + 1 ´ p ´

b

(A0 + 1 ´ p)2 + 4A0FY,D|P(y, 0|p)

2A0
, A0 = σ0(p; δ0)p(1 ´ p),

and Hd depends on y only through FY,D|P(y, 1|p) = P(Y ď y, D = d|P = p). The marginal

distribution of Yd is given by

FYd(y) = Ψ´1
d,p(P[Y ď y, D = d|P = p]; βd, δd)

”
βdB(p) + 1 ´

a

(βdB(p) + 1)2 ´ 4βdB(p)Hd

2βdB(p)
, (16)

where B(p) = 1 ´ 2FP(p) and the copula parameters (βd, δd) take value from the following

identified set:

ΛBC
d =

#

(β̃d, δ̃d) P rΛd : Ψ´1
d,p(P[Y ď y, D = d|P = p]; β̃d, δ̃d) is flat in p

+

.

Proof. See Appendix B.2.

13One may consider the simplified pair-copula specification to assume σd(p) be a constant, so that the dependence
structure between Yd and V remains the same for different values of p. Haff, Aas, and Frigessi (2010) provides sufficient
conditions for the validity of using simplified pair-copula and argues that it often provides a good approximation in practice.
We can also approximate σd(p) by a sequence of functions σd(p; δd) with the dimension of parameter δd increase to
infinity. In this case, we need to impose restrictions on δd such that σd(p; δd) P [´1, 1] for all p P [0, 1]. For instance, if
σd(p; δd) = δ0

d + δ1
d p, then we need δ0

d ě 0 and δ0
d + δ1

d ď 1 if δd
1 ě 0, and δ0

d ď 1 and δ0
d + δ1

d ě 0 if δ1
d ă 0.
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In the statement of Corollary 3, when a denominator equals to zero, for example, when σ1(p) = 0

or FP(p) = 1
2 , the statement still holds by using L’Hospital’s rule to take the limits on both numerator

and denominator.

Under the second-order Bernstein copula, the identified set for DMTRs is a set of linear functions

in v with intercept and slope coefficient depending on p. It is easy to analyze in practice. While

Corollary 3 only reports the results of second-order Bernstein copula, it already echoes some

interesting results in the literature on MTE. In fact, Corollary 3 (resp. Theorem 4 in Appendix B.1)

generalizes the parametrization of the MTR proposed in Brinch, Mogstad, and Wiswall (2017) (resp.

Mogstad, Santos, and Torgovitsky, 2018) to the cases: (i) where the IV is potentially invalid and (ii)

where the researcher is interested in the distributional treatment effect instead of only the average as

entertained in Brinch, Mogstad, and Wiswall (2017) (resp. Mogstad, Santos, and Torgovitsky, 2018).

Indeed, for the generalized case discussed in Theorem 4, we showed that when Rd = Sd = 1 (i.e. the

IV is independent with the potential outcome), we have E[g(Yd)|V = v] =
řLd

l=1 θ
g
dlbl´1,Ld´1(v)

and recover the parametric form Mogstad, Santos, and Torgovitsky (2018) imposed on the MTR.

Then, our result provides a “micro foundation” for Mogstad, Santos, and Torgovitsky (2018)’s

specification: it can be generated by a Bernstein copula CYd,V|P(x1, x2; αd) of order Ld.14

4.2. Parametric Copula. In many applications, it is unknown ex-ante if there is positive or negative

selection into the treatment. In such contexts, it is essential to consider a comprehensive copula family

for CYd,V|P. Comprehensive parametric copulas are copulas that (i) approach the countermonotonicity

copula (resp. comonoticity copula), i.e., Fréchet Lower Bound (resp. Fréchet Upper Bound copula)

for certain values of their parameters in their permissible range, (ii) and cover the entire domain

between the Fréchet lower and upper copula bounds including the product copula as special case.

Using these copulas, we may test the absence of selection by checking if the confidence region

of σd(p; δd) excludes the value that corresponds to the product copula, which corresponds to the

independence case. Comprehensive copulas, such as Gaussian and Frank copulas, parameterize the

14An appealing property of the Mogstad, Santos, and Torgovitsky (2018)’s approach is that under the IV independence
assumption, their parametrization of the MTR is linear in the parameters, allowing them to estimate the model using a
linear programming approach. However, this linearity breaks down in the presence of an invalid IV. It could be tempting to
impose a linear structure on the DMTR in order to make use of the linear programming approach for estimation; however,
such a parametrization (i) could significantly restrict the individual treatment effect heterogeneity, and (ii) may not be
compatible with the model structure, i.e., it may not exist copulas that imply a linear structure for the DMTR.

27



full range of dependence. On the other hand, non-comprehensive copulas such as Farlie-Gumbel-

Morgenstern (FGM), Clayton, Gumbel, and Joe copulas can only capture dependence in a limited

manner. In practice, using a different family of copula to analyze how sensitive the results are

depending on the copula parametrization will be useful. In this paper, we provide results based on

Frank copula as the leading example because (i) Frank copula is comprehensive, and (ii) it offers a

close-form solution to the identified set of FYd(y), as shown in by Corollary 4 below.15

Assumption 7 (Frank Copula). There exists copula parameters (βd, δd) P rΛd Ď RT with T ă 8

such that CYd,P(x1, x2) = ´ 1
βd

ln
[
1 + (e´βd x1 ´1)(e´βd x2 ´1)

(e´βd ´1)

]
for βd P (´8, 0) Y (0, 8) and

CYd,V|P=p(x1, x2) = ´ 1
σd(p;δd)

ln
[
1+ (e´σd(p;δd)x1 ´1)(e´σd(p;δd)x2 ´1)

(e´σd(p;δd)´1)

]
for σd(p; δd) P (´8, 0)Y (0,+8),

d P t0, 1u, where σd(p; δd) is known up to a finite number of parameters δd.

The following corollary provides a closed-form solution for DMTR when using the Frank copula.

Corollary 4. Under Assumptions 1, 4 and 7, the DMTR is characterized as follows:

FYd|P,V(y|p, v) =
BCYd,V|P(x1, x2)

Bx2
|x1=Hd,x2=v =

(e´σd Hd ´ 1)e´σdv

(e´σd ´ 1) + (e´σd Hd ´ 1)(e´σdv ´ 1)
,

where

H1 = ´
1

σ1(p; δ1)
ln
[
1 +

(e´σ1(p;δ1)FY,D|P(y,1|p) ´ 1)(e´σ1(p;δ1) ´ 1)
(e´σ1(p;δ1)p ´ 1)

]
H0 =

1
σ0(p; δ0)

ln
[
1 +

(eσ0(p;δ0)FYD|P(y,0|p) ´ 1)(e´σ0(p;δ0) ´ 1)
e´σ0(p;δ0) ´ e´σ0(p;δ0)p

]
,

and the marginal distribution of Yd is given by

FYd(y) = Ψ´1
d,p(P[Y ď y, D = d|P = p]; βd, δd)

” ´
1
βd

ln
[
1 +

Hd(y, p, σd(p; δd))(e´βd ´ 1)
e´βdFP(p) ´ Hd(y, p, σd(p; δd))(e´βdFP(p) ´ 1)

]
, (17)

where the copula parameters (βd, δd) take value from the following identified set:

ΛFC
d =

#

(β̃d, δ̃d) P rΛd : Ψ´1
d,p(P[Y ď y, D = d|P = p]; β̃d, δ̃d) is flat in p

+

.

15In Appendix B we derive a similar characterization for the FGM copula.
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Proof. See Appendix B.3.

Remark 4. When the parameter σd(p; δd) or its finite dimensional parameter δd is given, βd is

uniquely determined. To see this, fixing an arbitrary y, and then integrating both side of βd fP(p)(1 ´

Hd)Hd +
BHd
Bp = 0 from p to p with respect to p gives

βdE
[
tHd(y, P, σd(P; δd))(1 ´ Hd(y, P, σd(P; δd)))u 1tp ă P ď pu

]
+

ż p

p

BHd

Bp
dp = 0

ñ βd = ´
Hd(y, p, σd(p; δd)) ´ Hd(y, p, σd(p; δd))

E
[
tHd(y, P, σd(P; δd))(1 ´ Hd(y, P, σd(P; δd)))u 1tp ă P ď pu

]
where (with a abusing of notation) BHd(p)

Bp denotes the total derivative of Hd(y, p, σd(p; δd))) with

respect to p. Then δd can be estimated using a minimum distance estimator by inserting pre-

estimated p̂ and f̂P. When inserting the true σd(¨) into the right-hand side of the above equation,

since Hd(y, P, σd(P; δd)) = FYd|P(y|P), we have

βd = ´
FYd|P(y|p) ´ FYd|P(y|p)

E
[

FYd|P(y|P)(1 ´ FYd|P(y|P))1tp ă P ď pu

] .

This states that βd is positive iff Yd|P = p ľFSD Yd|P = p for p ě p.

4.3. Estimation. To estimate the identified set, let PM = tp1, p2, ¨ ¨ ¨ , pMu and Y J = ty1, y2, ¨ ¨ ¨ , yJu

be grid points in the support of P and Y, chosen by researchers. For generic (β̃d, δ̃d), define,

κd(y, p; β̃d, δ̃d) = Ψ´1
d,p(P[Y ď y, D = d|P = p]; β̃d, δ̃d).

The form of Ψ´1
d,p has been given in Equations (16) and (17) for Bernstein copula with order 2 and

Frank copula, respectively. As illustrated by Figure 1 in a numerical example, when parameters are

set to be the true values, κd(y, p; βd, δd) is a flat function in p for any value of y. Therefore, the

“sample standard deviation” of

tκd(y, p1; βd, δd), ¨ ¨ ¨ , κd(y, pM; βd, δd)u,
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denoted by Sd(y; βd, δd), must be zero when evaluated at the true parameter values. Hence at the

true values, we must have

Ld(βd, δd) ”

J
ÿ

j=1

Sd(yj; βd, δd) = 0.

This leads the outer set (with abuse of notation) of the identified set Λd for (βd, δd) as16

Λd ”

!

(β̃d, δ̃d) P rΛd : Ld(β̃1, δ̃d) = 0
)

= argmin
(β̃d,δ̃d)PrΛd

Ld(β̃d, δ̃d).

The above discussion motivates a set estimator as

pΛd =
!

(β̃d, δ̃d) P rΛd : Ld,n(β̃d, δ̃d) ď ϵn

)

,

where Ld,n =
řJ

j=1 Ŝd(yj; (β̃d, δ̃d)) is the sample analog of Ld, Ŝd(yj; (β̃d, δ̃d)) is the sample

variance of tκ̂d(y, p1; βd, δd), ¨ ¨ ¨ , κ̂d(y, pM; βd, δd)u, with

κ̂d(y, p; β̃d, δ̃d) = Ψ´1
d,p(

pP[Y ď y, D = d|P̂ = p]; β̃d, δ̃d),

and pP[Y ď y, D = d|P̂ = p] is a consistent non-parametric estimator of P[Y ď y, D = d|P = p],

ϵn Ó 0 is a tuning sequence converges to zero. One can choose the rate of ϵn and examine the

asymptotic behavior of set estimator pΛd under the general framework of Chernozhukov, Hong, and

Tamer (2007). In our context, it also depends on the convergence rate of the generated regressor P̂

and the nonparametric estimator pP[Y ď y, D = d|P̂ = p], for which we provide more details in

Appendix A.8. Let dH(A, B) be the Hausdorff distance between two generic subsets A and B of the

parameter space rΛd, that is, dH(A, B) = maxth(A, B), h(B, A)u, where

h(A, B) = sup
aPA

inf
bPB

}a ´ b},

and

h(B, A) = sup
bPB

inf
aPA

}a ´ b}.

The following proposition shows the consistency of the (outer) set estimator.

Proposition 1. Suppose Assumption 1 and Assumptions 8 to 12 in Appendix A.8 are satisfied, and ϵn

converges to zero at a rate specified by Assumption 13, then dH(pΛd, Λd)
p

Ñ 0.

16This set may be the outer set because we only consider finite grid points in p and y.
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Proof. See Appendix A.8.

5. NUMERICAL ILLUSTRATION

In this subsection, we provide two numerical examples to illustrate identification results under

Frank copula. In DGP1, the IV-independence assumption fails to hold, and the Frank copula is

correctly specified. In this case, we demonstrate the LIV estimand fails to identify MTRs and

treatment effect parameters while our approach can. The IV-independence assumption holds in

DGP2 (borrowed from HV05), but the Frank copula is mis-specified. The LIV estimand identifies

the MTRs. Surprisingly, the identified set for treatment effect parameters based on Frank copula is

very close to the true value, perhaps due to the fact that Frank copula is comprehensive.

5.1. DGP1: IV-independence Assumptions fails to hold. Let the marginals be specified as

Y1 „ N(1, 1), Y0 „ N(0, 1), V „ U[0, 1], Z = P „ U[0, 1], and D = 1[V ď P]. We

specify the dependence among (Yd, P, V) using Frank copula:

CYd,P(x1, x2) = ´
1
βd

ln
[
1 +

(e´βdx1 ´ 1)(e´βdx2 ´ 1)
(e´βd ´ 1)

]
,

CYd,V|P(x1, x2; σd(p)) = ´
1

σd(p)
ln
[
1 +

(e´σd(p)x1 ´ 1)(e´σd(p)x2 ´ 1)
(e´σd(p) ´ 1)

]
,

where true parameter values are β1 = 2, σ1 = 3, β0 = σ0(p) = 0. In this case, P is not a valid

instrument because β1 ‰ 0. The endogeneity issue exists because Y1 is not independent with V

given P as σ1(p) ‰ 0.

To evaluate the PRTE, we follow HV05 and consider a hypothetical policy intervention where

the new policy “subsidizes” large propensity: if Z ą t, D = 1[Z(1 + t) ´ V ě 0]; else D =

1[Z ´ V ě 0]. For this exercise, we choose t = 0.2. The true parameter values are given by the

following table:

We first demonstrate the identification result in Corollary 4. Figure 1 plots the inverse mapping

Ψ´1
1,p(¨, p; β, σ) as a function of y at different values of p P t0.2, 0.3, ¨ ¨ ¨ , 0.8u (each dashed lines) as

well as the true marginal CDF of Y1 (solid red line).17 In the right panel, we use a false parameter

value β1 = 0 (other parameters fixed at their true values). As we can see, when we set β1 at a false

17The inverse mapping Ψ´1
1,p depends on P(Y ď y, D = 1|P = p), which we do not have the analytic solution. So we

approximate P(Y ď y, D = 1|P = p) using a kernel estimator and a very large sample size.
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TABLE 2. True Values of Parameters in DGP1

Parameters True value
ATE 1.00

ATT 0.94

ATUT 1.06

PRTE 1.42

LATE(0.2,0.5) 0.78
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FIGURE 1. Plots of Ψ´1
1,p(¨, p; β, σ) at different values of p and the true FY1 (DGP1)

Left panel: parameters at true values. Right panel: β1 is set to zero.

value and vary p, the “implied” marginal CDF of Y1 varies. This shows that β1 = 0 can not be

the true value. In the left panel, we set the parameter value β1 = 2. Now, regardless of which p

value we insert into the mapping Ψ´1
1,p(¨, p; β, σ), its shape remains unchanged and is the same as

the true CDF of Y0. How Ψ´1
1,p responds to the change of p provides the identification power for

different parameter values. The right panel provides evidence that β1 = 0 should not be included in

the identified set, while the left panel suggests β1 = 2 should.

Once we obtain the approximation of the identified set for copula parameters, we turn to the

identified set of the treatment effect parameters. Figure 2 draws the identified set for the MTE. In

GDP1, the identified set for copula parameters is a singleton, which implies that the MTE is also
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point-identified. The red line is the true MTE, and the blue line is the identified MTE based on

our copula approach. The green line is what LIV would identify under the (false) IV-independence

assumption. There is a notable bias when the IV-independence assumption fails to hold.

Finally, Table 3 compares the treatment parameters estimates using the copula-based approach

vs. the LIV estimand (that assumes the IV-independence). We consider four different layers of the

IV-related assumption when using the copula-based approach: (a) We impose the IV-independence

assumption, i.e., (β1 = 0); (b) We impose that β1 ď 0, this restriction relaxes the IV-independence

assumption but imposes a negative regression dependence between the IV and the potential outcome,

i.e., P(Yd ą y|P = p) is non-increasing in p, we denote MIV´; (c) We assume the MIV assumption

(positive regression dependence); and (d) we leave the dependence structure captured by β1 entirely

unrestricted. As can be seen, in the two first cases, the copula-based approach can detect that the two

related IV assumptions (IV-independence and MIV´) are not compatible with the observed data.

In the two latter cases, the copula-based approach can point-identify all our policy parameters of

interest even when the IV is not valid.

On the other hand, the LIV estimand shows a considerable positive bias for various policy

parameters. Indeed, since the “MTE” identified from LIV has a positive bias over most parts of the

unit interval, it is unsurprising that the treatment parameters identified under the IV-independence

assumption have a positive bias. An advantage of the copula-based approach is that the identification

strategy and the specification tests are implemented simultaneously. So, suppose the IV-independence

assumption is indeed not compatible with the observed data. In that case, the copula-based approach

will not return a biased estimate but will return an empty set that suggests a relaxation of the

IV-independence assumption is needed.

5.2. DGP2: Misspecified Copula. In this subsection, we would like to investigate the copula-based

approach’s performance in the presence of a misspecified copula. We consider a DGP2 in which

the IV-independence assumption holds, and the observed data is not generated using a Frank copula.

In other words, LIV would correctly identify MTE in this setup, and our copula-based method is

subject to the problem of misspecification. To be more specific, we consider the DGP entertained in

HV05 (page 683). The true parameter values and those identified from the copula-based approach

are summarized in Table 4.
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FIGURE 2. Identified Set for MTE (DGP1)

TABLE 3. Identified Values (DGP1)

True value Identified by Copula-based Approach LIV
Parameters IV (β1 = 0) MIV´(β1 ď 0) MIV+(β1 ě 0) (β1 P R)

ATE 1.00 Empty Empty 1.00 1.00 1.52

ATT 0.94 Empty Empty 0.94 0.94 0.94

ATUT 1.06 Empty Empty 1.06 1.06 2.10

PRTE 1.42 Empty Empty 1.42 1.42 2.55

LATE(0.2,0.5) 0.78 Empty Empty 0.78 0.78 1.04

We can see from Table 4 that, while our semiparametric model is misspecified, the copula-based

approach has very small biases. In this example, we set the parameter space for σ1 as [´20, 20].

In HV05’s example, Y1 and V are negatively correlated, and the correlation coefficient equals ´1.

For this, our identification approach would push σ1 to ´8. In HV05’s example, Y1 and V exhibits

a perfect negative dependence; their dependence structure is captured by the Fréchet lower bound

copula. Since the Frank copula is comprehensive, it could approximate this specific dependence

when σ1 converges to ´8. In the implementation, the search for true parameters ends at the lower

boundary (-20) of the parameter space of σ1. This example shows that even though we consider
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TABLE 4. Parameter Values (DGP2)

Parameters True value Identified by Copula-based Approach
ATE 0.200 0.200

ATT 0.235 0.248

ATUT 0.157 0.158

PRTE 0.155 0.158

LATE(0.2,0.5) 0.225 0.225
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FIGURE 3. Identified Set for MTE (DGP2)

a semi-parametric identification approach, the copula can still be flexible enough to capture the

essential part of the dependence structure among the latent variables.

Figure 3 plots the MTE that we construct based upon the identified (βd, σd) and the true MTE.

Except at the two boundaries, the semi-parametrically identified MTE is very close to the true

function. Again, the discrepancy at the two boundaries is because we can not set σd as ˘8 in

practice. However, we should expect a smaller discrepancy when we allow a larger parameter space.
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6. DISCUSSION AND FUTURE WORK

This paper shows how to use the MTE framework to perform layered policy analysis when

the potential IVs are not necessarily valid. We propose a novel intermediate parameter, DMTE,

and show it bridges the marginal treatment effect (MTE) and the policy-relevant treatment effect

(PRTE) parameters even without the instrument’s validity. We characterize the identified set using

a Vine-copula framework, providing a unified way for researchers to impose additional IV-related

assumptions of different layers of credibility.
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APPENDIX A. PROOFS OF RESULTS IN THE MAIN TEXT.

A.1. Proof of Theorem 1. It is easy to see that

MTEg(v) ” E[g(Y1) ´ g(Y0)|V = v] =
ż 1

0
fP(p)DMTEg(v, p)dp,

and

ATEg ” E[g(Y1) ´ g(Y0)] =

ż 1

0

ż 1

0
fP(p)
l jh n

wATE(v,p)

DMTEg(v, p)dpdv.

Regarding LATE,

LATEg(u, u1) ” E[g(Y1) ´ g(Y0)|u ă V ď u1] =

ż 1

0

ż 1

0

fP(p)1tuăvďu1u

u1 ´ u
l jh n

wLATE(u,u1)(v,p)

DMTEg(v, p)dvdp

For ATT, we have

ATTg ”

ż 1

0
E[g(Y1) ´ g(Y0)|D = 1, P = p]dFP|D=1(p)

=

ż 1

0
E[g(Y1) ´ g(Y0)|V ď p, P = p]dFP|D=1(p) =

ż 1

0

1
p

ż p

0
E[g(Y1) ´ g(Y0)|V = v, P = p]dvdFP|D=1(p)

=

ż 1

0

1
p

ż p

0
DMTE(v, p)dv

p
P(D = 1)

fP(p)dp =

ż 1

0

ż 1

0
DMTE(v, p)dv

fP(p)1tv ď pu

P(D = 1)
dp

=

ż 1

0

ż 1

0

fP(p)1tv ď pu

E[P]
l jh n

wATT(v,p)

DMTEg(v, p)dvdp,

where dFP|D=1(p) = p
P(D=1) fP(p)dp by Bayesian rule and P(D = 1) = E[E[D|P]] = E[P].

Following the similar derivation as ATT, we can show that

ATUTg ”

ż 1

0
E[g(Y1) ´ g(Y0)|D = 0, P = p]dFP|D=0(p)

=

ż 1

0

ż 1

0

fP(p)1tv ą pu

E[1 ´ P]
l jh n

wATUT(v,p)

DMTEg(v, p)dvdp

Concerning the PRTEg, under Assumption 1 only, we have:
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E[g(Ya)] =

ż 1

0
E[g(Ya)|Pa = p]dFPa(p) =

ż 1

0
E[(g(Ya

1 ) ´ g(Ya
0 ))Da|Pa = p]dFPa(p) + E[g(Ya

0 )]

=

ż 1

0

ż 1

0
1tv ď pu fPa(p)E[g(Ya

1 ) ´ g(Ya
0 )|V

a = v, Pa = p]dpdv + E[g(Ya
0 )]

=

ż 1

0

ż 1

0
1tv ď pu fPa(p)E[g(Ya

1 ) ´ g(Ya
0 )|V

a = v, UPa
= FPa (p)]dpdv + E[g(Ya

0 )]

=

ż 1

0

ż 1

0
1tv ď F´1

Pa (u)uE[g(Ya
1 ) ´ g(Ya

0 )|V
a = v, UPa

= u]dudv + E[g(Ya
0 )]

The second equality holds because UPa
” FPa (Pa) and the last equality holds by making the change of variable

u = FPa (p). Under Assumption 3 and the continuity of FPl (.) we have that E[g(Ya
1 ) ´ g(Ya

0 )|V
a = v, UPa

= u] =

E[g(Ya1

1 ) ´ g(Ya1

0 )|Va1

= v, UPa1

= u] for all u, v P [0, 1] ˆ [0, 1] and E[g(Ya
0 )] = E[g(Ya1

0 )].

Then, we have:

E[g(Ya1

) ´ g(Ya)] =

ż 1

0

ż 1

0

[
1
!

v ď F´1
Pa1 (u)

)

´ 1
!

v ď F´1
Pa (u)

)]
E[g(Ya

1 ) ´ g(Ya
0 )|V

a = v, UPa
= u]dudv

=

ż 1

0

ż 1

0

[
1
!

v ď F´1
Pa1 (FPa (p))

)

´ 1 tv ď pu

]
E[g(Ya

1 ) ´ g(Ya
0 )|V

a = v, Pa = p]dpdv

where the last equality holds by redoing the change of variable u = FPa (p). Therefore,

PRTEg =

ż 1

0

ż 1

0

[
1
!

v ď F´1
Pa1 (FPa (p))

)

´ 1 tv ď pu

]
EF

Pa1 [P] ´ EFPa [P]
l jh n

wPRTE(v,p)

DMTEg(v, p)dpdv.

A.2. Proof of Lemma 2. To show Equation (7), note that first that

fYd ,P(y, p) =
B2FYd ,P(t1, t2)

Bt1Bt2
|t1=y,t2=p =

B2CYd ,P(x1, x2)

Bx1Bx2
|x1=FYd (y),x2=FP(p) fYd (y) fP(p)

Therefore,

FYd|P(y|p) =
ż y

´8

fYd|P(t|p)dt =
ż y

´8

fYd ,P(t, p)
fP(p)

dt

=

ż y

´8

B2CYd ,P(x1,x2)
Bx1Bx2

|x1=FYd (t),x2=FP(p) fYd (t) fP(p)

fP(p)
dt =

BCYd ,P(x1, x2)

Bx2
|x1=FYd (y),x2=FP(p)

” cd,FP(p)(FYd (y)),
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where we write the RHS as cd,FP(p)(FYd (y)) since the RHS depends on y only through FYd (y) and the mapping cd,FP(p)

depends on the joint distribution of Yd and P. Note that for any given p, both FYd|P(y|p) and FYd (y) are strictly increasing

in y. Therefore, the mapping cd,FP(p)(¨) is strictly increasing and we can express

FYd (y) = c´1
d,FP(p)

(
FYd|P(y|p)

)
. (18)

To see Equation (8), note that

fYd|V,P(y|v, p) =
fYd ,V|P(y, v|p)

fV|P(v|p)
=

B2CYd ,V|P(x1,x2;p)
Bx1Bx2

|x1=FYd (y|p),x2=FV|P(v|p) fYd|P(y|p) fV|P(v|p)

fV|P(v|p)

=
B2CYd ,V|P(x1, x2; p)

Bx1Bx2
|x1=FYd (y|p),x2=FV|P(v|p) fYd|P(y|p)

Therefore,

FYd|V,P(y|v, p) =
ż y

´8

fYd|V,P(t|v, p)dt

=

ż y

´8

B2CYd ,V|P(x1, x2; p)
Bx1Bx2

|x1=FYd (t|p),x2=FV|P(v|p) fYd|P(t|p)dt =
BCYd ,V|P(x1, x2; p)

Bx2
|x1=FYd (y|p),x2=v

where again we use FV|P(v|p) = v.

At last, we consider Equations (9) and (10). Suppose d = 1

P[Y ď y, D = 1|P = p] = P[Y1 ď y, V ď p|P = p] = CY1,V|P(c1,FP(p)(FY1 (y)), p; p)

where we inserting Equation (18) to obtain the result. As discussed earlier u ÞÑ c1,FP(p)(u) is strictly increasing and

x1 ÞÑ CY1,V|P(x1, x2; p) is also strictly increasing, therefore u ÞÑ CY1,V|P=p

(
c1,FP(p)(u), p; p

)
” Ψ1,p(u) is strictly

increasing. For d = 0,

P[Y ď y, D = 0|P = p] = P[Y0 ď y, V ą p|P = p] = P[Y0 ď y|P = p] ´ P[Y0 ď y, V ď p|P = p]

= c0,FP(p)(FY0 (y)) ´ CY0,V|P(c0,FP(p)(FY0 (y)), p; p) ” Ψ0,p(FY0 (y)),

where the mapping Ψ0,p(u) is strictly increasing in u because the left hand side of the equation above is strictly increasing

in y (by the definition of conditioning probability), and FY0 (y) is strictly increasing in y.

A.3. Proof of Theorem 2. Let P(Y ď y, D = d|P = p) be the distribution of observables. It is apparent from

Definition 1, (CYd ,V|P, CYd ,P, Fd) satisfy Equations (9) and (10), then they can rationalize the data and model; on the other

hand, if (CYd ,V|P, CYd ,P, Fd) are the true model parameters, they they must connect with the implied data distribution

through Equations (9) and (10). In this sense, the set defined in Definition 1 is sharp.

To verify the set defined in Theorem 2 is also sharp, it is sufficient to show that Equations (9) and (10) and Equation (12)

in Theorem 2 are equivalent. First, it is straightforward to see that Equations (9) and (10) imply Equation (12). Second,
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suppose Equation (12) hold, that is, Ψ´1
d,p(P[Y ď y, D = d|P = p]) is flat in p and only varies as a function of y. Note that

under Assumption 4, FYd and FP are continuous and strictly increasing, and both CYd ,V|P and
BCYd ,P(x1,x2)

Bx2
are increasing

in their first arguments. Therefore, Ψ´1
d,p is strictly increasing in y by construction.

Next from the definitions in Equations (9) and (10) we know that for any p ą 0

p = CY1,V|P=p(1, p; p) 0 = CY1,V|P=p(0, p; p),

and

1 = cd,FP(p)(1), 0 = cd,FP(p)(0).

Therefore it is easy to see that Ψ´1
d,p(P[Y ď ´8, D = d|P = p]) = Ψ´1

d,p(0) = 0 and Ψ´1
d,p(P[Y ď 8, D = d|P =

p]) = Ψ´1
d,p(P[D = d|P = p]) = 1. This says that Ψ´1(P[Y ď ¨, D = d|P = p]), as a function of y, is a valid

distribution function, which we can choose as the counterfactual distribution FYd . This completes the proof.

A.4. Proof to Corollary 1. We take d = 1 as an example; the case for d = 0 is similar. First, P K Y1|V and P K V

implies (Y1, V) K P. By the definition in Equation (9), the mapping Ψ1,p then reduces to the following simple form:

Ψ1,p(FY1 (y)) = CY1,V

(
FY1 (y), p

)
.

Since the joint distribution of (Yd, V, P) is continuous, the mapping Ψ1,p, its inverse Ψ´1
1,p and the population probability

P[Y ď y, D = 1|P = p]) are continuously differentiable with respect to p. Next, note that the restriction is equivalent to

B

!

Ψ´1
1,p(P[Y ď y, D = 1|P = p])

)

Bp
= 0.

Let C´1
1,Y1,V(¨, x2) be the inverse of CY1,V(¨, x2) with respect to the first argument, then,

0 =
B

!

Ψ´1
1,p(P[Y ď y, D = 1|P = p])

)

Bp
=

B

!

C´1
1,Y1,V

(
P[Y ď y, D = 1|P = p], p

))
Bp

=
BC´1

1,Y1,V

(
y, x2

)
By

|y=P[Yďy,D=1|P=p],x2=p ˆ
BP[Y ď y, D = 1|P = p]

Bp

+
BC´1

1,Y1,V

(
y, x2

)
Bx2

|y=P[Yďy,D=1|P=p],x2=p.

This implies

BP[Y ď y, D = 1|P = p]
Bp

= ´

BC´1
1,Y1,V

(
y,x2

)
Bx2

|y=P[Yďy,D=1|P=p],x2=p

BC´1
1,Y1,V

(
y,x2

)
By |y=P[Yďy,D=1|P=p],x2=p

=
BCY1,V

(
x1, x2

)
Bx2

|x1=F1(y),x2=p = P[Y1 ď y|V = p],
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where the first equality solves the previous displayed equation, the third equality is due to the definition of a copula and

V „ U[0, 1]. For the second equality, note first that C´1
1,Y1,V

(
CY1,V(x1, x2), x2

)
= x1 and differentiate both sides with

respect to x2 yields

BC´1
1,Y1,V

(
CY1,V(x1, x2), x2

)
Bx2

+
BC´1

1,Y1,V

(
CY1,V(x1, x2), x2

)
By

BCY1,V

(
x1, x2

)
Bx2

= 0,

then the second equality holds by noticing CY1,V(F1(y), p) = P[Y ď y, D = 1|P = p] under the independence

Assumption 2.

A.5. FSD of the conditional distribution of Yd given P. In this subsection, we provide conditions under which FSD of

the conditional distribution of Yd given Z implies FSD of the conditional distribution of Yd given P. Let (Z1, Z2) be a

vector of two instruments.

Lemma 4. Let P(z1, z2) ” P(D = 1|Z1 = z1, Z2 = z2). Suppose the following conditions are satisfied:

(i) The vector Z = (Z1
1, Z2)

1 contains a monotone instrumental variable Z2 in the sense that Yd|(Z1 = z1, Z2 =

z2) first order stochastic dominates Yd|(Z1 = z1, Z2 = z̃2) for any z1 and z2 ą z̃2.

(ii) The function ν(z1, z2) is strictly increasing in z2 for any z1.

(iii) Ṽ|(Z1 = z1, Z2 = z̃2) first order stochastic dominates Ṽ|(Z1 = z1, Z2 = z2) for any z1 and z2 ą z̃2.

(iv) For any z1 and p, there exists a z2 such that P(z1, z2) = p.

Then Yd|P = p first order stochastic dominates Yd|P = p̃ for any p ě p̃.

Proof. First we verify that P(z1, z2) in strictly increasing in z2. Fixing z1 and consider z2 ą z̃2. Then

P(z1, z2) ” P(D = 1|Z1 = z1, Z2 = z2) = P(Ṽ ď ν(z1, z2)|Z1 = z1, Z2 = z2)

ą P(Ṽ ď ν(z1, z̃2)|Z1 = z1, Z2 = z2) ě P(Ṽ ď ν(z1, z̃2)|Z1 = z1, Z2 = z̃2)

= P(D = 1|Z1 = z1, Z2 = z̃2) ” P(z1, z̃2),

where the first inequality holds by the strict monotonicity of ν, and the second inequality holds because Ṽ|(Z1 = z1, Z2 =

z̃2) first order stochastic dominates Ṽ|(Z1 = z1, Z2 = z2).

Fixing z1 and a generic p, let ψ2(z1, p) be the inverse function of P(z1, z2) = p with respect to the second argument.

Since P(z1, z2) is strictly increasing in z2, ψ2 is well-defined and is strictly increasing in p. Let ϕ(¨) be an increasing

function mapping from Yd to R, then we have

E[ϕ(Yd)|P(Z1, Z2) = p] = E[ϕ(Yd)|Z1 P Z1(p), z2 = ψ2(Z1, p)] =
ż

Z1

E[ϕ(Yd)|Z1 = t, z2 = ψ2(t, p)]dFZ1 (t),
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where the integration region is Z1 by (iv). Similarly, let 0 ă p̃ ă p, then we have

E[ϕ(Yd)|P(Z1, Z2) = p̃] = E[ϕ(Yd)|Z1 P Z1( p̃), z2 = ψ2(Z1, p̃)] =
ż

Z1

E[ϕ(Yd)|Z1 = t, z2 = ψ2(t, p̃)]dFZ1 (t).

Take the difference we have

E[ϕ(Yd)|P(Z1, Z2) = p] ´ E[ϕ(Yd)|P(Z1, Z2) = p̃]

=

ż

Z1

tE[ϕ(Yd)|Z1 = t, z2 = ψ2(t, p)] ´ E[ϕ(Yd)|Z1 = t, z2 = ψ2(t, p̃)]u dFZ1 (t) ě 0.

where the last inequality holds because Yd|(Z1 = z1, Z2 = z2) first order stochastic dominates Ỹd|(Z1 = z1, Z2 =

z̃2). l

Condition (i) in Lemma 4 is a standard monotone IV assumption. Condition (ii) requires the benefit of taking treatment

is strictly increasing in z2. This type of monotonicity is often assumed and is reasonable in many empirical settings. In the

return to college education example, if z2 is the parent educations, it says that observed incentive of enroll in college is

strictly increasing in parents education (perhaps because the parents with higher education can help children prepare a

better application package). Condition (iii) would hold if individuals with higher parent education levels would prefer

college life more than those with lower parent educations (given everything else equal) due to the role model effect. Finally,

condition (iv) requires z2 has a rich support and it can be verified from observed data distribution. Note that for these

conditions to hold, Z2 does not necessarily need be continuous if Z1 is discrete.

Finally, note that when Z and Ṽ are independent (when the potential treatment is independent with the instrument),

the FSD based on P is directly induced by the FSD based on partial ordering of Z. For instance, let “ľ" denotes the

component-wise partial order when comparing vectors, then we can state: for any pair z1 ľ z in the support of a vector

of observable variables Z, the conditional distribution of Yd, d P t0, 1u given Z = z1 first order stochastic dominates the

distribution of Yd given Z = z, i.e. Yd|Z = z1 ľFSD Yd|Z = z. Then the partial ordering on Z induces an ordering on P

which is what we considered in Definition 2.

A.6. Proof of Lemma 3. Statement (1) holds straightforwardly, in which cases P(Y1 ď y|P1 = p1) = P(Y1 ď y|P1 =

p1
1) for all y, p1 and p1

1.

Now consider (2)-(a). Let Hy(p2) ”
şp2
0

!

P(Y11 ď y|V2 = v2) ´ P(Y10 ď y|V2 = v2)
)

dv2. If Yd0|V2 =

v2 ľFSD Yd1|V2 = v2, then Hy(¨) is an increasing function because the integrand is non-negative. Let PPP = (P1, P2)
1 and
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ppp = (p1, p2), then,

P(Y1 ď y|PPP = ppp) = P(Y11D2 + Y10(1 ´ D2) ď y|PPP = ppp)

= P(Y11D2 + Y10(1 ´ D2) ď y, D2 = 1|PPP = ppp) + P(Y11D2 + Y10(1 ´ D2) ď y, D2 = 0|PPP = ppp)

= P(Y11 ď y, V2 ď P2|PPP = ppp) + P(Y10 ď y, V2 ą P2|PPP = ppp)

= P(Y11 ď y, V2 ď P2|PPP = ppp) ´ P(Y10 ď y, V2 ď P2|PPP = ppp) + P(Y10 ď y|PPP = ppp)

=

ż p2

0
P(Y11 ď y|V2 = v2, PPP = ppp)dv2 ´

ż p2

0
P(Y10 ď y|V2 = v2, PPP = ppp)dv2 + P(Y10 ď y)

=

ż p2

0
P(Y11 ď y|V2 = v2)dv2 ´

ż p2

0
P(Y10 ď y|V2 = v2)dv2 + P(Y10 ď y) = Hy(p2) + P(Y10 ď y),

Therefore,

P(Y1 ď y|P1 = p1) = EP2|P1=p1
[P(Y1 ď y|PPP)] = EP2|P1=p1

[Hy(P2)] + P(Y10 ď y).

Similarly, we have

P(Y1 ď y|P1 = p1
1) = EP2|P1=p1

1
[Hy(P2)] + P(Y10 ď y),

Take the difference, we have

P(Y1 ď y|P1 = p1) ´ P(Y1 ď y|P1 = p1
1) = EP2|P1=ppp[Hy(P2)] ´ EP2|P1=p1

1
[Hy(P2)].

If P2|P1 = p1
1 ľFSD P2|P = p1, then it follows that EP2|PPP=ppp1

[Hy(P2)] ´ EP2|P1=p1
1
[Hy(P2)] ď 0. Therefore, P(Y1 ď

y|P1 = p1) ´ P(Y1 ď y|P1 = p1
1) ď 0 for any p1

1 ě p1, that is, Yd|P1 = p1 ľFSD Yd|P1 = p1
1 for any p1

1 ě p1. For

(2)-(b), we have P2|P1 = p1 ľFSD P2|P = p1
1, then it must be the case that EP2|PPP=ppp1

[Hy(P2)]´ EP2|P1=p1
1
[Hy(P2)] ě 0,

hence P(Y1 ď y|P1 = p1) ´ P(Y1 ď y|P1 = p1
1) ě 0 for any p1

1 ě p1, that is, Yd|P1 = p1
1 ľFSD Yd|P1 = p1 for any

p1
1 ě p1.

Part (3) can be proved analogously as part (2). l

A.7. Positive Dependence and Copula. We first state the following definitions.

Definition 3 (Imperfect IVs).

(a) Affiliated IV: We say the propensity score P is an Affiliated IV if the joint density fP,Yd of P and Yd satisfies

fP,Yd (p, y) fP,Yd (p1, y1) ě fP,Yd (p, y1) fP,Yd (p1, y) for any p ą p1 and y ą y1, where (p, y) and (p1, y1) belong

to the joint support of (P, Yd)
18.

(b) IHRD IV: We say the propensity score P is an Inverse Hazard Rate Decreasing IV if
FYd|P(y|p)
fYd|P(y|p) is non-increasing

in p for all y.

(c) MIV: We say P is a monotone IV if for any pair (p1, p) P P ˆP such that p1 ě p, P = p, i.e. Yd|P = p1 ľFSD

Yd|P = p. In other terms, P(Yd ą y|P = p) is non-decreasing in p for all y P Y .19

18It is also referred as fP,Yd (y, p) being TP2 (Totally Positive of Order 2)
19This property is also referred as Yd being positively regression dependent on P.
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(d) RTI-IV: We say the propensity score P is a right tail increasing IV, if Yd is right tail increasing in P, i.e.

RTI(Yd|P) meaning that P(Yd ą y|P ą p) is non-decreasing in p for all y P Y .

(e) LTD-IV: We say the propensity score P is a left tail decreasing IV, if Yd is left tail decreasing in P, i.e.

LTD(Yd|P) meaning that P(Yd ď y|P ď p) is non-increasing in p for all y P Y .

(f) PQD-IV: We say the propensity score P is a positive quadrant dependent IV, if P(Yd ą y, P ą p) ě P(Yd ą

y)P(P ą p) for all (y, p) P Y ˆ P .

The next result shows that all these imperfect IV restrictions can be equivalently written in terms of restrictions only on

the copula CYd ,P(., .).

Lemma 5. Let Yd and P be two continuous variables satisfying Assumption 4, then

(a) P is an affiliated IV if and only if

cYd ,P(x1, x2)cYd ,P(x1
1, x1

2) ě cYd ,P(x1
1, x2)cYd ,P(x1, x1

2)

for all (x1, x2) P [0, 1] and (x1
1, x1

2) P [0, 1] such that x1 ě x1
1 and x2 ě x1

2, where cYd ,P(x1, x2) =
B2CYd ,P(x1,x2)

Bx1Bx2
is the copula density.

(b) P is an IHRD IV if and only if for any x1 P [0, 1],

B2 log
BCYd ,P(x1,x2)

Bx2

Bx1Bx2
ě 0.

(c) P is an MIV if and only if CYd ,P(x1, x2) is concave in x2 for all x1 P [0, 1],

B2CYd ,P(x1, x2)

Bx2
2

ď 0. (19)

(d) P is an RTI-IV if and only if for any x2 P [0, 1] and almost all x1,

BCYd ,P(x1, x2)

Bx1
ě

[x2 ´ CYd ,P(x1, x2)]

1 ´ x1
. (20)

(e) P is an LTD-IV if and only if for any x2 P [0, 1] and almost all x1,

BCYd ,P(x1, x2)

Bx1
ď

CYd ,P(x1, x2)

x1
. (21)

(f) P is an PQD-IV if and only if for all (x1, x2) P [0, 1]2,

CYd ,P(x1, x2) ě x1x2. (22)

Proof. For Property (c) see Nelsen (2007, Theorem 5.2.10). For Properties (d) and (e) see Nelsen (2007, Corollary 5.2.6).

44



Properties (a) and (f) are obvious. For property (b), note first that FYd|P(y|p) =
BCYd ,P(FYd (y),FP(p))

Bx2
and fYd|P(y|p) =

B2CYd ,P(FYd (y),FP(p))
Bx1Bx2

fYd (y). Therefore,

fYd|P(y|p)
FYd|P(y|p)

=

B2CYd ,P(FYd (y),FP(p))
Bx1Bx2

fYd (y)
BCYd ,P(FYd (y),FP(p))

Bx2

=
B log

BCYd ,P(FYd (y),FP(p))
Bx2

Bx1
fYd (y).

If P is an IHRD IV, then
fYd|P(y|p)
FYd|P(y|p) is non-decreasing in p for all y. Since fYd (y) ą 0 and FP(p) is increasing in p, it is

equivalent to say
B log

BCYd ,P (x1,x2)

Bx2
Bx1

is non-decreasing in x2. l

A.8. Proof of Proposition 1. We make the following assumptions.

Assumption 8. tYi, Di, Ziu
n
i=1 are i.i.d. observations.

Assumption 9. We Assume the following.

i P is continuous with continuously differentiable density function fP.

ii There exists δ ą 0 such that fP(p) ą δ ą 0 all p P P .

iii For all y P Y , and d = 0, 1, P(Y ď y, D = d|P = p) is twice continuously differentiable in p.

Assumption 9-i is made for the sake of notation simplicity. If P has a mass point at a given p P PM, then we can

estimate P(Y ď y, D = d|P = p) by counting the portion of the event tYi ď y, Di = du over the subsample of Pi = p.

Assumption 9-ii ensures that there exist enough observations whose propensity score is in the neighborhood of p so that

we do not condition on an empty event. Assumption 9-(iii) is needed for consistent estimation of the generated regressor

P(Zi).

Assumption 10. There exists a sequence an Ñ 8 such that

sup
yPY J ,pPPM ,dPt0,1u

an|pP(Y ď y, D = d|P̂ = p) ´ P(Y ď y, D = d|P = p)| = Op(1),

where the sequence an is polynomial, that is, it satisfies an = nγ for some γ ą 0.

Assumption 10 is a high-level condition. It states that the quantity P(Y ď y, D = d|P = p) can be consistently

estimated using generated regressor P̂ at a polynomial rate uniformly over PM and Y J . Note that the set of values PM for

the conditioning variable P is finite. The variable to be taken expectation, 1tY ď y, D = du, is an indicator function and

is bounded. Hence, this condition holds for common nonparametric estimators, e.g., the two-step Nadaraya-Watson kernel

estimator of Rilstone (1996) or the two-step local polynomial estimator of Mammen, Rothe, and Schienle (2012, Corollary

1). In Lemma 6 below, we provide primitive conditions for a Kernel estimator to satisfy Assumption 10.

Assumption 11. The parameter space rΛd for (βd, δd) is compact. The identified set is in the interior of rΛd.

Assumption 11 is a technical assumption that enables us to derive consistency results in Proposition 1. In practice,

when one employs a comprehensive copula, such as the Frank copula, the parameter values are not bounded. In this case,
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one can set parameter space to [´B, ´c] Y [c, B] for some large B and small c, unless we believe the variables involved

are perfectly correlated or independent.

Assumption 12. The following conditions hold for the copula functions.

i The copula functions The copulas CYd ,V|P=p(¨, ¨; σd(p; δd)) and CYd ,P(¨, ¨; αd) are continuously differentiable

with respect to its arguments for any θd P rΛd. Furthermore, CYd ,V|P=p(¨, ¨; σd(p; δd)) is continuously differen-

tiable with respect to p.

ii The copulas CYd ,V|P=p(¨, ¨; σd(p; δd)) and CYd ,P(¨, ¨; αd) are continuously differentiable with respect to θd =

(αd, δd) over rΛd.

Assumption 12 holds common parameterization of the copula functions, as well as for the Bernstein approximation. It

ensures that the mapping Ψd,p(¨) and its inverse are continuously differentiable.

Assumption 13. Let an be specified in Assumption 10. Then ϵn is chosen such that ϵn Ñ 0 and ϵnan Ñ 8.

Assumption 13 specifies the “level” of the set estimator. A simple choice would be ϵn =
log n

an
.

Proof to Proposition 1. Our proof follows the same idea of Chernozhukov, Hong, and Tamer (2007, Theorem 3.1). We

first show

sup
(β̃d ,δ̃d)PrΛd

an
ˇ

ˇLd(β̃d, δ̃d) ´ Ld,n(β̃d, δ̃d)
ˇ

ˇ = Op(1). (23)

Note first for each (y, p) P Y J ˆ PM,

sup
(β̃d ,δ̃d)PrΛd

|κ̂d(y, p; β̃d, δ̃d) ´ κd(y, p; β̃d, δ̃d)|

= sup
(β̃d ,δ̃d)PrΛd

|Ψ´1
d,p(P[Y ď y, D = d|P = p]; β̃d, δ̃d) ´ Ψ´1

d,p(
pP[Y ď y, D = d|P = p]; β̃d, δ̃d)|

ď sup
(β̃d ,δ̃d)PrΛd ,tP[0,1],pP[0,1]

|Ψ´11

d,p (t; β̃d, δ̃d)| ˆ |pP[Y ď y, D = d|P = p] ´ P[Y ď y, D = d|P = p)| = Op(1/an),

(24)

where sup
(β̃d ,δ̃d)PrΛd ,tP[0,1],pP[0,1] |Ψ´11

d,p (t; β̃d, δ̃d)| ă CB for some constant CB by Assumption 12 and the last equality

holds by Assumption 10.

Recall that

Ld,n(β̃d, δ̃d) =
1

MJ

J
ÿ

j=1

I
ÿ

m=1

(κ̂d(y
j, pm; β̃d, δ̃d) ´ ¯̂κd(y

j; β̃d, δ̃d))
2 =

1
MJ

J
ÿ

j=1

κ̂κκ1
d(y

j; β̃d, δ̃d)(IM ´ Pι)κ̂κκd(y
j; β̃d, δ̃d)

where κ̂κκd(yj; β̃d, δ̃d) is the M ˆ 1 vector of (κ̂d(yj, pm; β̃d, δ̃d))m=1,2,¨¨¨ ,M, ι = (1, 1, ¨ ¨ ¨ , 1)1 is a M ˆ 1 vector of ones,

and Pι is the projection matrix ι(ι1ι)´1ι1, and IM is the identity matrix with dimension M. Ld(β̃d, δ̃d) takes a similar form
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with κ̂d replaced by κd. Hence,

sup
(β̃d ,δ̃d)PrΛd

ˇ

ˇLd(β̃d, δ̃d) ´ Ld,n(β̃d, δ̃d)
ˇ

ˇ

ď
1

MJ

J
ÿ

j=1

sup
(β̃d ,δ̃d)PrΛd

(κ̂κκ1
d(y

j; β̃d, δ̃d) ´ κκκ1
d(y

j; β̃d, δ̃d))(IM ´ Pι)(κ̂κκd(y
j; β̃d, δ̃d) ´ κκκd(y

j; β̃d, δ̃d))

+
2

MJ

J
ÿ

j=1

sup
(β̃d ,δ̃d)PrΛd

|(κ̂κκ1
d(y

j; β̃d, δ̃d) ´ κκκ1
d(y

j; β̃d, δ̃d))(IM ´ Pι)κκκd(y
j; β̃d, δ̃d)|

= Op(1/a2
n) + Op(1/an) = Op(1/an).

where the final equality holds because Equation (24).

By definition of the identified set, Ld(β̃d, δ̃d) = 0 for all (β̃d, δ̃d) P Λd, and the set estimator

pΛd =
␣

(β̃d, δ̃d) : anLd,n(β̃d, δ̃d) ď anϵn
(

,

Because sup(β̃d ,δ̃d)PΛd
anLd,n(β̃d, δ̃d) ă anϵn w.p.a.1 by Assumption 13 and Equation (23), it follows that P(Λd Ď

pΛd) Ñ 1, or equivalently, supθdPΛd
d(θd, pΛd)

p
Ñ 0, where for a generic set A, d(θd, A) = infθ1

dPA }θd ´ θ1
d}.

To show the other direction, let η ą 0 be an arbitrarily small positive number, and let Λη
d be the η´expansion of

Λd: Λη
d = tθd P rΛd : d(θd, Λd) ď ηu. By Equation (23), we have inf

θdPrΛd/Λη
d

Ln,d(θd) ě inf
θdPrΛd/Λη

d
Ld(θd) +

op(1). By the identification condition, there exists a δη , such that inf
θdPrΛd/Λη

d
Ld(θd) ě δη ą 0. On the other hand,

sup
pΛd

Ln,d(θd) ď ϵn = op(1). This means pΛd X (rΛd/Λη
d) = H w.p.a.1, which in turn implies P(pΛd Ď Λη

d) Ñ 1, or

sup
θdPpΛd

d(θd, Λd) ď η w.p.a.1. Since η is an arbitrarily small number, it follows that sup
θdPpΛd

d(θd, Λd)
p

Ñ 0.

Combine both parts, and it follows that dH(Λd, pΛd)
p

Ñ 0. l

Lemma 6. For p P PM and y P Y J , let

pP(Y ď y, D = d|P̂ = p) =

řn
i=1 1tYi ď y, Di = duKp

(
P̂i´p

hp

)
řn

i=1 Kp

(
P̂i´p

hp

) , (25)

where hp Ó 0 is a bandwidth, Kp is a univariate kernel function, and

P̂i ” P̂(Zi) =

ř

j‰i DiKz

(
Zj´Zi

hz

)
ř

j‰i Kz

(
Zj´Zi

hz

)
with hz Ó 0 and Kz being another pair of bandwidth and kernel function in estimating Pi ” P(Zi). Suppose the following

conditions hold:

(1) Let K (¨) be a second order kernel defined on [0, 1] (Epanechnikov kernel or biweight kernel). Then we choose

Kp(¨) = K(¨), and Kz(¨) = Kdz (¨), where dz is the dimension of z.
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(2) For some positive constants ϵz and ϵp, we have

hp = cpn´
1+ϵp

5 , hz = czn´ 1+ϵz
4+dz

where the undersmoothing constants ϵz and ϵp are positive and satisfies nhp Ñ 8 and nhdz
z Ñ 8.

(3) Assumptions 8 and 9 hold.

then Assumption 10 holds with an =

b

nhdz
z .

Proof. The proof to the lemma is a direct application of the main proposition of Rilstone (1996) and therefore omitted. l

APPENDIX B. ADDITIONAL RESULTS ON COPULAS

B.1. General Results using Bernstein Copula.

Theorem 4. Under Assumptions 1, 4 and 6, the identified set of the Bernstein copulas parameters ΘBC
I of

(
θ, (γje

r´1,y)yPY
)

P

ΘBC ˆ ΓBC is characterized as follows:

ΘBC
I =

#(
θ, (γje

r´1,y)yPY
)

P ΘBC ˆ ΓBC that satisfies Equations (29)and (30), for all g(.) P G
+

,

and for any integrable real function g(.), the identified set ΘI,g for DMTRg is defined as follows:

ΘI,g =

#(
E[g(Y1)|V = v, P = p; θ̄], E[g(Y0)|V = v, P = p; θ̄]

)
such that

E[g(Yd)|V = v, P = p; θ̄] = KdLd

Kd
ÿ

k=1

Ld
ÿ

l=1

βd
klbl´1,Ld´1(v)

Rd
ÿ

r=1

Sd
ÿ

s=1

βd
rsbs´1,Sd´1(FP)

# Kd´1
ÿ

j=k´1

(´1)j´k+1
(

Kd ´ 1
j

)(
j

k ´ 1

)(
RdSd

)j+1
ˆ

ÿ

n11+n12+...+nRdSd=j

(
j

n11, n12, ..., nRdSd

) Rd ,Sd
ź

e=1, f=1

(
βd

e f
)ne f

Sd
ź

f=1

(
b f ´1,Sd´1(FP)

)n¨ f γd,ne¨

r´1,g

+

@ θ̄ ”

(
θ, (γje

r´1,y)yPY
)

P ΘBC
I

+

.

Proof. The density of the Bernstein copula is given by:

cYd ,V|P(x1, x2; αd) = KdLd

Kd
ÿ

k=1

Ld
ÿ

l=1

αd
klbk´1,Kd´1(x1)bl´1,Ld´1(x2)

Note that bi,I(u) has an alternative representation:

bi,I(u) =
I
ÿ

j=i

(´1)j´i
(

I
j

)(
j
i

)
uj (26)
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First, we assume that Assumptions 1 and 4 hold, then under Assumption 6(i), we have

E[g(Yd)|V = v, P = p] =
ż

Y
g(y)KdLd

Kd
ÿ

k=1

Ld
ÿ

l=1

αd
klbk´1,Kd´1

(
FYd|P(y|p)

)
bl´1,Ld´1(v) fYd|P(y|p)dy

= KdLd

Kd
ÿ

k=1

Ld
ÿ

l=1

αd
klbl´1,Ld´1(v)

ż

Y
g(y)bk´1,Kd´1(FYd|P(y|p)) fYd|P(y|p)dy.

In addition, under Assumption 6(ii) we can derive the following:

FYd|P(y|p) = RdSd

Rd
ÿ

r=1

Sd
ÿ

s=1

βd
rsBr´1,Rd´1(FYd (y))bs´1,Sd´1(FP(p))

l jh n

χd
rs

,

fYd|P(y|p) = fYd (y)RdSd

Rd
ÿ

r=1

Sd
ÿ

s=1

βd
rsbr´1,Rd´1(FYd (y))bs´1,Sd´1(FP(p))

l jh n

ζd
rs

.

To ease the notation, when there is no confusion we will make the following abuse of notation FP ” FP(p) and

FYd ” FYd (y).

bk´1,Kd´1(FYd|P(y|p)) =
Kd´1
ÿ

j=k´1

(´1)j´k+1
(

Kd ´ 1
j

)(
j

k ´ 1

)(
FYd|P(y|p)

)j

=
Kd´1
ÿ

j=k´1

(´1)j´k+1
(

Kd ´ 1
j

)(
j

k ´ 1

)(
RdSd

)j
( Rd

ÿ

r=1

Sd
ÿ

s=1

χd
rs

)j

=
Kd´1
ÿ

j=k´1

(´1)j´k+1
(

Kd ´ 1
j

)(
j

k ´ 1

)(
RdSd

)j ÿ

n11+n12+...+nRd Sd=j

(
j

n11, n12, ..., nRdSd

)
(χd

11)
n11 (χd

12)
n12 ¨ ¨ ¨ (χd

RdSd
)nRd Sd

and,

bk´1,Kd´1(FYd|P(y|p)) fYd|P(y|p) =
Rd
ÿ

r=1

Sd
ÿ

s=1

$

&

%

Kd´1
ÿ

j=k´1

(´1)j´k+1
(

Kd ´ 1
j

)(
j

k ´ 1

)(
RdSd

)j+1

ÿ

n11+n12+...+nRdSd=j

(
j

n11, n12, ..., nRdSd

)
(χd

11)
n11 (χd

12)
n12 ¨ ¨ ¨ (χd

RdSd
)nRd Sd

,

.

-

ζd
rs fYd (y)
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We have the following factorization:

(χd
11)

n11 (χd
12)

n12 ¨ ¨ ¨ (χd
RdSd

)nRdSd ζd
rs

= βd
rsbs´1,Sd´1(FP)

Rd ,Sd
ź

e=1, f=1

(
βd

e f
)ne f

Rd
ź

e=1

(
Be´1,Rd´1(FYd )

)ne¨

Sd
ź

f=1

(
b f ´1,Sd´1(FP)

)n¨ f br´1,Rd´1(FYd )

where ne¨ =
řSd

f=1 ne f and n¨ f =
řRd

e=1 ne f . Then, we have

ż

Y
g(y)(χd

11)
n11 (χd

12)
n12 ¨ ¨ ¨ (χd

RdSd
)nRdSd ζd

rs fYd (y)dy

= βd
rsbs´1,Sd´1(FP)

Sd
ź

f=1

(
b f ´1,Sd´1(FP)

)n¨ f
Rd ,Sd
ź

e=1, f=1

(
βd

e f
)ne f E

[
g(Yd)

Rd
ź

e=1

(
Be´1,Rd´1(FYd )

)ne¨ br´1,Rd´1(FYd )
]

l jh n

γd,ne¨
r´1,g

Therefore, we can write:

ż

Y
g(y)bk´1,Kd´1(FYd|P(y|p)) fYd|P(y|p)dy =

Rd
ÿ

r=1

Sd
ÿ

s=1

βd
rsbs´1,Sd´1(FP)

# Kd´1
ÿ

j=k´1

(´1)j´k+1
(

Kd ´ 1
j

)(
j

k ´ 1

)(
RdSd

)j+1
ˆ

ÿ

n11+n12+...+nRd Sd=j

(
j

n11, n12, ..., nRdSd

) Rd ,Sd
ź

e=1, f=1

(
βd

e f
)ne f

Sd
ź

f=1

(
b f ´1,Sd´1(FP)

)n¨ f γd,ne¨

r´1,g

+

Finally, we have

E[g(Yd)|V = v, P = p] = KdLd

Kd
ÿ

k=1

Ld
ÿ

l=1

αd
klbl´1,Ld´1(v)

Rd
ÿ

r=1

Sd
ÿ

s=1

βd
rsbs´1,Sd´1(FP)

# Kd´1
ÿ

j=k´1

(´1)j´k+1
(

Kd ´ 1
j

)(
j

k ´ 1

)(
RdSd

)j+1
ˆ

ÿ

n11+n12+...+nRd Sd=j

(
j

n11, n12, ..., nRdSd

) Rd ,Sd
ź

e=1, f=1

(
βd

e f
)ne f

Sd
ź

f=1

(
b f ´1,Sd´1(FP)

)n¨ f γd,ne¨

r´1,g

+

(27)

Remark that when Rd = Sd = 1, CYd ,P(x1, x2; βd) = x1x2 which is equivalent to Yd K P, in such a case Equation (27)

simplifies to

E[g(Yd)|V = v, P = p] = KdLd

Kd
ÿ

k=1

Ld
ÿ

l=1

αd
klbl´1,Ld´1(v)

ż

Y
g(y)bk´1,Kd´1(FYd (y)) fYd (y)dy

l jh n

τd
g,k

=
Ld
ÿ

l=1

(
KdLd

Kd
ÿ

k=1

αd
klτ

d
g,k

)
l jh n

θ
g
dl

bl´1,Ld´1(v) =
Ld
ÿ

l=1

θ
g
dlbl´1,Ld´1(v) = E[g(Yd)|V = v]. (28)
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As can be seen we recover the parametric form Mogstad, Santos, and Torgovitsky (2018) imposed on the MTR.

Mogstad, Santos, and Torgovitsky (2018) approach imposes E[g(Yd)|V = v] =
řLd

l=1 θ
g
dlbl´1,Ld´1(v) as a primitive,

while in contrast we show that under a valid IV assumption —Assumption 2, imposing such a structure on the MTRs is

equivalent to parametrize the “selection on unobservables” dependence — CYd ,V|P(x1, x2; αd)— using a Bernstein Copula

of order Ld.

Going back to the general context, and by integrating the DMTEs we obtain the following model restriction:

E[g(Y)1tD = du|P = p] =
ż p+(1´p)1td=0u

p1td=0u

E[g(Yd)|V = v, P = p]dv

= KdLd

Kd
ÿ

k=1

Ld
ÿ

l=1

αd
kl

ż p+(1´p)1td=0u

p1td=0u

bl´1,Ld´1(v)dv
Rd
ÿ

r=1

Sd
ÿ

s=1

βd
rsbs´1,Sd´1(FP)

# Kd´1
ÿ

j=k´1

(´1)j´k+1
(

Kd ´ 1
j

)(
j

k ´ 1

)(
RdSd

)j+1
ˆ

ÿ

n11+n12+...+nRd Sd=j

(
j

n11, n12, ..., nRdSd

) Rd ,Sd
ź

e=1, f=1

(
βd

e f
)ne f

Sd
ź

f=1

(
b f ´1,Sd´1(FP)

)n¨ f γd,ne¨

r´1,g

+

Remark, we can show that Bl´1,Ld´1(1) ”
ş1
0 bl´1,Ld´1(v)dv = 1/Ld =

ż p

0
bl´1,Ld´1(v)dv

l jh n

Bl´1,Ld´1(p)

+
ş1

p bl´1,Ld´1(v)dv.

Therefore, we have:

E[g(Y)D|P = p] = K1L1

K1
ÿ

k=1

L1
ÿ

l=1

α1
kl Bl´1,L1´1(p)

R1
ÿ

r=1

S1
ÿ

s=1

β1
rsbs´1,S1´1(FP)

#

K1´1
ÿ

j=k´1

(´1)j´k+1
(

K1 ´ 1
j

)(
j

k ´ 1

)(
R1S1

)j+1
ˆ

ÿ

n11+n12+...+nR1S1=j

(
j

n11, n12, ..., nR1S1

) R1,S1
ź

e=1, f=1

(
β1

e f
)ne f

S1
ź

f=1

(
b f ´1,Sd´1(FP)

)n¨ f γ1,ne¨

r´1,g

+

(29)

and

E[g(Y)(1 ´ D)|P = p] = K0L0

K0
ÿ

k=1

L0
ÿ

l=1

α0
kl(1/L0 ´ Bl´1,L0´1(p))

R0
ÿ

r=1

S0
ÿ

s=1

β0
rsbs´1,S0´1(FP)

# Kd´1
ÿ

j=k´1

(´1)j´k+1
(

K0 ´ 1
j

)(
j

k ´ 1

)(
R0S0

)j+1
ˆ

ÿ

n11+n12+...+nR0S0=j

(
j

n11, n12, ..., nR0S0

) R0,S0
ź

e=1, f=1

(
β0

e f
)ne f

S0
ź

f=1

(
b f ´1,S0´1(FP)

)n¨ f γ0,ne¨

r´1,g

+

. (30)

Restrictions on γ
d,je
r´1,g

Recall γ
d,je
r´1,g ” E

[
g(Yd)

śRd
e=1

(
Be´1,Rd´1(FYd )

)je br´1,Rd´1(FYd )
]

for je P t1, ..., Ldu. γ
d,je
r´1,g is an unknown

parameter to estimate, but the set of potential values it can take is restricted by the model.
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In fact, each choice of g(.) imposes a restriction on γ
d,je
r´1,g, for instance for g(¨) = 1t¨ ď yu, g(.) = 1ty ă ¨ ď y1u,

g+ : Y Ñ R+, or g´ : Y Ñ R´ we have respectively

γ
d,je
r´1,y = E

[
1tY ď yu

Rd
ź

e=1

(
Be´1,Rd´1(FYd )

)je br´1,Rd´1(FYd )
]

ě 0, (31)

γ
d,je
r´1,y1 ´ γ

d,je
r´1,y = E

[
1ty ă Y ď y1u

Rd
ź

e=1

(
Be´1,Rd´1(FYd )

)je br´1,Rd´1(FYd )
]

ě 0 @y1 ą y, (32)

γ
d,je
r´1,g+ = E

[
g+(Yd)

Rd
ź

e=1

(
Be´1,Rd´1(FYd )

)je br´1,Rd´1(FYd )
]

ě 0, (33)

γ
d,je
r´1,g´ = E

[
g´(Yd)

Rd
ź

e=1

(
Be´1,Rd´1(FYd )

)je br´1,Rd´1(FYd )
]

ď 0. (34)

Remark that, while the dimensionality of γ
d,je
r´1,g depends on the complexity of the g(.), the set of unknown parameters

θ = (α0, α1, β1, β0) P ΘBC where

ΘBC ”

!

αd
kl ě 0, βd

rs ě 0, 1 ď l ď Ld, 1 ď k ď Kd, 1 ď r ď Rd, 1 ď s ď Sd, such that

Kd

Ld
ÿ

l=1

αd
kl = 1, Ld

Kd
ÿ

k=1

αd
kl = 1, Sd

R
ÿ

r=1

βd
rs = 1, Rd

Sd
ÿ

s=1

βd
rs = 1, for d P t0, 1u

)

is invariant to the choice of g(.). So choosing a more informative class of g(.), will provide a tighter identified set of the

copula parameters ΘBC
I . To do so, we will consider the half-interval class G ” tg(¨) = 1[¨ ď y], y P Yu which allow us

to recover the distributional DMTR FYd|V,P(y|v, p). We then consider (γje
r´1,y)yPY ” (γ

0,j
r´1,y, γ

1,j
r´1,y)yPY P ΓBC where

ΓBC ”

!

γ
d,je
r´1,y ě 0 @y P Y such that γ

d,je
r´1,y1 ´ γ

d,je
r´1,y ě 0 @ 8 ě y1 ą y ě ´8, for d P t0, 1u

)

.

l

B.2. Proof to Corollary 3. Now we consider the Bernstein copula with Kd = Ld = Rd = Sd = 2. In this case

b0,1(u) =
(

1
0

)
u0(1 ´ u)1´0 = 1 ´ u; b1,1(u) =

(
1
1

)
u1(1 ´ u)1´1 = u.

B0,1(u) = u ´
u2

2
; B1,1(u) =

u2

2
.

Therefore, we have

CYd ,V|P(x1, x2; αd) = 4tαd
11B0,1(x1)B0,1(x2) + αd

12B0,1(x1)B1,1(x2) + αd
21B1,1(x1)B0,1(x2) + αd

22B1,1(x1)B1,1(x2)u,

where αd
kl ě 0 and βd

rs ě 0 satisfy 2(αd
11 + αd

12) = 1, 2(αd
21 + αd

22) = 1, 2(αd
11 + αd

21) = 1, 2(αd
12 + αd

22) = 1. In this

case, we can express other αs in terms of αd
11, that is, αd

22 = αd
11, αd

21 = αd
12 = 1

2 ´ αd
11. To ensures all the parameters are
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greater or equal to zero, we need to have 0 ď αd
11 ď 1

2 . Therefore, we can write

CYd ,V|P(x1, x2; αd)

= 4

#

αd
11(x1 ´

x2
1

2
)(x2 ´

x2
2

2
) + (

1
2

´ αd
11)(x1 ´

x2
1

2
)

x2
2

2
+ (

1
2

´ αd
11)(x2 ´

x2
2

2
)

x2
1

2
+ αd

11
x2

1
2

x2
2

2

+

= 4αd
11x1x2 + (1 ´ 4αd

11)(x1x2
2 + x2x2

1) + (4αd
11 ´ 1)x2

1x2
2.

Note that if we define σd ” 4αd
11 ´ 1 P [´1, 1], then

CYd ,V|P(x1, x2; σd) = x1x2
(
1 + σd(p)(1 ´ x1)(1 ´ x2)

)
If we impose αd

11(p) = 1
4 ô σd(p) = 0, then we are imposing the selection-on-observable assumption.

Likewise, when Rd = Sd = 2, if we parameterize βd ” 4βd
11 ´ 1 P [´1, 1], then

CYd ,P(x1, x2; βd) = x1x2
(
1 + βd(1 ´ x1)(1 ´ x2)

)
.

When we impose βd
11 = 1

4 ô βd = 0, it follows that CYd ,P(x1, x2; βd) = x1x2, that is, the IV independence assumption

is satisfied.

Consider d = 1. Note first by Equation (9),

FY,D|P(y, 1|p) = c1,FP(p)(FY1 (y))p
(
1 + σ1(p)(1 ´ c1,FP(p)(FY1 (y)))(1 ´ p)

)
.

Let A = σ1(p)p(1 ´ p). We focus on the case A ‰ 0, that is, we do not consider p = 0 or p = 1 or values of p such

that σ1(p) = 0, because the solution is straightforward for those values. From the above equation, we have two possible

solutions for c1,FP(p)(FY1 (y)) ” H1(y, p, σ1). It turns out the only that is valid is given by the following expression (the

other one takes value outside of [0, 1]):

H1 =
A ´ p +

b

(A ´ p)2 + 4AFY,D|P(y, 1|p)

2A
.

Note take limit of σ1 Ñ 0 yield H1 Ñ
FY,D|P(y,1|p)

p . Next, we express DMTR as a function of (FY,D|P, σ1)

FY1|P,V(y|p, v) =
BCY1,V|P(x1, x2)

Bx2
|x1=H1,x2=v = H1 + σ1H1(1 ´ H1)(1 ´ 2v)

= H1 + σ1H1(1 ´ H1) ´ 2σ1H1(1 ´ H1)v

where

H1 =
A ´ p +

b

(A ´ p)2 + 4AFY,D|P(y, 1|p)

2A
, A = σ1 p(1 ´ p)

In this case, the DMTR is linear in v for any fixed value of p, but not linear in p for any fixed value of v. This is not a

result that we expect ex-ante.
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Next, we derive the possible range of σ1. Recall that

H1(y, p, σ1(p)) = c1,FP(p)(FY1 (y)) =
BCY1,P(x1, x2)

Bx2
|x1=FY1 (y),x2=FP(p)

= x1 + β1x1(1 ´ x1)(1 ´ 2x2)|x1=FY1 (y),x2=FP(p) = FY1 (y) + β1FY1 (y)(1 ´ FY1 (y))(1 ´ 2FP(p))

Define B1 = β1(1 ´ 2FP(p)). Solve FY1 (y) from the above equation, we get again two possible solutions.

B1 + 1 +
a

(B1 + 1)2 ´ 4B1H1
2B1

, or
B1 + 1 ´

a

(B1 + 1)2 ´ 4B1H1
2B1

We restrict our attention to the case B1 ‰ 0, otherwise FY1 (y) has a unique solution which equals to H1(y, p, σ1(p)).

Note also that B1 P [´1, 1], so B1 + 1 ě 2B1 and B1 + 1 ě 0. Following similar argument as above (and use the fact that

0 ď H1 ď 1, we can show that the first solution is not valid while the second solution is. Therefore, it must be the case that

FY1 (y) =
β1(1 ´ 2FP(p)) + 1 ´

a

(β1(1 ´ 2FP(p)) + 1)2 ´ 4β1(1 ´ 2FP(p))H1(y, p, σ1(p))
2β1(1 ´ 2FP(p))

,

where

H1 =
σ1(p)p(1 ´ p) + p ´

b

(σ1(p)p(1 ´ p) + p)2 ´ 4σ1(p)p(1 ´ p)FY,D|P(y, 1|p)

2σ1(p)p(1 ´ p)
.

The possible range of (β1, σ1) is such that the right hand side of FY1 (y) being flat in p.

Now consider d = 0. Note first by Equation (10),

FY,D|P(y, 0|p) = c0,FP(p)(FY0 (y)) ´ c0,FP(p)(FY0 (y))p
(
1 + σ0(p)(1 ´ c0,FP(p)(FY0 (y)))(1 ´ p)

)
.

From the above equation, we have two possible roots for c0,FP(p)(FY0 (y)). The valid one is given by

A0 + 1 ´ p ´

b

(A0 + 1 ´ p)2 + 4A0FY,D|P(y, 0|p)

2A0

where A0 = σ0(p)p(1 ´ p). It turns out that the second root is valid, that is,

c0,FP(p)(FY0 (y)) =
σ0 p(1 ´ p) + 1 ´ p ´

b

(σ0 p(1 ´ p) + 1 ´ p)2 + 4σ0 p(1 ´ p)FY,D|P(y, 0|p)

2σ0 p(1 ´ p)
” H0(y, p, σ0(p)).

The DMTR is given by

FY0|P,V(y|p, v) =
BCY0,V|P(x1, x2)

Bx2
|x1=H0,x2=v = H0 + σ1H0(1 ´ H0)(1 ´ 2v)

= H0 + σ0H0(1 ´ H0) ´ 2σ0H0(1 ´ H0)v.

Finally, repeating what we did for FY1 (y) and c1,FP(p)(FY1 (y)), we can do the same and obtain

FY0 (y) =
β0(1 ´ 2FP(p)) + 1 ´

a

(β0(1 ´ 2FP(p)) + 1)2 ´ 4β0(1 ´ 2FP(p))H0(y, p, σ0(p))
2β0(1 ´ 2FP(p))

.

And the range of (β0, σ0) is such that the right hand side of FY0 (y) being flat in p for all y.
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B.3. Frank Copula: Proof of Corollary 4. Consider d = 1. Note first,

FY,D|P(y, 1|p) = ´
1

σ1(p)
ln
[
1 +

(e´σ1(p)c1,FP (p)(FY1 (y)) ´ 1)(e´σ1(p)p ´ 1)
(e´σ1(p) ´ 1)

]
Solve c1,FP(p)(FY1 (y)) from the above equation we have

c1,FP(p)(FY1 (y)) = ´
1

σ1(p)
ln
[
1 +

(e´σ1(p)FY,D|P(y,1|p) ´ 1)(e´σ1(p) ´ 1)
(e´σ1(p)p ´ 1)

]
” H1(y, p, σ1(p))

Here, the H1(y, p, σ1(p)) only depends on quantities that are directly identifiable from the data and the finite dimensional

parameters. Then recall that

H1(y, p, σ1(p)) = c1,FP(p)(FY1 (y)) =
BCY1,P(x1, x2)

Bx2
|x1=FY1 (y),x2=FP(p)

=
(e´σ1 FY1 (y) ´ 1)e´σ1 FP(p)

(e´σ1 ´ 1) + (e´σ1 FY1 (y) ´ 1)(e´σ1 FP(p) ´ 1)
,

Again, solving FY1 (y) from it yields

FY1 (y; θ) = ´
1
β1

ln
[
1 +

H1(y, p, σ1(p))(e´β1 ´ 1)
e´β1 FP(p) ´ H1(y, p, σ1(p))(e´β1 FP(p) ´ 1)

]
Next consider d = 0. We know that

FYD|P(y, 0|p) = c0,FP(p)(FY0 (y)) +
1

σ0(p)
ln
[
1 +

(e´σ0(p)c0,FP (p)(FY0 (y)) ´ 1)(e´σ0(p)p ´ 1)
(e´σ0(p) ´ 1)

]
Solving c0,FP(p)(FY0 (y)) from the above equation we have

c0,FP(p)(FY0 (y)) =
1

σ0(p)
ln
[
1 +

(eσ0(p)FYD|P(y,0|p) ´ 1)(e´σ0(p) ´ 1)
e´σ0(p) ´ e´σ0(p)p

]
” H0(y, p, σ0(p))

Again, recall that

H0(y, p, σ0(p)) = c0,FP(p)(FY0 (y)) =
BCY0,P(x1, x2)

Bx2
|x1=FY0 (y),x2=FP(p) =

(e´σ0 FY0 (y) ´ 1)e´σ0 FP(p)

(e´σ0 ´ 1) + (e´σ0 FY0 (y) ´ 1)(e´σ0 FP(p) ´ 1)

Solve FY0 (y) from the above equation yields

FY0 (y; θ) = ´
1
β0

ln
[
1 +

H0(y, p, σ0(p))(e´β0 ´ 1)
e´β0 FP(p) ´ H0(y, p, σ0(p))(e´β0 FP(p) ´ 1)

]
.
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Finally, since Fd(y; θ) does not depends on p, its partial derivative with respect to p must be flat at 0 for all value of p,

and so does the right hand side of the equation. Therefore, for all p, noticing e´βd FP(p) ‰ 0 and Hd ‰ 0,

B

"

e´βd FP (p)´Hd(y,p,σd(p))(e´βd FP (p)´1)
Hd(y,p,σd(p))

*

Bp
= 0 ñ e´βd FP(p)

βd fP(p)(Hd ´ 1)Hd ´
BHd
Bp

H2
d

= 0

ñ βd fP(p)(1 ´ Hd)Hd +
BHd
Bp

= 0.

To obtain the identified set for the distributional DMTR, simply note that Hd(y, p, σd(p)) = cd,FP(p)(FYd (y)) =

FYd|P(y|p), hence

FYd|P,V(y|p, v) =
BCYd ,V|P(x1, x2)

Bx2
|x1=Hd ,x2=v =

(e´σd Hd ´ 1)e´σdv

(e´σd ´ 1) + (e´σd Hd ´ 1)(e´σdv ´ 1)
,

and restrict θ taking values from ΛF
I and

E[Yd|P = p, V = v] =
ż

y fYd|P,V(y|p, v)dy =

ż

ycYd ,V|P(y, v|p) fYd|P(y|p)dy

=

ż

y
´σd(p)(e´σd(p) ´ 1)e´σd(p)(Hd+v)

(e´σd ´ 1) + (e´σd Hd ´ 1)(e´σdv ´ 1))2
BHd(y, p, σd(p))

By
dy

APPENDIX C. EXTENSIONS

In this appendix section, we discussed two extensions to our baseline model. In section C.1, we consider the case in

which the treatment is determined by a double hurdle (DH) model. In section C.2, we consider the case in which the

outcome variable or propensity score is discrete.

C.1. Multiple Threshold-Crossing models. There are many empirical applications where a model imposing only STC

model cannot adequately model the selection to the treatment. Various examples are given in Heckman and Pinto (2018).

In presence of multiple potential instruments, one way to relax the “strong" monotonicity assumption is to consider the

“AM monotonicity" —in the language of Mogstad, Torgovitsky, and Walters (2019), which can be modelled by considering

the multiple hurdle model entertained in Lee and Salanié (2018). Our approach can be applied to the case where selection

into treatment is defined by a finite number of thresholds. However, for the sake of simplicity, we will consider the case

with two thresholds.

Assumption 14 (Double Hurdle model). The selection mechanism is governed by D = 1tQ1(Z) ą V1, Q2(Z) ą V2u

for some measurable and non-trivial function (Q1, Q2), where (V1, V2) has a joint continuous distribution over interval

[0, 1]2 with marginal uniform distributions and are statistically independent of the vector of
(
Q1(Z), Q2(Z)

)
, i.e.(

Q1(Z), Q2(Z)
)

K (V1, V2).

Unlike in the STC model, Q1(Z) and Q2(Z) are not readily identified from the choice probability P(D = 1|Z). Theo-

rem 4.2 in Lee and Salanié (2018) provides conditions under which Q1(Z), Q2(Z) and the joint distribution FV1,V2 (v1, v2)

are non-parametrically identified from the propensity score P(D = 1|Z). Their non-parametric identification approach
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requires two continuous “exogenous" covariates that generate all possible values of the thresholds. In our current approach,

the exogeneity refers only to the selection equation, i.e., (Z K (V1, V2)); Z could be correlated with the potential outcomes.

Without loss of generality, we use Z1 and Z2 to denote those exogenous covariates such that Q1(Z) ” Q1(Z1) does

not depend Z2 and Q2(Z) ” Q2(Z2) does not depend on Z1.20 Hereafter, we will assume that the regularity conditions

of Lee and Salanié (2018, Theorem 4.2) are valid and that FV1,V2 (v1, v2), Q1(Z1), and Q2(Z2) are identifiable from

the data. To ease the notation, we will write V = (V1, V2) and Q = (Q1, Q2). In the presence of multiple unobserved

heterogeneity in the selection mechanism, we define the DMTR as follows:

DMTRd
g(v, q) = P[Yd ď y|V = v, Q = q] ” FYd|V,Q(y|v, q),

for v P [0, 1]2, q P Q1 ˆ Q2, and d P t0, 1u. First, we can show that all conventional policy parameters can also be

written as a weighted average of the DMTRd
g even in the presence of multiple thresholds. Before doing so, let’s introduce

the following assumption:

Assumption 15 (Conditional Policy Invariance). Ya1

d |Va1

, Qa1

„ Ya
d |Va, Qa with Va1

„ Va and Ya1

d „ Ya
d for a ‰ a1.

We have the following results for the double hurdle model.

Theorem 5. Suppose that Assumption 14 is satisfied, then

(i) MTE(v) =
ş

q fQ(q)DMTE(v, q)dq;

(ii) For any s P tATE, LATE(u,u1), ATT, ATUTu21 and weights ωs(v, q) listed in Table 5 below, we have

s =
ż

v

ż

q
ωs(v, q)DMTE(v, q)dvdq. (35)

(iii) If in addition Assumption 15 holds, Equation (35) holds with s = PRTE.

(iv) If in addition, Lee and Salanié (2018, Assumption 4.2) holds, then all the weights ωs(v, q) are point identified.

Proof. under Assumption 14 we have: fQ,V(q, v) = fQ(q) fV(v), this latter equality will be directly used in all the

derivations below. For (i) to (iii) we have:

MTEg(v) ” E[g(Y1) ´ g(Y0)|V = v] =
ż

q
fQ(q)DMTEg(v, q)dq

ATEg ” E[g(Y1) ´ g(Y0)] =

ż

v

ż

q
fQ(q) fV(v)
l jh n

wATE(v,q)

DMTEg(v, q)dqdv

20For the entire list of requirements please see Assumption 4.2 in Lee and Salanié (2018). They also discussed identification
under weaker conditions.
21Here LATE(u, u1) represents the average treatment effect for the group of compliers when P is externally changed from
u to u1: LATEg(u, u1) ” E[g(Y1) ´ g(Y0)|u1 ă V1 ď u1

1, u2 ă V2 ď u1
2].
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LATEg(u, u1) ” E[g(Y1) ´ g(Y0)|u1 ă V1 ď u1
1, u2 ă V2 ď u1

2]

=

ż

v

ż

q

fQ(q) fV(v)1tvP[u1,u1
1]ˆ[u2,u1

2]u

FV
(
v P [u1, u1

1] ˆ [u2, u1
2]
)

l jh n

wLATE(u,u1)(v,q)

DMTEg(v, q)dqdv

For vector a and b, let a ď b denote “component-wise smaller or equal to”. Then,

ATTg ”

ż

q
E[g(Y1) ´ g(Y0)|D = 1, Q = q]dFQ|D=1(q)

=

ż

q
E[g(Y1) ´ g(Y0)|V ď q, Q = q]dFQ|D=1(q)

=

ż

q

ż

vďq

1
FV(q)

E[g(Y1) ´ g(Y0)|V = v, Q = q]dFQ|D=1(q)

=

ż

v

ż

q

fQ(q) fV(v)1tvP[0,q1]ˆ[0,q2]u

E[FV(Q)]
l jh n

wATT(v,q)

DMTEg(v, q)dqdv

where dFQ|D=1(q) =
fQ(q)FV(q)

P(D=1) by Bayesian rule and P(D = 1) = E[E[D|Q]] = E[FV(Q)]. Likewise, we can

derive the ATUT weights as follows:

ATUTg ”

ż

q
E[g(Y1) ´ g(Y0)|D = 0, Q = q]dFQ|D=0(q)

=

ż

v

ż

q

fQ(q) fV(v)1tvR[0,q1]ˆ[0,q2]u

E[1 ´ FV(Q)]
l jh n

wATUT(v,q)

DMTEg(v, q)dqdv

Concerning the PRTEg, under Assumption 14 only, we have:

E[g(Ya)] =

ż

q
E[g(Ya)|Qa = q]dFQa (q) =

ż

q
E[(g(Ya

1 ) ´ g(Ya
0 ))Da|Qa = q]dFQa (q) + E[g(Ya

0 )]

=

ż

v

ż

q
1tvP[0,q1]ˆ[0,q2]u fQa (q) fVa (v)E[g(Ya

1 ) ´ g(Ya
0 )|V

a = v, Qa = p]dpdv + E[g(Ya
0 )]

=

ż

v

ż

q
1tvP[0,q1]ˆ[0,q2]u fQa (q) fVa (v)DMTEa

gdqdv + E[g(Ya
0 )]

Since we have DMTEa1

g = DMTEa
g, fVa1 = fVa , and E[g(Ya1

0 )] = E[g(Ya
0 )] under Assumption 15, then under both

Assumptions 14 and 15 we have:

E[g(Ya1

) ´ g(Ya)] =

ż

v

ż

q
[ fQa1 (q) ´ fQa (q)] fVa (v)1tvP[0,q1]ˆ[0,q2]uDMTEa

gdqdv
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Therefore,

PRTEg =

ż

v

ż

q

[ fQa1 (q) ´ fQa (q)] fVa (v)1tvP[0,q1]ˆ[0,q2]u

E[FV(Qa1 )] ´ E[FV(Qa)]
l jh n

wPRTE(v,q)

DMTEa
gdqdv.

For (iv): Q1(Z1), Q2(Z1) and FV(v) are shown to be identified in Lee and Salanié (2018, Theorem 4.2). The

remaining point that we need to show is that the joint distribution FQ(q) is also point identified. Indeed, we have for

Z = (Z1, Z2),

FQ(q) = P(Q1(Z1) ď q1, Q2(Z2) ď q2)

= P
(
Z1 ď Q´1

1 (q1), Z2 ď Q´1
2 (q2)

)
= FZ

(
Q´1

1 (q1), Q´1
2 (q2)

)
where the joint distribution FZ(., .) is directly observed from the data. The invertibility of Q1 and Q2 is ensured by Lee

and Salanié (2018, Assumption 4.2). l

TABLE 5. Policy Parameters and DMTE in the multiple thresholds case.

Parameters weights ωs(v, q)
ATE fQ(q) fV(v)

ATT
fQ(q) fV(v)1tvP[0,q1 ]ˆ[0,q2 ]u

E[FV(Q)]

ATUT
fQ(q) fV(v)1tvR[0,q1 ]ˆ[0,q2 ]u

E[1´FV(Q)]

LATE(u,u1)
fQ(q) fV(v)1tvP[u1,u1

1 ]ˆ[u2,u1
2 ]u

FV

(
vP[u1,u1

1]ˆ[u2,u1
2]
)

PRTE
[ f

Qa1 (q)´ fQa (q)] fVa (v)1tvP[0,q1 ]ˆ[0,q2 ]u

E[FV(Qa1 )]´E[FV(Qa)]

Remark 5. In presence of valid IVs, i.e. (Z1, Z2) K Yd|V our weights ωs(v, q) for any s P tATE, ATT, ATUT, PRTEu

collapse to the weights proposed by Lee and Salanié (2018) for the DH model. If in addition both V and Q are scalar-valued

random variable, then the weights in Table 5 reduce to the weights in Table 1.

Notice that LATEg(u, u1) ” E[g(Y1)´ g(Y0)|u1 ă V1 ď u1
1, u2 ă V2 ď u1

2] is a generalization of the LATE defined

in Imbens and Angrist (1994) when the selection into treatment is defined by two thresholds. This type of parameter has

recently received attention from empirical researchers, e.g. Arteaga (2018).

Assumption 16. The joint distribution of (Yd, V, Q) is absolutely continuous respect to the Lebesgue measure.
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Lemma 7. [Vine Copula] Under Assumptions 14 and 16, for d P t0, 1u we have for each y P Y and q P Q1 ˆ Q2,

FYd|Q1
(y|q1) =

B

Bx2
CYd ,Q1 (x1, x2)

ˇ

ˇ

ˇ

x1=FYd (y),x2=FQ1 (q1)
” cI

d,FQ1 (q1)

(
FYd (y)

)
, (36)

FYd|Q(y|q) =
B

Bx2
CYd ,Q1|Q2=q2

(x1, x2)
ˇ

ˇ

ˇ

x1=FYd|Q1
(y|q1),x2=FQ1|Q2 (q1|q2)

” cI I
d,FQ1|Q2

(FYd|Q1
(y|q1)), (37)

FYd|V2,Q(y|v2, Q) =
B

Bx2
CYd ,V2|Q=q(x1, x2)

ˇ

ˇ

ˇ

x1=FYd|Q(y|q),x2=v2
” cI I I

d,v2
(FYd|Q(y|q)), (38)

FYd|V,Q(y|v, Q) =
B

Bx2
CYd ,V1|V2=v2,Q=q(x1, x2)

ˇ

ˇ

ˇ

x1=FYd|V2,Q(y|v2,q),x2=FV1|V2 (v1|v2)
, (39)

and there exists monotone mapping Ψ1,q and Ψ0,q such that for each y P Y and q P Q1 ˆ Q2,

P[Y ď y, D = 1|Q = q] = Ψ1,q(FY1 (y)), (40)

and

P[Y ď y, D = 0|Q = q] = Ψ0,q(FY0 (y)) (41)

where the expressions for Ψd,q is defined in the proof below.

Proof. Equations (36) to (39) are direct applications of Joe (1996, Property 2), with some simplifications due to the fact

that Assumption 14 imposes that V K Q.

Next we prove Equation (40). Given d = 1, y P Y , and q P Q1 ˆ Q2,

P[Y ď y, D = 1|Q = q] = P[Y1 ď y, V ď q|Q = q] = P[Y1 ď y, V1 ď q1|V2 ď q2, Q = q]q2

=

ż q2

0
P[Y1 ď y, V1 ď q1|V2 = v2, Q = q]dFV2|Q(v2|q) =

ż q2

0
P[Y1 ď y, V1 ď q1|V2 = v2, Q = q]dv2 (42)

For a given v2, the integrand P[Y1 ď y, V1 ď q1|V2 = v2, Q = q] can be handled in a similar way as in the STC case:

P[Y1 ď y, V1 ď q1|V2 = v2, Q = q] = CY1,V1|V2,Q

(
FY1|V2,Q(y|v2, q), FV1|V2,Q(q1|v2, q); v2, q

)
= CY1,V1|V2,Q

(
cI I I

1,v2
(FY1|Q(y|q)), FV1|V2

(q1|v2); v2, q
)
= CY1,V1|V2,Q

(
cI I I

1,v2
˝ cI I

1,FQ1|Q2
(FY1|Q1

(y|q1)), FV1|V2
(q1|v2); v2, q

)
= CY1,V1|V2,Q

(
cI I I

1,v2
˝ cI I

1,FQ1|Q2
˝ cI

1,FQ1 (q1)
(FY1 (y)), FV1|V2

(q1|v2); v2, q
)

” rΨ1,q(FY1 (y), v2). (43)

where the equalities hold by Equations 36, 37, and 38 and the assumption that Q K V, and the “˝” denotes composite

functions. Since for every y, q, and v2, the functions cI , cI I and cI I I are monotone, and CY1,V1|V2,Q is also monotone in its

first argument, then it follows that for each given y P Y and q P Q1 ˆ Q2,

P[Y ď y, D = 1|Q = q] =
ż q2

0
rΨ1,q(FY1 (y), v2)dv2 ” Ψ1,q(FY1 (y))

is also a monotone function in FY1 (y).
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Note that if there was no V2 and Q2, that is, if the model is single threshold crossing model, then we would not have

the additional integration in Equation (42), and we do not need to use the two layers of vine-copula operation cI I I and cI

for V2 and Q2, respectively. In this case, the expression for Ψ1,q exactly reduces to the expression for Ψ1,p in Lemma 2.

For the case of d = 0, note that

P[Y ď y, D = 0|Q = q] = P[Y0 ď y|Q = q] ´ P[Y0 ď y, D = 1|Q = q]

= cI I
0,FQ1|Q2

˝ cI
0,FQ1 (q1)

(FY0 (y)) ´

ż q2

0
rΨ0,q(FY0 (y), v2)dv2 ” Ψ0,q(FY0 (y)),

where rΨ0,q is defined in the same way as rΨ1,q with index “1” being replaced by “0”. l

Given Lemma 7, the identified set for DMTR or DMTE can be constructed as in Theorems 2 and 3, and as in

Corollaries 3 and 4 when a specific approximation or parametrization is imposed on copulas.

C.2. Discrete Variables. In this subsection, we drop Assumption 4 and show how to extend Theorem 2 to the case of

discrete outcome variables. We start with discrete outcome variable, and then add discreteness to propensity score.

C.2.1. Discrete Outcome Variables.

Assumption 17. The joint density f(V,P)|Yd
(v, p|y)of (V, P) given Yd = y, d = 0, 1, exists and is positive for all

(v, p) P [0, 1] ˆ [0, 1] and all y P Y ” ty1, y2, ¨ ¨ ¨ , yJu. Without loss of generality, assume the set Y is ordered: yj ă yℓ

for 1 ď j ă ℓ ď J.

Assumption 17 says that the marginal distribution of Yd has finite support. Furthermore, the joint support of (Yd, P, V)

is “rectangular”. Let Td = tFYd (y
1), FYd (y

2), ¨ ¨ ¨ , FYd (y
J)u be the set of values that FYd (y) can take. Similarly, defined

T p
d = tFYd|P(y1|p), FYd|P(y2|p), ¨ ¨ ¨ , FYd|P(yJ |p)u be the set of values that FYd|P(¨|p) can take for each given p. Also

define T Dp
d = tP(Y ď y1, D = d|P = p), ¨ ¨ ¨ , P(Y ď yJ , D = d|P = p)u. Again, let CYd ,V|P=p and CYd ,P be the true

copulas that generate the data. By Sklar’s theorem, they must be strictly increasing in the first argument over T p
d and Td,

respectively. Let Csub
Yd ,V|P=p be a sub-copula that coincides with the true copula CYd ,V|P=p over T p

d ˆ [0, 1]. Let Csub
Yd ,P be

a sub-copula that coincides with the true copula CYd ,P over Td ˆ P .

Lemma 8 (Vine Copula with discrete Y). Under Assumptions 1 and 17, for each y P Y ,

FYd|P(y|p) =
B

Bx2
Csub

Yd ,P(x1, x2)
ˇ

ˇ

ˇ

x1=FYd (y),x2=FP(p)
” csub

d,FP(p)(FYd (y)), (44)

FYd|V,P(y|v, p) =
B

Bx2
Csub

Yd ,V|P=p(x1, x2)
ˇ

ˇ

ˇ

x1=FYd|P(y|p),x2=v
(45)

Also, for each given p, there exists strictly increasing mappings Γd,p: Td Ñ T Dp
d such that

P[Y ď y, D = 1|P = p] = Γ1,p(FY1 (y)) ” Csub
Y1,V|P=p

(
csub

1,FP(p)(FY1 (y)), p; p
)

, (46)

P[Y ď y, D = 0|P = p] = Γ0,p(FY0 (y)) ” csub
0,FP(p)(FY0 (y)) ´ Csub

Y0,V|P

(
csub

0,FP(p)(FY0 (y)), p; p
)

. (47)
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That is, the observed probability P[Y ď y, D = d|P = p] depends on y only through FYd (y).

Furthermore, fixing p, let Γ(´1)
d,p be defined as

Γ(´1)
d,p (t) = tu P Td : Γd,p(u) = tu,

then Γ(´1)
d,p (t) is singleton for any t P T Dp

d . Furthermore,

Γ(´1)
d,p (P[Y ď y, D = d|P = p]) = Γ(´1)

d,p1 (P[Y ď y, D = d|P = p1]), (48)

Finally, the identified set for copula functions is characterized by

Λd =

#

θ̃ P rΘ : For d P t0, 1u, (CYd ,V|P, CYd ,P) P Cc
d ˆ Cd who admits subcopulas satisfying Equation (48)

+

.

Proof. First, we show that Equations (44) and (45) hold. By the Sklar (1959)’s theorem we known that there exists a copula

CYd ,P(x1, x2) such that P(Yd ď y, P ď p) = CYd ,P(FYd (y), FP(p)). Note that the copula CYd ,P may not be unique, but

the subcopula Csub
Yd ,P, which defined on Td ˆ [0, 1], is uniquely determined. Then

FYd|P(y|p) = lim
δÑ0

P(Yd ď y, P ď p + δ) ´ P(Yd ď y, P ď p ´ δ)

P(p ´ δ ď P ď p + δ)

= lim
δÑ0

CYd ,P(FYd (y), FP(p + δ)) ´ CYd ,P(FYd (y), FP(p ´ δ))

FP(p + δ) ´ FP(p ´ δ)

=
B

Bx2
CYd ,P(x1, x2)

ˇ

ˇ

ˇ

x1=FYd (y),x2=FP(p)

where by Nelsen (2007, Theorem 2.2.7) the partial derivative B
Bx2

CYd ,P(x1, x2) exists and is non-decreasing for almost

all x1 on [0, 1]. Because Csub
Yd ,P coincide with CYd ,P over Td ˆ [0, 1], we must have B

Bx2
CYd ,P(x1, x2) =

B
Bx2

Csub
Yd ,P(x1, x2)

for any x1 P Td and x2 P [0, 1]. Furthermore, B
Bx2

Csub
Yd ,P(x1, x2) must be strictly increasing in the first argument over

Td because B
Bx2

CYd ,P(x1, x2) is. This verifies Equation (44). Similarly, for almost all x1 P [0, 1] there exists a partial

derivative B
Bx2

Csub
Yd ,V|P(x1, x2) that is strictly increasing in x1 over T p

d such that the following holds

FYd|V,P(y|v, p) =
B

Bx2
Csub

Yd ,V|P=p(x1, x2)
ˇ

ˇ

ˇ

x1=FYd|P(y|p),x2=FV|P(v|p)
=

B

Bx2
Csub

Yd ,V|P=p(x1, x2)
ˇ

ˇ

ˇ

x1=FYd|P(y|p),x2=v

where the last equality holds because FV|P(v|p) = v. This verifies Equation (45).

Now, fixing y, for d = 1

P[Y ď y, D = 1|P = p] = P[Y1 ď y, V ď p|P = p] = Csub
Y1,V|P(FYd|P(y|p), p; p)

= Csub
Y1,V|P(c

sub
1,FP(p)(FY1 (y)), p; p),

where the last equality holds by using Equation (44). As discussed earlier, over Td, u ÞÑ csub
1,FP(p)(u) is strictly increasing,

and over T p
d , x1 ÞÑ Csub

Y1,V|P(x1, x2; p) is also strictly increasing, therefore u ÞÑ CY1,V|P=p

(
c1,FP(p)(u), p; p

)
” Ψ1,p(u)
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is strictly increasing over Td. Similarly, for d = 0, then

P[Y ď y, D = 0|P = p] = P[Y0 ď y, V ą p|P = p] = P[Y0 ď y|P = p] ´ P[Y0 ď y, V ď p|P = p]

= csub
0,FP(p)(FY0 (y)) ´ Csub

Y0,V|P(c
sub
0,FP(p)(FY0 (y)), p; p) ” Γ0,p(FY0 (y)),

where the mapping Γ0,p(u) is strictly increasing in u over Td because the left hand side of the equation above is increasing

in y over Y (by the definition of conditioning probability), and FY0 (y) is increasing in y over Y . Because Γd,p(u) is

strictly increasing over Td, its inverse, as a subset of Td, must be a singleton. In the next step of the proof, we will show

that the identified set is characterized by Equation (48). To verify the set defined in Theorem 2 is sharp, it is sufficient

to show that Equations (46) and (47) and Equation (48) are equivalent. It is straightforward to see that Equations (46)

and (47) imply Equation (48), we will verify the reverse.

Take a pair of candidate copula functions CYd ,V|P=p and CYd ,P (that respect the support condition) and suppose their

subcopulas satisfy Equation (48), that is, Γ(´1)
d,p (P[Y ď y, D = d|P = p]) is flat in p for any y P Y . Note by construction

and the definition of copula, Γ(´1)
d,p is strictly increasing in y over Y by construction.

Next from the definitions in Equations (46) and (47) we know that because 1 P Td and 1 P T p
d , we have

csub
1,FP(p)(1) = c1,FP(p)(1) = 1, Csub

Y1,V|P=p(1, p; p) = CY1,V|P=p(1, p; p) = p ñ Γ´1
1,p(P[Y ď yK , D = 1|P = p]) = 1.

Also,

csub
1,FP(p)(FY1 (y1)) = c1,FP(p)(FYd (y1)) ą 0, Csub

Y1,V|P=p(FY1|P(y1|p), p; p) = CY1,V|P=p(FY1|P(y1|p), p; p) ą 0

ñ Γ´1
1,p(P[Y ď y1, D = 1|P = p]) ą 0,

This says that Γ´1
1,p(P[Y ď ¨, D = 1|P = p]), as a function of y, is positive, strictly increasing, and no bigger than 1 over

the set Y . Therefore, it is valid distribution function for a discrete random variable that takes values from Y , which we can

choose as the counterfactual distribution FY1 . Similar argument applies to FY0 . This completes the proof. l

Given Lemma 8 characterizes the identified set for copula functions Λd, we can derove the identified set for the DMTR

as in the main text. Let τ(2)(x1, x2) be the derivative of Csub
Yd ,V|P=p(x1, x2) with respect to the second argument, and let

r´1
(1) be the inverse of Csub

Yd ,V|P=p(x1, x2) with respect to the first argument. The inverse is well-defined over T Dp
d for any

given p. Then by using Equations (45) to (47) , we have

FYd|V,P(y|v, p) = τ(2)

(
r´1
(1)(P[Y ď y, D = d|P = p], p), v

)
” Ξd,p,v(P[Y ď y, D = d|P = p]).

C.2.2. Discrete Propensity Score. In this section, we consider the case in which the propensity score P is discrete. We

will argue that Lemma 8 still holds but with the definition of csub
d,FP(p) being properly modified due to the discreteness of P.
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Assumption 18. The density fV|P,Yd
(v|p, y) of V given (Yd, P) = (y, p), d = 0, 1, exists and is positive for all v P [0, 1],

all y P Y , and all p P P = tp1, p2, ¨ ¨ ¨ , pMu. The conditioning support of Yd given P = p does not depends on p. P is

ordered such that 0 ă pj ă pℓ ă 1 for all 1 ď j ă ℓ ď I.

Let CYd ,V|P=p and CYd ,P be the true copulas that generate the data. As in Appendix C.2.1, Let Csub
Yd ,V|P=p be a

sub-copula that coincides with the true copula CYd ,V|P=p over T p
d ˆ [0, 1]. Let Csub

Yd ,P be a sub-copula that coincides with

the true copula CYd ,P over Td ˆ Tp, where Tp is the set of values Tp ” tFP(p) : p P Pu. If Y is discrete, then both T p
d

and Td are sets contains finite elements. Under Assumption 18, Tp is a finite set of J elements. For a given y, define

T DY
p = tP(Y ď y, D = d|P = p1), ¨ ¨ ¨ , P(Y ď yJ , D = d|P = pM)u.

First, Equation (45) still holds, as the argument in Appendix C.2.1 only requires CYd ,V|P to be differentiable with

respect to the dimension of V, which is ensured by Assumption 18. Equation (44) will take a different form. Define p´ be

the largest value in P that is strictly smaller than p (in p is already the smallest element, then p´ = 0). For each given

p P P and y P Y , we have

FYd|P(y|p) =
P(Yd ď y, P = p)

P(P = p)
=

Csub
Yd ,P(FYd (y), FP(p)) ´ Csub

Yd ,P(FYd (y), FP(p´))

Csub
Yd ,P(1, FP(p)) ´ Csub

Yd ,P(1, FP(p´))
” csub

d,FP(p)(FYd (y)), (49)

where we still have a mapping csub
d,FP(p) that maps Td to T p

d . Again, fixing p, when Yd is discrete, both Td and T p
d has J

elements under Assumption 17. When Yd is continuous, they are both continuous sets. The difference is that when P is

continuous, the mapping csub
d,FP(p) is defined as the partial derivative of Csub

Yd ,P with respect to its second argument. When P

is discrete, it takes the form in Equation (49). By property of sub-copula, csub
d,FP(p)(¨) must be strictly increasing over Td

and admits an inverse function. Hence, the mapping Γd,p: Td Ñ T Dp
d , which was defined in Equations (46) and (47) is

still strictly increasing and admits an inverse Γ(´1)
d,p . The rest of the results follows from the same argument as in Lemma 8.
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