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Abstract

This paper considers a general class of varying coefficient models defined by a set

of moment equalities and/or inequalities, where unknown functional parameters are

not necessarily point-identified. We propose an inferential procedure for a subvec-

tor of the varying parameters and establish the asymptotic validity of the resulting

confidence sets uniformly over a broad family of data-generating processes. We also

propose a practical specification test for a set of necessary conditions of models

considered in this paper. Monte Carlo studies show that the proposed methods

have good finite sample properties. We apply our method to estimate the return to

education using part of the year 2005 1%-population census data from China.
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1 Introduction

Since the seminal paper of Hastie and Tibshirani (1993), varying coefficient models have

been widely adopted in empirical research in economics and finance for their balance of

providing both dimension reduction and flexible modeling of heterogeneous effects. For

example, Li, Huang, Li, and Fu (2002) proposed a semiparametric varying coefficient

model to estimate production functions in which the elasticity of inputs varies with the

intermediate production and management expenses. Ang and Liu (2004) studied how

to discount cash flows with time-varying expected returns based on varying coefficient

models. Cai, Ren, and Yang (2015) used varying coefficient models to estimate time-

varying betas and alpha in the conditional capital asset pricing model. And Cai, Chen,

and Fang (2018) used varying coefficient models to estimate the growth effect of FDI.

See Cai and Hong (2009) and Cai (2010) for more references on applications of varying

coefficient models.

Motivated by empirical applications, the econometric theory of varying coefficient

models has been developed and extended to various modeling environments. For instance,

Chen and Tsay (1993) considered the time series setting and developed varying coefficient

autoregressive models. Fan and Zhang (1999), Cai, Fan, and Li (2000), and Ahmad,

Leelahanon, and Li (2005) discussed efficient estimation. Fan and Zhang (2000) and Fan

and Li (2004) considered the panel data setting. Cai and Xu (2008) proposed quantile

regression methods for a class of smooth coefficient models. Cai, Das, Xiong, and Wu

(2006) and Cai, Fang, Lin, and Su (2019) studied a class of instrumental variable regression

functional-coefficient representation for the regression function. Su, Murtazashvili, and

Ullah (2013) proposed a consistent inference procedure for the testing constancy of varying

coefficients.

Our paper contributes to the literature on varying coefficient models. We consider

making inferences in a general class of varying coefficient models defined by a set of con-

ditional moment equalities and/or inequalities. The notable difference from the existing

literature is that the unknown functional parameters can be partially identified in our

setup. In practice, the assumptions that deliver point-identification of the parameters
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may not necessarily hold. For example, in a varying coefficient linear regression or quan-

tile regression model, the slope parameter is not point-identified if the outcome variable

is interval-observed or censored, as is quite common in many survey data. In a varying

coefficient instrumental regression model, the structural parameter may not be point-

identified if the instrumental variable is imperfect (e.g. not independent of the structural

error). In an oligopoly market entry model, the profit function with varying coefficients

is typically not point-identified if there are multiple equilibria and the equilibrium selec-

tion mechanism is unknown to researchers. As we will discuss these examples in detail

in Section 2 and revisit them in our empirical and simulation studies (Sections 4 and 5,

respectively), we hope to emphasize here that it is useful to develop inferential procedures

for varying coefficients that are robust to partial identification.

Our approach is built upon and extends Andrews and Shi (2014, AS hereafter), who

considered a class of conditional moment inequality models in which the parameter is also

a function of a subset of covariates. AS focuses on confidence sets for the whole vary-

ing parameter vector evaluated at a given point; however, motivated by some empirical

applications of varying coefficient models, we instead focus on constructing confidence

sets for a subvector of the parameters. For this purpose, we use a different test statistic

from that in AS. Specifically, we extend the profiling-based method of Bugni, Canay, and

Shi (2017), which was initially designed for subvector inference in unconditional moment

inequality models with finite-dimensional parameters, to the current setup of conditional

moment inequality with functional parameters.

Our paper also contributes to the literature of conditional moment inequality mod-

els.1 Recently, a line of work studies partially identified conditional moment models;

an incomplete list includes Kim (2008), Andrews and Shi (2013, 2017), Chernozhukov,

Lee, and Rosen (2013), Lee, Song, and Whang (2013), Armstrong (2014, 2015, 2018),

1There has been a large literature on unconditional moment inequality models under partial identifica-
tion, see, for example, Andrews, Berry, and Jia (2004), Imbens and Manski (2004), Chernozhukov, Hong,
and Tamer (2007), Andrews and Guggenberger (2009), Romano and Shaikh (2008, 2010), Andrews and
Soares (2010), Wan (2013), Menzel (2014), Bugni, Canay, and Shi (2015, 2017), Pakes, Porter, Ho, and
Ishii (2015), Andrews and Kwon (2019), and Belloni, Bugni, and Chernozhukov (2019) among others.
For a more thorough review, please see Canay and Shaikh (2017) and references therein.
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Bontemps and Magnac (2017), and Hsu and Shi (2017), among others. All these papers

consider finite-dimensional parameters and hence do not accommodate varying coeffi-

cients. There are a small number of papers that allow the parameter vector to contain

an infinite-dimensional component, for example, Santos (2012), Tao (2015), Hong (2017),

and Chernozhukov, Newey, and Santos (2023), but they consider only conditional moment

equalities.

We propose a specification test for the necessary implications of the model, which

was not considered in AS. We show that our test controls the size uniformly over a

set of DGPs and is consistent against any violation of the necessary implication of the

model. Our paper, therefore, also contributes to the literature of specification tests for

conditional moment inequalities with infinite-dimensional parameters, and it complements

the existing work of Andrews and Shi (2013), Bugni, Canay, and Shi (2015), and Marcoux,

Russell, and Wan (2024), where the parameters are finite-dimensional.

To illustrate our method, we estimate the varying returns to education in different

areas of China using the mother’s education as the IV. Local development factors, such

as the quality of the local labor market and the local infrastructure development, can

affect the return to education. Therefore, we construct the model such that the coefficient

of the education level varies with a measure of the local development level. Instead of

assuming IV independence, we assume the mother’s education positively correlates with

children’s talent, which leads to a set of moment inequalities. Our estimation results show

that the confidence interval for the return to education varies substantially across local

development levels in both its width (reflecting the identification power) and location

(reflecting the magnitude of the education effect). These features can not be captured

by either a point-identified varying coefficient model or moment inequality models with

non-varying coefficients.

The rest of the paper is organized as follows. We present the model and a few motivat-

ing examples in Section 2. In Section 3, we construct the uniformly valid confidence set

and propose the model specification test. In Section 4, we use Monte Carlo simulations

to illustrate the finite sample performance of the proposed methods. Section 5 reports
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results from our empirical application and Section 6 concludes. For ease of exposition, we

collect all the proofs and additional empirical and simulation results in the Appendix.

2 Model and Examples

We consider a general class of varying coefficient models defined by a set of conditional

moment inequalities and/or equalities. Specifically, for any z ∈ Z, let

EP [mj(W, θ0(z))|X,Z = z] ≥ 0 a.s. X, for j = 1, . . . , p and

EP [mj(W, θ0(z)|X,Z = z] = 0 a.s. X, for j = p+ 1, . . . , k. (2.1)

In this model, mj(·, θ) for j = 1, . . . , k are known real-valued moment functions. Let

the conditioning variables X ∈ X ⊆ Rdx and Z ∈ Z ⊆ Rdz . The varying coefficient

θ0(·) : Z → Θ ⊆ Rdθ varies with z and takes value in a compact set Θ. The random

vector W contains some other random variables Y ∈ Y ⊆ Rdy and possibly (X,Z), so

that W = (X ′, Y ′, Z ′)′ ∈ Rdw with dw = dy + dx + dz. In empirical applications, Y is

often the outcome variable of interest. Without loss of generality, we assume that X and

Z do not overlap. We use P for the probability measure that generates the data and EP

for the expectation under the distribution P . The main departure of our paper from the

classical varying coefficient models is that we allow θ0(z) to be partially identified in the

sense that its identified set

ΘP (z) = {θ ∈ Θ : (2.1) holds with θ in place of θ0(z).} (2.2)

may contain more than one element.

Model (2.1) encompasses a broad class of models and applies to many empirical con-

texts, including those mentioned in the introduction, including the conventional point-

identified varying coefficient models as special cases. Here, we discuss four detailed exam-

ples relating to imperfect IV, interval data, entry games, and a firm-level gravity model,

respectively. The first example is followed by an empirical study in Section 5, and the
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second and third ones are followed by simulation studies. We provide a few additional

examples in Appendix E, including ones relating to quantile regression with interval-

outcome, quantile regression with censoring, and test of local average treatment effect

(LATE) assumptions, respectively.

Example 2.1 (Imperfect IV) Consider an example of estimating return to education

using a linear model,

Y = X1θ01(Z) +X ′2θ02(Z) + ε, (2.3)

where Y is the logarithm of wage, X1 is the key explanatory variable education, X2 is

a vector of exogenous demographic variables (may include an intercept term), ε is the

unobserved talent or ability, and Z is the variable that drives the varying coefficients

θ0(z) ≡ (θ01(z), θ02(z)). The choice of Z depends on the research goals. For example, some

literature argues that the return to education depends on experiences (see discussions in

Card, 2001; Schultz, 2003; Su, Murtazashvili, and Ullah, 2013), and it can be restrictive

to impose a parametric assumption on θ(z) without additional information. So, in this

case, Z is the experience.2 In our empirical illustration in Section 5, we highlight that the

return to education depends on the quality of the local labor market and infrastructure.

There, Z is a proxy of the local development level.

Regardless of the research goals, if the education is correlated with the structural error

ε, one may need to use the instrumental variable approach to identify parameters. The

model becomes a version of the IV-varying coefficient model studied by Cai, Fang, Lin,

and Su (2019). On the other hand, the (mean)-independence assumption of many popular

instrumental variables, such as distance to college or parent’s education, can be controver-

sial in some applications.3 In such cases, as discussed in Nevo and Rosen (2012), it may

be more reasonable to assume that the children’s talent is positively correlated with their

parent’s education conditioning on Z, that is, EP [εXIV |X2, Z = z] ≥ 0 for all z. Such an

2These discussions were confirmed by the empirical study in Cai, Fang, Lin, and Su (2019, see Figure
5), who found that the effect of schooling on earning (logarithm of hourly wage) increases monotonically
in experiences using an index of labor market attitudes as the instrument.

3See the recent literature on testing on IV-validity, e.g., Kitagawa (2015), Huber and Mellace (2015),
Mourifié and Wan (2017),and Kédagni and Mourifié (2020), Sun (2023), among others.
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imperfect instrument leads to the following moment inequality model:

EP [XIV (Y −X1θ01(Z)−X ′2θ02(Z))|X2, Z = z] ≥ 0 a.s. X2. (2.4)

Together with the unconditional (with respect to X1 and X2) mean restriction E[ε|Z =

z] = 0, this forms a special case of our model in Equation (2.1) with X = (X1, X
′
2, X

′
IV )′

and θ0(z) = (θ01(z), θ′02(z))′, p = 1, and k = 2. The parameter of interest is the partial

effect of education on wage at a particularly given experience level z0, which is the subvector

θ01(z0) of θ0(z0).

Example 2.2 (Interval Data) Even if all the right-hand side variables (X1, X2, Z) in

Equation (2.3) are exogenous and there is no endogeneity issue in estimating return to

education, we may still not be able to point-identify the parameters if researchers only

observe the wage bracket but not the wage itself. Interval-observed data is common in

household-level datasets such as the Current Population Survey (CPS), and its implica-

tion on identification and inference in constant-coefficient models are well studied in the

literature; see, for instance, Manski and Tamer (2002), Imbens and Manski (2004), and

Kaido (2017). In this scenario, the following varying coefficient moment inequalities hold

for any fixed Z = z0 ∈ Z, of Z:

EP [Yu −X1θ10(Z)−X2θ20(Z)|X,Z = z0] ≥ 0 a.s. X and (2.5)

EP [X1θ10(Z) +X2θ20(Z)− Y`|X,Z = z0] ≥ 0 a.s. X. (2.6)

We will offer a simulation study using this example to illustrate the use of our method in

Section 4.

Example 2.3 (Entry Game) In the literature on industrial organization, researchers

often use discrete choice games to model firms’ entry and exit behavior and study the

competition effect. These models are often point-identified if researchers know a priori

that the data are generated from the same equilibrium or covariates satisfy certain support

conditions. However, if researchers prefer to be more robust on the equilibrium selection
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mechanism or the support conditions do not hold, the moment inequality approach offers

an alternative (Ciliberto and Tamer, 2009). Meanwhile, the key parameter — the strength

of the strategic interaction — can differ in different markets. For instance, Aradillas-

López and Gandhi (2016, Section 6.3.4 and Figures 5-6) found that in the U.S. retail

drugstore industry, the competition effect among Walgreens, CVS, and Rite Aid decreases

with the market size (population). Our model can be useful in these applications, which

we illustrate in a simulation study in Appendix D.2.

Example 2.4 Consider a gravity model where exporting firm i, for i = 1, ..., N , chooses

between L destination countries in each period. Assuming away any inter-temporal de-

pendence in export profits, firm’s exporting decision can be characterized by a (simplified)

static version of Morales, Sheu, and Zahler (2019)’s conditional moment inequality model,

constructed based on the revealed preference principle, as follows

E[(πil − πil′)Vil(1− Vil′)|Xi, Zi] ≥ 0 for all pairs (l, l′) ∈ {1, 2, ..., L}2 s.t. l 6= l′, (2.7)

where πil is the profits of exporting to an actually chosen destination l by firm i, while πil′

is the potential profits of alternatively exporting to destination l′; Vil is a dummy variable

with Vil = 1 indicating l is actually chosen by i, and Vil′ is defined similarly; Zi represents

firm size, and Xi is the vector of other firm characteristics. More specifically, the profits

πil equals the revenue ril minus the costs cil as usual, i.e., πil = ril − cil. As shown by

Chaney (2018), on firm-level, the distance elasticity of trade varies with firm size Zi. This

suggests the following specification for the revenue ril:

ril = exp [αl +X ′iβ + ρ(Zi)Dil] + εil, and E(εi|Xi, Zi) = 0, (2.8)

where Dil is a proxy of the distance between firm i and destination country l, with its

varying coefficient ρ(Zi) representing the (varying) distance elasticity.4 The costs cil typi-

4Dil is commonly calculated as the distance of the shipment, which represents the geodetic distance
between the population center of the city where firm i is located and the population center of its export
destination l (Mayer and Zignago, 2011; Dingel, 2017; Almunia, Antràs, Lopez-Rodriguez, and Morales,
2021).
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cally consist of “iceberg” trade costs and fixed costs. For its detailed specification, refer to

Morales, Sheu, and Zahler (2019). For each (l, l′) pair s.t. l 6= l′, substituting Equation

(2.8) into Equation (2.7) yields a conditional moment inequality with varying coefficient

ρ(Zi). And there are L × (L − 1) such inequalities in total, the set of which constitute a

special case of Model (2.1).

In practice, the pre-specified value z0 is chosen by empirical needs. For example,

researchers may be interested in the effects of competition in the drug industry in the

median-size market or the average return to education in low-income provinces. Re-

searchers may also be interested in making a joint inference on θ01(z) over a collection of

z: ZT ≡ {z1, z2, · · · , zT}.5 We will analyze the statistical properties of these confidence

sets in Section 3 and construct both types of confidence sets in our empirical application

in Section 5.

3 Confidence Set

In this section, we propose a profiled test statistic for constructing confidence sets (CS) of

subvectors of θ0(z0), for instance, the first component θ01(z0).6 z0 ∈ Z is a pre-specified

value. A valid CS, denoted by ĈSn, with confidence level 1− α for θ01(z0) should satisfy

that

lim inf
n→∞

inf
(θ1,P )∈H0

Pr(θ1 ∈ ĈSn) ≥ 1− α. (3.1)

where H0 is a collection of (θ1, P ) and will be made specific later in Equation (3.9).

5In some empirical contexts, there are other natural choices of z0. For example, let Z be the running
variable of a fuzzy regression discontinuity design (FRD) and z0 be the known cutoff. Under the local
monotonicity and local continuity, the local average treatment effect (LATE) is identified at the cutoff
z0, see Imbens and Lemieux (2008). In this case, LATE is the key parameter, and the cutoff point z0

is the natural choice of interest. If the FRD has multiple cutoffs ZT ≡ {z1, z2, · · · , zT }, then ZT is the
natural collection of interest. However, when the FRD assumptions are rejected, it is possible to partially
identify the LATE at z0 by relaxing the local continuity condition to the first-order stochastic dominance
between the distributions of potential outcomes on either side of the cutoff.

6We can extend our method to the case in which researchers are interested in λ(z0) ≡ λ(θ(z0)) for
some function λ : Θ→ Λ ⊆ Rdλ , as Bugni, Canay, and Shi (2017) for unconditional moment inequalities.
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We first define a set of instrument functions to transform the conditional inequalities

(in X) into unconditional ones. Without loss of generality, we assume that X contains

only continuous variables and its support is X = [0, 1]dx .7,8 We define a countable set of

hyper-cubes in X as

Gc-cube = {g`(·) = 1(· ∈ C`) : ` ≡ (x, r) ∈ Lc-cube} , where

C` =
(
×dxj=1(xj, xj + r]

)
and

Lc-cube =
{

(x, q−1) : q · x ∈ {0, 1, 2, · · · , q − 1}dx , and q = 1, 2, · · ·
}
. (3.2)

For notation simplicity, we let C1 = C(0,1) = X and g1 = g(0,1) = 1. One can also

consider other instrument functions that satisfy Andrews and Shi (2013, Assumption CI).

When there are discrete components in Z, we can apply our analysis to the subsample

determined by the corresponding discrete component in z0. If all components of Z are

discrete, then we can apply Bugni, Canay, and Shi (2017)’s subvector inference procedure

for constant coefficients to each subsamples. Therefore, we assume all the elements in

Z are continuous variables without loss of generality and fz(·) be its probability density

function (pdf). Following the same argument in AS, the moment conditions in (2.1) are

equivalent to

µ`,j(θ, z0) ≥ 0 for j = 1, . . . , p and (3.3)

µ`,j(θ, z0) = 0 for j = p+ 1, . . . , k, for all ` ∈ L.

where µ`(θ, z0) = EP [g`(X) ·m(W, θ)|Z = z0] · fz(z0).

7Suppose X = {X1, X2} in which X1 is a binary variable taking values in {0, 1} and X2 is a contin-
uous variable. Then EP [mj(W, θ0(z1, z2))|X,Z = z] ≥ (=) 0 if and only if EP [mj(W, θ0(Z)) · 1(X1 =
0)|X2, Z = z] ≥ (=) 0 and EP [mj(W, θ0(Z)) · 1(X1 = 1)|X2, Z = z] ≥ (=) 0. In other words, by expand-
ing the number of moment conditions, we can rewrite the model so that X1 is not in the conditioning set
and X2 remains in it. Therefore, it is no loss of generality to assume that X contains only continuous
variables.

8We can always normalize an observed xij to the unit interval by applying the transformation

Φ
(
xij−x̄j
σ̂x,j

)
, where Φ is the standard normal CDF, and (x̄j , σ̂x,j) are sample mean and standard de-

viation of observations {x1j , x2j , · · · , xnj}, respectively. Note that such normalization will not affect
the asymptotics of our proposed test because the sample mean and standard deviation of observations
converge at a faster rate than our proposed test statistics.

10



Let K(·) denote a kernel function with support on [−1, 1]dz and hn is a bandwidth.

For j = 1, . . . , k, define

µ̂`,n(θ, z0) =
1

nhdzn

n∑
i=1

K
(Zi − z0

hn

)
g`(Xi) ·m(Wi, θ)

which, under the assumptions formally stated in the next section, is a consistent estimator

for µ`(θ, z0); with undersmoothing,
√
nhdzn (µ̂`,n(θ, z0)−µ`(θ, z0)) converges in distribution

to a k-dimensional mean zero Gaussian process with covariance kernel ρ2 ·CovP [g`(1)(X) ·
m(W, θ(1)), g`(2)(X) ·m(W, θ(2))|Z = z0] · fz(z0), where the constant ρ2 =

∫
u
K2(u)du. Let

µ̂1,n(θ, z0) = n−1h−dzn

∑n
i=1 K

(
Zi−z0
hn

)
m(Wi, θ). We define

Σ̂n(θ, 1, z0) =
1

nhdzn

n∑
i=1

(
K
(Zi − z0

hn

)
(m(Wi, θ)− µ̂1,n(θ, z0)

)(
K
(Zi − z0

hn

)
m(Wi, θ)− µ̂1,n(θ, z0)

)′
,

Σ̂n(θ, `, z0) =
1

nhdzn

n∑
i=1

(
K
(Zi − z0

hn

)
g`(Xi)m(Wi, θ)− µ̂`,n(θ, z0)

)
·
(
K
(Zi − z0

hn

)
g`(Xi)m(Wi, θ)− µ̂`,n(θ, z0))

)′
,

Σ̂ε,n(θ, `, z0) = Σ̂n(θ, `, z0) + ε · diag
(

Σ̂n(θ, 1, z0)
)
.

Let S(m,Σ) be a testing function, which can be chosen as one of the following two forms.

S(m,Σ) =

p∑
j=1

[mj

σj

]2

−
+

k∑
j=p+1

[mj

σj

]2

, or

S(m,Σ) = max
{[m1

σ1

]2

−
, . . . ,

[mp

σp

]2

−
,
[mp+1

σp+1

]2

, . . . ,
[mk

σk

]2}
where [a]− = min{0, a} and σj =

√
Σjj. Then for a fixed value of θ1, we can define the

following Cramér-von-Mises-type (CvM) (profiled) test statistic as

T̂ Sn(θ1, z0) ≡ inf
θ∈Θ(θ1)

T̂n(θ, z0), (3.4)

where Θ(θ1) ≡ {θ̃ ∈ Θ : θ̃1 = θ1} is the possible value that the rest of parameters can
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take when the first parameter is fixed at θ1, and

T̂n(θ, z0) =

Qn∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(
√
nhdzn µ̂`,n(θ, z0), Σ̂ε,`,n(θ, z0)) (3.5)

with Qn →∞ as n→∞.9

Next, we approximate the distribution of T̂ Sn(θ1, z0) to construct the critical value.

We consider multiplier bootstrap. Let {Ui : i = 1, . . . , n} be a sequence of pseudo-random

variables with zero mean and unit variance that are independent of the sample path. The

multiplier bootstrap process is

Ψu
n(θ, `, z0) =

1√
nhdzn

n∑
i=1

Ui

(
K
(Zi − z0

hn

)
g`(Xi) ·m(Wi, θ)− µ̂`,n(θ, z0)

)
.

Following Bugni, Canay, and Shi (2017), we define the slackness function as ν̂`,n(θ, z0) =

κ−1
n

√
nhdzn µ̂`(θ, z0), where κn =

√
log(n). The bootstrap version of simulated CvM test

statistic for θ as

T̂ un (θ, z0) =

Qn∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS
(
Ψu
n(θ, `, z0) + ν̂`,n(θ, z0), Σ̂ε,`,n(θ, z0)

)
.

And for a fixed value of θ1, the bootstrap test statistic is10

T̂ S
u

n(θ1, z0) ≡ min
θ∈Θ(θ1)

T̂ un (θ, z0).

For a fixed positive number η, for example, 10−6, define Ĉη,n(θ1, α) as the (1− α + η)-th

9Note that our test with non-standardized moment conditions would still work. That is, our test is
still valid if we replace Σ̂ε,`,n(θ, z0) with the identity matrix in (3.4). In the main text, we consider the
standardized version. In Appendix D.3, we also report the CS with non-standardized moment conditions
for our empirical application, and the results are similar qualitatively.

10The statistic T̂ S
u

n(θ1) defined here is analogous to the statistic TPRn (λ0) of (2.13) in Bugni, Canay,

and Shi (2017). As we show later, critical value based on T̂ S
u

n(θ1) delivers valid inference. We might,
in addition, consider an alternative bootstrap statistic TDRn (θ1) analogous to their TDRn (λ0), and use

min{T̂ SDRn (θ1), T̂ S
u

n(θ1)} for a potential power improvement. Please see discussions in Bugni, Canay,
and Shi (2017, section 4.1) for a detailed discussion.
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quantile of the conditional distribution of T̂ S
u

n(θ1) given data plus η, i.e.,

Ĉη,n(θ1, α) = sup
{
C
∣∣P u
(
T̂ S

u

n(θ1, z0) ≤ C
)
≤ 1− α + η

}
+ η. (3.6)

The confidence set for θ0,1(z0) is then given as

ĈSn = {θ1 : T̂ Sn(θ1, z0) ≤ Ĉη,n(θ1, α)}. (3.7)

3.1 Asymptotics of Confidence Sets

Let {Wi}ni=1 denote a random sample of size n generated from P . Let P denote the set

of P that we consider. Let Fz, Fx, and Fxz denote the marginal distributions of Z, X,

and (X,Z) under P . We now introduce the regularity conditions for establishing the

asymptotic properties of the proposed confidence sets in (3.7).

Assumption 3.1 {(Xi, Yi, Zi)}ni=1 is a random sample of i.i.d. observations.

Assumption 3.2 Θ is compact and convex.

One special case of Assumption 3.2 is that Θ is a Cartesian product of dθ closed

intervals Θ = Πdθ
j=1 [θj`, θju], in which case Θ(θ1) ≡ {θ̃ ∈ Θ : θ̃1 = θ1} is independent with

θ1, and that Θ−1 ≡ Πdθ
j=2 [θj`, θju]. We next impose conditions on the moment functions

{mj(W, θ) : θ ∈ Θ} for j = 1, . . . , k to regulate their complexity.

Assumption 3.3 Assume that for fixed δ > 0 and 0 < Q <∞ not depending on P ,

i. maxj=1,...,k

∣∣mj(w, θ)
∣∣ ≤ M(w) for all w ∈ W, for all θ ∈ Θ for some envelope

function M(w);

ii. EP [M(W )4|Z = z] ≤ Q <∞ on Nδ(z0) for all P ∈ P;

iii. the processes {mj(Wn,i, θ) : θ ∈ Θ, i ≤ n, 1 ≤ n} for j = 1, . . . , k are manageable

with respect to the envelope functions {M(Wn,i) : i ≤ n, 1 ≤ n} where {Wn,i : i ≤
n, 1 ≤ n} is a row-wise i.i.d. triangular array with Wn,i ∼ Pn for any sequence

{Pn ∈ P}.
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Assumption 3.3 implies that {n−1/2h
−dz/2
n K((Zi − z0)/hn) · g`(Xi)mj(Wn,i, θ) : θ ∈

Θ, ` ∈ L, i ≤ n, 1 ≤ n} are manageable with respect to the envelope functions {n−1/2h
−dz/2
n K((Zi−

z0)/hn) ·M(Wn,i) : i ≤ n, 1 ≤ n}.

Assumption 3.4 For the same δ and Q as in Assumption 3.3, assume that

i. fz(z) ≥ δ > 0 and is continuous on Nδ(z0) ⊂ Z;

ii. fz(z) is twice continuously differentiable on Nδ(z0);

iii. |fz(z)| ≤ Q, |f ′z(z)| ≤ Q and |f ′′z (z)| ≤ Q on Nδ(z0).

where Nδ(z0) = Nδ(z0) ≡ {z : ‖z − z0‖ ≤ δ}.

Assumption 3.4 imposes some regularity conditions on the distribution of Z and assumes

z0 is in the interior of the support. We next impose smoothness conditions on the condi-

tional moment conditions.

Assumption 3.5 Let µj(θ, x, z) = EP [mj(W, θ)|X = x, Z = z]. For all x ∈ X , µj(θ, x, z)

is twice continuously differentiable on Θ × Nδ(z0). Furthermore, for all x ∈ X , for the

same δ and Q as in Assumption 3.3 and for all j = 1, . . . , k,

i. ‖∂µj(θ, x, z)/∂θ‖ ≤ Q and ‖∂2µj(θ, x, z)/∂θ∂θ
′‖ ≤ Q on Θ×Nδ(z0);

ii. |µj(θ, x, z)| ≤ Q, |∂µj(θ, x, z)/∂z| ≤ Q and |∂2µj(θ, x, z)/∂z∂z| ≤ Q on Θ×Nδ(z0).

Assumption 3.6 Assume that

i. The K(·) is a non-negative symmetric bounded kernel with a compact support in R

(say [−1, 1]).

ii.
∫
K(u)du = 1 and

∫
ujK(u)du = 0.

iii. hn → 0, nhn →∞ and nhdz+4
n → 0 as n→∞.
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Assumption 3.6 imposes conditions on kernel function and bandwidth. Assumption

3.6 (i)-(ii) are satisfied for commonly used second-order kernels. All of our results can

be extended to higher-order kernels straightforwardly. Assumption 3.6(iii) requires un-

dersmoothing, so the bias term is asymptotically negligible. This is standard practice for

nonparametric estimators being asymptotically normally distributed with mean zero and

is also adopted in AS.

Assumption 3.7 Assume that κn →∞ and κ2
nn
−1h−dzn → 0.

Assumption 3.7 specifies the condition for the slackness tuning parameter κn, and it

is satisfied if κn is proportional to log(n), or a power of log(n).

Assumption 3.8 Assume that uniformly over P ∈ P given in Assumption 3.3, the fol-

lowing hold,

lim
δ↓0

sup
‖(θ(1)−θ(2))‖≤δ

sup
`∈L

max
j=1...,k

∣∣V ar(g`(X) · (mj(W, θ
(1))−mj(W, θ

(2)))
∣∣Z = z0

)∣∣→ 0.

Assumption 3.8 is imposed to ensure that when along a (sub)sequence of distributions

such that Ψ̂n(θ, `, z0) =
√
nhdzn (µ̂`,n(θ, z0)−µ`(θ, z0)) weakly converges to a tight Gaussian

process, the limiting process will have a continuous path in θ uniformly over ` ∈ L. Define

population-level quantities:

Σ((θ(1), `(1)), (θ(2), `(2))) = ρ2 · CovP (g`(1)(X) ·m(W, θ(1)), g`(2)(X) ·m(W, θ(2))|Z = z0) · fz(z0)

Σ((θ, `)) = Σ((θ, `), (θ, `)),

Σ((θ, 1)) = ρ2 · CovP (m(W, θ),m(W, θ)|Z = z0) · fz(z0),

Σε((θ, `)) = Σ((θ, `)) + ε · Σ((θ, 1)),

and the population counterpart of the test statistics,

TP (θ, z0) =
∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(µ`(θ, z0),Σε,`((θ))). (3.8)
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Assumption 3.9 Let Θ(θ1) ≡ {θ̃ ∈ Θ : θ̃1 = θ1} and ΘP (z0) as defined in Equa-

tion (2.2). Let P0 be the collection of P ∈ P such that ΘP (z0) is not empty. Then for

all P ∈ P0 and for all θ ∈ Θ(θ1), TP (θ, z0) ≥ cmin{δ, inf θ̃∈Θ(θ1)∩ΘP (z0) ‖θ − θ̃‖2} for some

constants c > 0 and δ > 0 that are independent of θ1 and z0.

Assumption 3.9 is an identification strength assumption. It is a type of polynomial

minorant condition introduced by Chernozhukov, Hong, and Tamer (2007). A similar

condition is also assumed in Bugni, Canay, and Shi (2017, Assumption A.3) for subvector

inference in unconditional moment inequality models. This assumption excludes weakly

identified models. For instance, it requires the instrumental and endogenous variables to

have a correlation bounded away from zero.

We define H0 as the collection of (θ1, P ) such that P ∈ P and there exists a θ−1 ∈ Θ−1

such that (θ1, θ−1) ∈ ΘP (z0). That is,

H0 ≡ {(θ1, P ) : P ∈ P , exist θ−1 ∈ Θ−1 such that (θ1, θ−1) ∈ ΘP (z0)}. (3.9)

Theorem 3.1 Let the confidence level be 1−α. Suppose Assumptions 3.1-3.9 hold, then

lim inf
n→∞

inf
(θ1,P )∈H0

Pr(θ1 ∈ ĈSn) ≥ 1− α. (3.10)

In addition, if there exists (θ∗1, P
∗) ∈ H0 such that the limiting distribution function under

P ∗ of T̂ Sn(θ1, z0) is continuous and strictly increasing at its (1− α)-th quantile, then

lim
η↓0

lim inf
n→∞

inf
(θ1,P )∈H0

Pr(θ1 ∈ ĈSn) = 1− α. (3.11)

3.2 Joint Confidence Set

The confidence set characterized in the Theorem 3.1 depends on z0. In some applica-

tions, researchers may be interested in a joint inference on θ01(·) evaluated at multi-

ple pre-specified values: ZT = {z1, z2, · · · , zT}.11 The results of Theorem 3.1 can be

11Researchers may also be interested in the confidence band for the functional parameter θ01(·). This
is beyond the scope of this paper, and we will leave it for future research.
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readily extended to analyze this case. One way to proceed is to define T̂ S
u

n(θ̃T1 ,ZT ) =

maxt=1,2,··· ,T T̂ S
u

n(θ1t, zt) and the critical value Ĉjoint
η,n (θ̃T1 , α) as

Ĉjoint
η,n (θ̃T1 , α) = sup

{
C
∣∣P u
(
T̂ S

u

n(θ̃T1 ,ZT ) ≤ C
)
≤ 1− α + η

}
+ η,

where θ̃T1 ≡ (θ11, θ12, · · · , θ1t, · · · , θ1T ) is a generic T × 1 vector. The joint confidence set

for {θ01(zt) : t = 1, . . . , T} is then given as

ĈS
joint

n =
{
θ̃T1 : max

t=1,...,T
T̂ Sn(θ1t, zt) ≤ Ĉjoint

η,n (θ̃T1 , α)
}
. (3.12)

where is T̂ Sn(θ1t, zt) defined in the same way as in Equation (3.4).

Computing the joint confidence set ĈS
joint

n given in Equation (3.12) can be time-

consuming because one needs to search in the T -dimensional space. To see this, suppose

T = 10 and for each zt, and consider 100 grid points for θ01(zt). In this case, there are 10010

grid points for the vector θ̃T1 , and, consequently, one needs to invert the corresponding test

10010 times. When the number of z’s being considered gets larger, it is almost impossible

to compute such a joint confidence set. Therefore, we utilize the fact that for a finite

number of different values of z’s, z1, . . . , zT , the confidence sets for θ01(z1), . . . , θ01(zT ) are

asymptotically mutually independent because when the bandwidth h gets smaller with

sample size, we will use subsamples that are mutually exclusive to compute each confidence

set. Then, a valid joint confidence set with 1-α confidence level for {θ01(zt) : t = 1, . . . , T}
is then given as

C̃S
joint

n = ×t=1,...,T ĈSn(zt, αT ), (3.13)

where for each t, ĈSn(zt, αT ) is a valid confidence set with confidence level 1 − αT for

θ01(zt) as in Equation (3.7) and (1 − αT )T = 1 − α. It is much less time consuming to

compute C̃S
joint

n than ĈS
joint

n . Again, suppose T = 10 and for each zt, we consider 100 grid

points for θ01(zt), then to obtain C̃S
joint

n , we only need to invert the test 10× 100 = 1000
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times.12 Therefore, even if the number of z’s we consider gets larger, it is still feasible to

compute C̃S
joint

n . The drawback of C̃S
joint

n is that when the number of of z’s is too large

and those z’s can be very dense in Z. In general, we would require a larger sample size

so that the confidence sets at different z’s are mutually independent.

3.3 Specification Test

In many empirical settings, given the set ZT = {z1, · · · , zT} of interest, researchers may

want to examine whether the model is correctly specified over this set. To be specific,

consider the following null hypothesis:

P0 ≡ {P ∈ P : There exists a θ(·) such that (2.1) holds for all z ∈ ZT}. (3.14)

Note that the condition stated in (3.14) is a necessary condition of the stronger state-

ment in (2.1), which requires the existence of a function θ0(·) such that the moment

inequalities to hold for all z ∈ Z.13 For this reason, a rejection of (3.14) implies the

rejection of the original model in (2.1), but not vice versa. Still, empirical researchers can

consider testing (3.14) as a practical way of checking the model specification and can pick

a larger number of grid points (of z) to make the testing result more credible. Note also

that the null DGP set P0 implicitly depends on the grid points ZT , which we omit the

dependence for the ease of notation.

For testing the H0 of P ∈ P0 against H1 of P ∈ P/P0, one can certainly construct

the confidence set for θ0(z) and verify if this confidence set is empty. However, as dis-

cussed in Bugni, Canay, and Shi (2015), checking the emptiness of the confidence set can

be unnecessarily costly in computation, and the test statistics defined as the infimum

(or supremum) of an appropriate sample objective function can achieve better power.

12When the dimension of the parameter vector is high, instead of considering a fixed grid points, one
can use the EAM algorithm of Kaido, Molinari, and Stoye (2019) to select testing points to reduce
computation cost. However, the computation simplification of the product-confidence set still applies, in
addition to the savings brought by the EAM algorithm.

13In this sense, we are testing a collection of local specifications instead of the global specification.
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Therefore, we consider the following test statistics,

T̂n ≡ max
t=1,··· ,T

[
min
θ∈Θ

T̂n(θ, zt)

]
,

and its bootstrapped analog

T̂ un ≡ max
t=1,··· ,T

[
min
θ∈Θ

T̂ un (θ, zt)

]
.

We set the critical value Cu
η,n(α) as the (1−α+η)-th quantile of T̂ un plus η, and define the

test be φn = 1[T̂n > Cu
η,n(α)]. It is easy to see that the test statistic T̂n and Cu

η,n(α) utilize

respectively T̂n(θ, zt) and T̂ un (θ, zt), both of which are used earlier for constructing CSs of

(3.1). The following theorem establishes the consistency of the proposed procedure above

for testing the null of (3.14).

Theorem 3.2 Suppose Assumptions 3.1-3.9 hold, then

lim sup
n→∞

sup
P∈P0

Pr(φn = 1) ≤ α. (3.15)

In addition, if these exists P ∗ ∈ P such that the limiting distribution function under P ∗

of T̂n is continuous and strictly increasing at its (1− α)-th quantile, then

lim
η↓0

lim sup
n→∞

sup
P∈P0

Pr(φn = 1) = α. (3.16)

Remark 3.1 In calculating the quantile of T̂ un , one can replace the minimization region

Θ with Θ̂P (zt) , a consistent estimator of the identified set ΘP (zt). This would allow us to

use other GMS functions. Please see Bugni, Canay, and Shi (2015, footnote 8) for more

discussions on the choice of the minimization region and slackness functions.

Corollary 3.1 Fix ZT = {z1, z2, · · · , zT}. Suppose the conditions for Theorem 3.2 are

satisfied for all z ∈ ZT . Let TP (θ, zt) be as defined in Equation (3.8) with zt in place of
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z0 and Pn be a sequence of DGP such that

cn = max
t=1,··· ,T

inf
θ∈Θ

TPn(θ, zt) > 0.

Then for any chosen η < +∞, we have lim infn→∞ Pr(φn = 1) = 1 if cn → c > 0. If

nhdzcn → c > 0, and let r(c) ≡ lim infn→∞ Pr(φn = 1), then we have limc→+∞ r(c) = 1.

The condition maxt=1,··· ,T infθ∈Θ TPn(θ, zt) = cn > 0 is a high level condition. cn →
c ∈ (0,∞) can occur if a moment inequality is violated at a particular zt. For example,

if for some j = 1, · · · , p, EPn [mj(W, θ0(Z))|X, z = zt] < −δ < 0 over a subset of X̃zt
with Pr(X ∈ X̃zt|Z = zt) > 0, then we can expect cn → c > 0. It can also occur when

|Ep[mj(W, θ0(Z))|X, z = zt]| > δ > 0 over a subset of X̃zt with Pr(X ∈ X̃zt |Z = zt) > 0

for some j = p+ 1, · · · k.

Remark 3.2 Our specification test can also test other restrictions on the θ0(z). For

example, one may be interested in if θ0(z) ≡ θ0 for all z ∈ ZT , where θ0 is an unknown

constant but with a known possible region of S. To test this hypothesis, we can modify the

test statistics to

T̂n ≡ min
θ∈S

[
max

t=1,··· ,T
T̂n(θ, zt)

]
.

Another possible scenario is that researchers may impose a parametric assumption on

θ0(z) such that θ0(z) ≡ ϕ(z, γ0), where ϕ is known up to a finite-dimensional parameter

γ0 ∈ Γ. Then, the test statistics can be defined as

T̂n ≡ min
γ∈Γ

[
max

t=1,··· ,T
T̂n(ϕ(zt, γ), zt)

]
.

In the above two cases, if the test rejects, then we can interpret it as either the ini-

tial moment inequalities are misspecified, or the extra parametric assumption on θ0(z) is

misspecified, or both.
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4 Simulations

This section provides some Monte Carlo simulations to illustrate our method and demon-

strate its finite sample performance. In Section 4.1, we mainly focus on the property

of the proposed confidence sets. In Section 4.2, we investigate the property of the pro-

posed specification test. We consider four sample sizes n ∈ {500, 1000, 2000, 4000}, set

the number of bootstrap samples B = 1000, and the number of replications R = 1000.

There are several tuning parameters we need to decide on when implementing our

tests. Here, we summarize our recommendations.

1. κn =
√

log n which is recommended by Andrews and Soares (2010) and Bugni,

Canay, and Shi (2017).

2. We use the Epanechnikov kernel. As in Andrews and Shi (2014), we consider the

bandwidth h = τ × 4.68σ̂zn
−2/7 with τ = 0.5, where σ̂z is the estimated standard

deviation of Zi.
14

3. η = 10−6 which is recommended by Andrews and Shi (2013) and Andrews and Shi

(2014).

4. ε = 1/20 which is recommended by Andrews and Shi (2014).

5. Qn is set such that the smallest cube contains, on average, no smaller than 15 sample

points.15

4.1 Finite Sample Performances of the CS

We illustrate our method by linear regression with interval observed outcomes that we

introduced in Example 2.2. Again, the latent variable regression is given by

Y = X1θ10(Z) +X2θ20(Z) + ε,

14If Z is a vector with a generic element Zd, d = 1, 2, · · · , dz, then we will use a product kernel and set
the bandwidth for the d-th dimension as hd = τ × 4.68σ̂zdn

−2/7, where σ̂zd is the standard deviation of
Zi,d. We also try other τ values between 0.1 and 1 in our main simulation; the results are similar.

15In our simulations, we set Qn = 10, and the average sample size for the smallest cube is around 27
when n = 2000.
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where Y is not observe but known to belong to [Y`, Yu]. X1 ∼ N(0, 1), X2 ∼ N(0, 1), Z ∼
U [2, 6], ε ∼ N(0, 1) are all mutually independent. For some δ > 0, let Yu = δ(Ceil[Y/δ])

and Y` = δ(Ceil[Y/δ] − 1), where Ceil[x] rounds x to integer toward +∞. Under this

construction, the bracket length Yu − Y` is exactly δ. We consider the following varying

coefficients:

θ10(z) = (1.6 + 0.6z)e−0.4(z−3)2 , θ20(z) = 2(1 + cos(z))

This specification of θ10(z) is taken from Cai, Fang, Lin, and Su (2019). We focus on

z0 = 4, which implies the true value of θ10(z0) equals to 2.68. In this model, the upper

and lower bounds of the identified set for θ10(z0) is [θ1,`b, θ1,ub], where

θ1,`b = inf
θ∈Θ

θ1 s.t. EP [Y`|X,Z = z0] ≤ xᵀθ ≤ EP [Yu|X,Z = z0], a.s. X,

θ1,ub = sup
θ∈Θ

θ1 s.t. EP [Y`|X,Z = z0] ≤ xᵀθ ≤ EP [Yu|X,Z = z0], a.s. X.

For this linear regression with interval-observed outcome variable designs, we consider

interval lengths δ = 0.5, which implies the identified set to be [2.6, 2.73].16 We calculate

coverage frequencies at 95% nominal levels for different values of θ1 deviating away from

the upper boundary of the identified set, that is, θ1,ub + c for c ≥ 0. In Figure 1, we plot

the coverage frequency against the distance to the upper boundary c. We can see that the

coverage frequency is no smaller than the nominal level at the upper bound (c = 0), which

shows that our CS is asymptotically valid. We can also see that the coverage probability

declines quickly when moving away from the identified set for a given sample size and

also decreases quickly as the sample size increases for each given c value. This shows that

our CS has a good finite sample power. The pattern of the coverage frequency near the

lower boundary is similar and, therefore, omitted.

Next, we examine the finite sample performance of the joint CS characterized in

16The “approximated identified sets” reported here are calculated by evaluating sample objective func-
tions with a very large sample size (n = 100, 000) and Qn = 10. Therefore, these sets are essentially
approximations of the approximated identified region of the set of unconditional moment inequalities
corresponding to Qn = 10, and they should be larger than the true identified sets of the conditional
moment inequalities. We also consider interval length δ = 0.1 and δ = 1.0. The results are qualitatively
similar and therefore omitted to save space.
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Figure 1: Coverage Frequency of ĈSn at a Single z

Equation (3.13). Instead of focusing on z0 = 4, we consider a set of z values of ZT =

{3.6, 4.0, 4.4, 4.8, 5.2}. Our goal is to construct a joint CS for the vector

−→
θ01 ≡ (θ01(3.6), θ01(4.0), · · · , θ01(5.2))′ ∈ R5.

Note that the identified set for the vector
−→
θ01 is a Cartesian product of the following form

[θ1,`b(3.6), θ1,ub(3.6)]× [θ1,`b(4), θ1,ub(4)]× · · · × [θ1,`b(5.2), θ1,ub(5.2)],

where θ1,`b(z) and θ1,ub(z) are the lower and upper bound of the identified set for θ01(z).

Because
−→
θ01 is a multi-dimensional vector, it is difficult to draw the coverage probability

for each
−→
θ01. To have an intuitive comparison with the results in Figure 1, we report

the coverage frequency of the joint CS for a deviation from the upper boundary of the

identified set, namely
−−→
θ1,ub + cι, where

−−→
θ1,ub ≡ (θ1,ub(3.6), θ1,ub(4), · · · , θ1,ub(5.2))′ is the

upper boundary of the identified set (evaluated at Z), ι is a vector of ones with same

dimension as
−−→
θ1,ub, and c ≥ 0 measures the size of the deviation. Increasing c again means

that we are moving away from the identified set. Similar to the CS at a single z value,

we can see from Figure 2 that the coverage frequencies decline as c increases for all the

sample sizes, which shows that the joint CS also has a good finite sample power property.
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Figure 2: Coverage Frequency of the Joint CS

4.2 Specification Test

In this subsection, we examine the finite sample performance of our specification test,

for which we also consider the interval data example but change the DGP so that the

moment inequalities are misspecified. Specifically, the model is the same as the one in

Section 4.1, except now we also consider cases in which δ < 0. The model is mis-specified

in such cases, and we should expect high rejection frequency. We conduct the test at the

same five grid points ZT = {3.6, 4.0, 4.4, 4.8, 5.2}.
The following Table 1 reports the rejection frequencies under different significance

levels α and δ. When the model is correctly specified and has a positive interval length

(δ > 0), the rejection frequency is very low and close to zero. This is not surprising

because the true model lies in the “interior” of the null hypothesis. When the model is

correctly specified but point-identified (δ = 0), we are in the knife-edge case, and the

rejection frequency is close to the nominal value when the sample size is large enough.

Finally, when the model is misspecified (δ > 0), our test can detect it and show good

power—the rejection frequencies increase as the size of the misspecification increases.
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Table 1: Rejection Frequency: Linear Regression with Interval Outcome

δ n α = 0.1 α = 0.05 α = 0.01

δ = −1.0 n = 500 1.000 0.997 0.952
n = 1000 1.000 1.000 1.000
n = 2000 1.000 1.000 1.000

δ = −0.5 n = 500 0.992 0.967 0.715
n = 1000 1.000 1.000 0.992
n = 2000 1.000 1.000 1.000

δ = −0.2 n = 500 0.650 0.420 0.112
n = 1000 0.917 0.735 0.335
n = 2000 0.997 0.975 0.665

δ = 0.0 n = 500 0.117 0.057 0.012
n = 1000 0.102 0.035 0.005
n = 2000 0.145 0.067 0.005

δ = 0.2 n = 500 0.015 0.002 0.0050
n = 1000 0.005 0.002 0.000
n = 2000 0.005 0.000 0.000

δ = 0.5 n = 500 0.002 0.000 0.000
n = 1000 0.000 0.000 0.000
n = 2000 0.000 0.000 0.000

δ = 1.0 n = 500 0.000 0.000 0.000
n = 1000 0.000 0.000 0.000
n = 2000 0.000 0.000 0.000

5 Empirical Illustration

In this section, we illustrate our method by estimating the return to education using a

subset of China’s 2005 “1% population census”, which is also known as the “mini-census”.

It is well documented that the return to education in China is heterogeneous across regions

with different development levels, and it is very crucial for policy-makers to account for

such heterogeneity when designing new policies (see discussions in Heckman, 2005). On

the other hand, because of the endogeneity of education, researchers have been employing

the IV approach to identify the causal effect, where the parents’ education is often used

as the instrumental variable. For example, using the mother and father’s education as

one of the key IVs, Heckman and Li (2004) estimated that in China, a four-year college
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education increases wages by about 43%.17 However, Liu, Mourifié, and Wan (2020, Table

S1) found that one needs to be cautious about the validity of the parent’s education as

the IV for some provinces. In this empirical scenario, our method would be useful to

partially identify the causal effect of a return to schooling under a weaker assumption

while nonparametrically accounting for its dependence on the regional development level.

After matching children with their parents, our data set contains 176, 458 individuals

between 18 and 60 years of age. It covers all 31 provinces of China and 343 prefectures.

For illustration, we retain the subsample for which the IV-validity was rejected in Liu,

Mourifié, and Wan (2020), which results in 44, 112 observations.18 The core variables

are the logarithm of the monthly wage (outcome variable Y ) in 2005 Chinese Yuan, a

prefecture-level average of the logarithm of monthly income (Z), an education level (X1),

and the mother’s education level XIV . Both education levels are classified into three

categories: elementary school and below, middle school, high school and above. In this

exercise, we use local (prefecture) level contemporaneous average income as the proxy for

the regional development level. The descriptive statistics are reported in Table 2.

Table 2: Descriptive Statistics

Variables Average Std Max Min

Log-wage (Y ) 6.26 0.89 10.5 2.30
Local Average Income (Z) 6.51 0.51 7.48 5.33
Education (X1) 1.09 0.69 2 0
Mother’s Education (XIV ) 0.31 0.58 2 0

We consider the model that we discussed earlier in Equation (2.4),

EP [XIV (Y −X1θ01(Z)− θ02(Z))|Z = z] ≥ 0,

EP [Y −X1θ01(Z)− θ02(Z)|Z = z] = 0

We create a grid of ZT = {5.8, · · · , 6.7, 6.8, 7.1, 7.2, 7.3} and construct a 95% joint CS

17They used the data from the China Urban Household Income and Expenditure Survey(CUHIES) for
2000.

18These provinces are Shanghai, Hubei, Guangdong, Chongqing, Xizang, and Qinghai.
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Figure 3: Confidence Intervals (95%) for Return to Education

for θ01(z) with z ∈ ZT .19 The choice of tuning parameters is the same as those in our

simulation studies, except that we increase the number of bootstraps to 8000 to increase

accuracy. We specify the parameters space as [−1, 2]× [4, 6]. The results are reported in

Figure 3. We connect the upper and lower points of the joint confidence sets and plot

it as the (blue) shadowed area. As a comparison, for each z ∈ ZT , we also plot the

pointwise confidence intervals as the black vertical lines. Finally, the black line with circle

markers plots the two-stage least square estimator θ̂2SLS(z) using the observations whose

Zi ∈ [z−0.1, z+0.1]. We chose the half-window length as 0.1 to ensure the matrices in the

2SLS are not rank-deficient; we also tried larger numbers and obtained similar results. The

2SLS estimate using the entire sample (not binning on z) is 1.02, with a 95% confidence

interval of [0.990, 1.045]. As a robustness analysis, we also calculate the confidence sets

without standardizing the moments and using subsamples defined by gender and age. The

results are similar and collected in Figures 6 and 7 in the Appendix D.3.

We have two observations from Figure 3. First, there is indeed substantial hetero-

geneity in the return to education. If one is willing to assume IV validity, then the 2SLS

estimates suggest that the return to education varies substantially across different local

19In this example, the bandwidth h ≈ 0.056, and there are few overlap observations when constructing
confidence intervals at each z. The grid does not contain the two points 6.9 and 7.0 because there are no
observations within their h-neighbourhood. For this sample of 44, 112 observations, the total computation
time of brute-forth grid search is already manageable (a few hours); however, it can be much improved
by more sophisticated algorithms, e.g. the EAM algorithm of Kaido, Molinari, and Stoye (2019).
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development levels: the estimates range from 0.5 to 1.2, which is far wider than the

95% CI [0.990, 1.045] of the pooled 2SLS. On the other hand, based on the moment in-

equality model, we can see that the location of confidence intervals for θ01(z) also varies

substantially across different values of z. The width of the confidence intervals changes

significantly, too. This suggests that after conditioning on different values of z, the data

and model offer different levels of identification power for the parameter of interest θ01(z).

These features will not be observed if we do not allow θ01(z) to vary across z. Regardless

of the point or partial identification approach, the results show the empirical virtue of

considering a model that allows for varying coefficients.

The second observation based on Figure 3 is that the 2SLS estimates are close to the

upper boundaries of the pointwise or joint CS for nearly all z values. Therefore, even

if one considers the heterogeneity in the return to education, it is still possible to make

misleading policy recommendations based on 2SLS when the IV validity assumption is

violated. For example, our results show that the return to education can be much lower

(even negative) for the relatively under-developed areas than the 2SLS estimates, which

may result from a frictional labor market or weak infrastructure. A policy implication is

that the government needs to improve the labor market conditions or local infrastructures

before investing in education. Our model thus offers additional information on top of the

traditional varying coefficient models.

6 Conclusion

This paper provides an inference procedure for varying coefficients defined by moment

inequalities and/or equalities. The proposed procedure is based on multiplier-bootstrap

and, as shown, can be readily used to construct confidence sets for the parameters’ subvec-

tor of interest. We show the resulting confidence sets are asymptotically valid uniformly

over a broad family of DGPs and robust to partial identification. We also propose a

specification test for a set of necessary implications of the varying coefficient models we

considered. We illustrate the proposed method in simulation and empirical studies.
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Appendix

A Notations

We introduce more notations. Let Ω be a specified closed set of k×k covariance matrices.

Recall that

ΣP ((θ(1), `(1)), (θ(2), `(2))) = ρ2 · CovP (g`(1)(X) ·m(W, θ(1)), g`(2)(X) ·m(W, θ(2))|Z = z0) · fz(z0)

ΣP ((θ, `)) = ΣP ((θ, `), (θ, `)),

ΣP ((θ, 1)) = ρ2 · CovP (m(W, θ),m(W, θ)|Z = z0) · fz(z0),

ΣP,ε((θ, `)) = ΣP ((θ, `)) + ε · ΣP ((θ, 1)),

µ`(θ, z0) = EP (m(W, θ)g`(X)|Z = z0) · fz(z0).

For a given pair of (`(1), `(2)), let C(Θ2) denote the space of continuous functions ΣP ((·, `(1)), (·, `(2))) :

Θ2 → Ω. For notation simplicity, we write ΣP to denote ΣP ((θ(1), `(1)), (θ(2), `(2))) when

it causes no confusion.

For a given θ1, define

Λn,P (θ1) = {(θ, ξ) ∈ Θ(θ1)× {Rk
±∞}`∈L : ξ` =

√
nhdzn µ`(θ, z0)},

Λ∗n,P (θ1) = {(θ, ξ) ∈ Θ(θ1)× {Rk
±∞}`∈L : ξ` = κ−1

n

√
nhdzn µ`(θ, z0)},

Λ̂∗n,P (θ1) = {(θ, ξ) ∈ Θ(θ1)× {Rk
±∞}`∈L : ξ` = κ−1

n

√
nhdzn µ̂`(θ, z0)}.

where µ`(θ, z0) = EP [g`(X) ·m(W, θ)|Z = z0] · fz(z0).

For any two points (θ, ξ) and (θ′, ξ′) in Θ× {Rk
±∞}`∈L, define the metric as

d((θ, ξ), (θ′, ξ′)) =
[ dθ∑
j=1

(Φ(θj)− Φ(θ′j))
2

+
∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dx
k∑
j=1

(Φ(ξj,`)− Φ(ξ′j,`))
2
]1/2

,
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where Φ(·) is the CDF of the standard normal. Then it is true that the space (Θ ×
{Rk
±∞}`∈L, d) constitutes a compact metric space because that R±∞ is a compact space

under metric dR with dR(r, r′) = |Φ(r)−Φ(r)|, r, r′ ∈ R±∞. Let S(Θ×{Rk
±∞}`∈L) denote

the collection of compact subsets of the metric space (Θ× {Rk
±∞}`∈L, d). Note that this

is true only when the dimension of Θ × {Rk
±∞}`∈L is countably many infinite and this

is the main reason that we have to use instrument functions Gc-cube that is countably

many. Let dH denote the Hausdorff metric associated to the metric d, i.e., for any sets

A,B ⊆ Θ× {Rk
±∞}`∈L,

dH(A,B) = max
{

sup
(θ,ξ)∈A

inf
(θ′,ξ′)∈B

d((θ, ξ), (θ′, ξ′)), sup
(θ′,ξ′)∈B

inf
(θ,ξ)∈A

d((θ, ξ), (θ′, ξ′))
}
.

At last, define the metric space (Θ(θ1)×{Rk
±∞}`∈L, d) and the collection of its compact

subsets S(Θ(θ1)× {Rk
±∞}`∈L) analogously.

B Lemmas

In this section, we abbreviate T̂ Sn(θ1, z0) as T̂ Sn(θ1) when it causes no confusion; but it

is understood that the test statistic depends on the pre-chosen z0 value.

Lemma B.1 Suppose Assumptions 3.1-3.9 hold. Let {(λun , Pun ∈ H0)}n≥1 be a (sub)sequence

of parameters and distributions such that for some (Σ,ΛL) ∈ {C(θ2)}(`1,`2)∈L2 × S(Θ ×
{Rk
±∞}`∈L), (i) ΣPun → Σ uniformly and (ii) Λun,Pun (θun)

H→ ΛL. Then, along the

(sub)sequence,

T̂ Sun(θ1,un)
d→ inf

(θ,λL)∈ΛL

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(ΨΣ(θ, `) + λ`,Σε(θ, `)), (B.1)

where ΨΣ : Θ × L → Rk is a Rk-valued tight Guassian process with covariance kernel

Σ ∈ C(θ2), and Σε = Σ(θ, `) + εΣ(θ, 1).
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Proof. Without loss of generality, we let un = n. Recall that

T̂ Sn(θ1) ≡ inf
θ∈Θ(θ1)

T̂n(θ, z0),

where Θ(θ1) ≡ {θ̃ ∈ Θ : θ̃1 = θ1} and

T̂n(θ, z0) =
∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(
√
nhdzn µ̂n(θ, `, z0), Σ̂ε,n(θ, `, z0)).

Let Ψ̂n(θ, `, z0) =
√
nhdzn (µ̂`,n(θ, z0)− µ`(θ, z0)). We have

T̂ Sn(θ1) = inf
θ∈Θ(θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(
√
nhdzn µ̂`,n(θ, z0), Σ̂ε,n(θ, `, z0))

= inf
(θ,ξ)∈Λn,P (θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(Ψ̂n(θ, `, z0) + ξ`, Σ̂ε,n(θ, `, z0)).

For a generic uniform continuous function γ : Θ× L → RK , define

gn(γ(·),Σ(·)) ≡ inf
(θ,ξ)∈Λn,P (θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(γ(θ, `) + ξ`,Σε(θ, `)), and

g(γ(·),Σ(·)) ≡ inf
(θ,ξ)∈ΛL(θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(γ(θ, `) + ξ`,Σε(θ, `)).

Let {γn(·),Σn(·)}n≥1 be a sequence of functions such that

lim
n→∞

sup
θ∈Θ(θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dx‖(γn(θ, `),Σn(θ, `))− (γn(θ, `),Σ(θ, `))‖ = 0

where ‖ · ‖ denotes the Euclidean norm, then by the same argument of Theorem 3.1 of

Bugni, Canay, and Shi (2015), we can show that

lim
n→∞

gn(γn(·),Σn(·)) = g(γ(·),Σ(·)).

Therefore, Lemma B.1 holds following the extended continuous mapping theorem (Van
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Der Vaart and Wellner, 1996, Theorem 1.11.1) and by observing Ψn
d→ ΨΣ. ���

Lemma B.2 Suppose Assumptions 3.1-3.9 hold. Let {(λun , Pun ∈ H0)}n≥1 be a (sub)sequence

of parameters and distributions such that for some (Σ,Λ∗L) ∈ {C(θ2)}(`1,`2)∈L2 × S2(Θ ×
{Rk
±∞}`∈L), (i) ΣPun → Σ uniformly and (ii) Λ∗un,Pun ,L(θun)

H→ Λ∗L. Then, there exists a

further subsequence {kn}n≥1 of {un}n≥1,

T̂ S
u

kn(θkn)
d→ inf

(θ,λL)∈Λ∗L

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(νΣ(θ, `) + λ`,Σε(θ, `)), (B.2)

conditional on the sample path almost surely.

Proof. First, by (ii) of Lemma B.5, we have

sup
(θ,`))∈(Θ(θ1),L)

‖Σ̂n((θ, `))− ΣP ((θ, `))‖ p→ 0,

and this is sufficient to show that

sup
(θ,`))∈(Θ(θ1),L)

‖Σ̂ε,n((θ, `))− Σε,P ((θ, `))‖ p→ 0.

Second, note that

κ−1
n

√
nhdzn µ̂`(θ, z0) = κ−1

n Ψ̂n(θ, `, z0) + κ−1
n

√
nhdzn µ`(θ, z0)

and by (i) of Lemma B.5 and the fact that κ−1
n → 0, we have dH(Λ∗n,P (θ1), Λ̂∗n,P (θ1))

p→ 0.

Then given that dH(Λ∗n,P (θ1),Λ∗L)→0, we have dH(Λ∗n,P (θ1),Λ∗L)
p→ 0.

Therefore, there exists a subsequence {kn}n≥1 of {n}n≥1 such that (a) Ψ̂kn(·) ⇒ ΨΣ

conditional on sample path almost surely, (b) sup(θ,`))∈(Θ(θ1),L) ‖Σ̂n((θ, `))−ΣP ((θ, `))‖ a.s.→
0 and (c) dH(Λ∗n,P (θ1),Λ∗L)

a.s.→ 0. Then by the same proof of Lemma B.1 and by conditional

on the sample path, we have

T̂ S
u

kn(θkn)
d→ inf

(θ,λL)∈Λ∗L

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(νΣ(θ, `) + λ`,Σε(θ, `)),
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conditional on the sample path almost surely.���

Lemma B.3 Let {(θ1,un , Pun ∈ H0)}n≥1 be a (sub)sequence of parameters and distribu-

tions such that for some (Σ,ΛL,Λ
∗
L) ∈ {C(θ2)}(`1,`2)∈L2×S2(Θ×{Rk

±∞}`∈L), (i) ΣPun → Σ

uniformly, (ii) Λun,Pun ,L(θ1,un)
H→ ΛL and (iii) Λ∗un,Pun ,L(θ1,un)

H→ Λ∗L. Suppose Assump-

tions 3.1-3.9 hold. Then we have that for all (θ, ξ∗) ∈ Λ∗L such that ξ∗(`) ∈ Rp
+∞(−∞,∞]×

Rk−p for all ` ∈ L with

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(ξ∗(`),Σε(θ, `)) <∞,

there exists ξ such that (θ, ξ) ∈ ΛL and ξj(`) ≥ ξ∗j (`) for j ≤ p and ξj(`) = ξ∗j (`) for

p < j ≤ k for all ` ∈ L.

Proof. We apply the proof of Lemma S.3.8 of Bugni, Canay, and Shi (2017) to show our

case. Without loss of generality, let un = n. If (θ, ξ∗) ∈ Λ∗L, there exists a sequence {θn}
such that θn ∈ Θ(θ1,n) with θn → θ, and κ−1

n

√
nhdzn µ`(θn, z0)→ ξ∗(`) for all ` ∈ L. Similar

to (S.16) of Bugni, Canay, and Shi (2017), there exists a sequence of θ̃n ∈ ΘPn(θ1,n, z0)

such that ‖θn − θ̃n‖ ≤ O(κn/
√
nhdxn ). To see this, note that

κ−2
n nhdzn TPn(θn, z0) =

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(κ−1
n

√
nhdzn µ`(θn, z0),Σε(θ, `))

→
∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(ξ∗(`),Σε(θ, `)) <∞.

Therefore, by Assumption 3.9,

O(κ2
nn
−1h−dzn ) = c−1TPn(θn, z0) ≥ min{δ, inf

θ̃∈Θ(θ1)∩ΘP (z0)
‖θ − θ̃‖2},

and this further implies that there exists a sequence of θ̃n ∈ ΘPn(θ1,n, z0) such that

‖θn − θ̃n‖ ≤ O(κn/
√
nhdxn ).
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Define θ̂n = (1−κ−1
n )θ̃n+κ−1

n θn. By the same arguments of (S.17) and (S.18), we have

√
nhdzn µ`(θ̂n, z0) = κ−1

n

√
nhdzn µ`(θn, z0) + ε1,n(`) + ε2,n(`)

where ε1,n(`) = (∇θµ`(θ
∗∗
n , z0)−∇θµ`(θ

∗
n, z0))

√
nhdzn (θ̂n − θn) with θ∗n and θ∗∗n both being

between θ̂n and θn, and ε2,n(`) = (1 − κ−1
n )
√
nhdzn µ`(θ̃n, z0). Note that θ̃n ∈ ΘPn(θ1,n, z0)

and κ−1
n → 0, so it follows that ε2,n,j(`) ≥ 0 for j ≤ p and ε2,n,j(`) = 0 for j > p for all

`. Note that ∇θµ`(θ, z0) = E[g`(X)µ`(θ,X, Z)|Z = z0] and by Assumption 3.5 1., it is

true that ‖∇θµ`(θ
∗∗
n , z0)−∇θµ`(θ

∗
n, z0)‖ ≤ cQ‖θ∗∗n − θ∗n‖ for some positive constant c not

depending on `. Therefore, we have ‖∇θµ`(θ
∗∗
n , z0)−∇θµ`(θ

∗
n, z0)‖ = o(1) uniformly over

`. By the fact that
√
nhdxn ‖θ̂n − θ̃n‖ = O(1), we have uniformly over `,

‖ε1,n(`)‖ ≤ ‖(∇θµ`(θ
∗∗
n , z0)−∇θµ`(θ

∗
n, z0))‖

√
nhdxn ‖θ̂n − θ̃n‖ = o(1).

Given that the space (Θ×{Rk
±∞}`∈L, d) constitutes a compact metric space, it is true that

there exists a subsequence {un} of {n} such that
√
unhdzunµ`(θ̂un , z0) and κ−1

un

√
unhdzunµ`(θun , z0)

converge for all `. To be specific, {Rk
±∞, dk} where for any two points δ1, δ2 ∈ Rk

±∞,

dk(θ1, θ2) = (
∑k

j=1(Φ(θ1,j)− Φ(θ2,j)
2)1/2 is a compact set. Note that because L is count-

able, we can order ` = 1, 2, . . . with those `’s with smaller q being ordered first. For ` = 1,

then there exists a subsequence {a1,n} of {n} so that

ξj(1) = lim
n→∞

√
a1,nhdza1,nµ`(θ̂a1,n , z0) ≥ lim

n→∞
κ−1
a1,n

√
a1,nhdza1,nµ`(θa1,n , z0) = ξ∗j (1) for j ≤ p,

ξj(1) = lim
n→∞

√
a1,nhdza1,nµ`(θ̂a1,n , z0) = lim

n→∞
κ−1
a1,n

√
a1,nhdza1,nµ`(θa1,n , z0) = ξ∗j (1) for j ≤ p.

Similarly, for ` = 2, there exists a subsequence {a2,n} of {a1,n} so that

ξj(2) = lim
n→∞

√
a2,nhdza2,nµ`(θ̂a2,n , z0) ≥ lim

n→∞
κ−1
a2,n

√
a2,nhdza2,nµ`(θa2,n , z0) = ξ∗j (2) for j ≤ p,

ξj(2) = lim
n→∞

√
a2,nhdza2,nµ`(θ̂a2,n , z0) = lim

n→∞
κ−1
a2,n

√
a2,nhdza2,nµ`(θa2,n , z0) = ξ∗j (2) for j ≤ p.

Then we keep doing this for ` = 3, 4, . . . and set {un} = {an,n}. This completes the
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proof.���

Lemma B.4 Suppose Assumptions 3.1-3.9 hold. For any (sub)sequence {(θun , Pun ∈
H0)}n≥1, there exists a further subsequence {kn}n≥1 of {un}n≥1 such that (i) ΣPkn

→ Σ

uniformly, (ii) Λkn,Pkn ,L(θkn)
H→ ΛL and (iii) Λ∗kn,Pkn ,L(θkn)

H→ Λ∗L for some (Σ,ΛL,Λ
∗
L) ∈

{C(θ2)}(`1,`2)∈L2 × S2(Θ× {Rk
±∞}`∈L).

Proof. We apply the proof of Lemma D.7 of Bugni, Canay, and Shi (2015) to show our

case. For ` = 1, by the same arguments of Lemma D.7 of Bugni, Canay, and Shi (2015),

we can show that there exists a subsequence {a1,n} of {n} such that

ΣPa1,n
((·, `1), (·, `2))→ Σ((·, `1), (·, `2)) uniformly for `1, `2 ∈ {1},

Λa1,n,Pa1,n ,`
(θa1,n)

H→ Λ`,

Λ∗a1,n,Pa1,n ,`(θa1,n)
H→ Λ∗` ,

for some (Σ,ΛL,Λ
∗
L) ∈ {C(θ2)}(`1,`2)∈L2×S2(Θ×{Rk

±∞}`∈L). For ` = 2, we can show that

there exists a subsequence {a2,n} of {a1,n} such that

ΣPa1,n
((·, `1), (·, `2))→ Σ((·, `1), (·, `2)) uniformly for `1, `2 ∈ {1, 2},

Λa2,n,Pa2,n ,`
(θa2,n)

H→ Λ`,

Λ∗a2,n,Pa2,n ,`(θa2,n)
H→ Λ∗` .

Then we keep doing this for ` = 3, 4, . . . and set {kn} = {an,n}. This completes the proof.

���

Lemma B.5 Suppose Assumptions 3.1-3.9 hold. Let {Pun ∈ P}n≥1 be a (sub)sequence

of distributions such that for some Σ ∈ {C(Θ2)}(`1,`2)∈L2, ΣPun → Σ uniformly. Then, the

following statements hold:

(i) Ψ̂un(·)⇒ ΨΣ, where ΨΣ is a tight zero-mean Guassian process with covariance kernel
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Σ. In addition, for any fixed ε > 0, there exists a δ > 0 such that

Pr
(

sup
‖θ(1)−θ(2)‖≤δ

sup
`∈L
‖ΨΣ(θ(1), `)−ΨΣ(θ(2), `)‖ ≤ ε

)
= 1.

(ii) We have

sup
(θ(1),`(1)),(θ(2),`(2))∈(Θ(θ1),L)

‖Σ̂n((θ(1), `(1)), (θ(2), `(2)))− ΣP ((θ(1), `(1)), (θ(2), `(2)))‖ p→ 0, where

Σ̂n((θ(1), `(1)), (θ(2), `(2))) =
1

nhdzn

n∑
i=1

(
K
(Zi − z0

hn

)
g`(1)(Xi)m(Wi, θ

(1))− µ̂`(1),n(θ(1), z0)
)

·
(
K
(Zi − z0

hn

)
g`(2)(Xi)m(Wi, θ

(2))− µ̂`(2),n(θ(2), z0)
)′
.

(iii) We have Ψu
n(·)⇒ ΨΣ conditional on sample path with probability 1.

Proof. Parts (i) and (ii) are the same as those of Lemma AN3 of Andrews and Shi (2014).

Given part (ii), the proof of part (iii) follows from the same argument of Theorem 4.1 of

Hsu (2016). ���

C Proof of Theorems

Proof of Theorem 3.1. Given Lemma B.1-Lemma B.5 above, the proof to Theorem 3.1

follows the same arguments of Equation (C.5) of Bugni, Canay, and Shi (2017), and we

omit the details for brevity.

Proof of Theorem 3.2. The proof of Theorem 3.2 follows analogously from those in

Theorem 3.1. In particular, the limiting distribution of minθ∈Θ T̂n(θ, zt) can be obtained

in a similar way as in Lemma B.1. For a set of pre-chosen grid points {z1, . . . , zT},
minθ∈Θ T̂n(θ, zt) are mutually asymptotically independent, so their asymptotic joint dis-

tribution is the product of their asymptotic marginal distributions. Finally, the max

operator is a continuous function, so the limiting distribution of T̂n follows by continuous

mapping theorem. The validity of multiplier bootstrap holds as shown in Lemma B.5.
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The results in Corollary 3.1 hold because (i) the critical value Cu
n(α) is stochastically

bounded, and (ii) T̂n
nhdz
− cn p→ 0.

D Additional Empirical and Simulation Results

In this appendix section, we report some additional simulations and empirical results.

D.1 Magnitude of fz(z0).

Our Assumption 3.4 requires that fz(z0) ≥ δ > 0 in a neighboured of z0. For a given

instrument function g`, our test statistics involves estimating the conditional moment

µ`(θ, z0) = E[g`(Xi)m(Wi, θ)|Z = z0]. When fz(z0) is small, there are fewer observations

in the neighborhood of z0. Given everything else equal, we expect that the confidence set

for θ01(z0) will perform worse when fz(z0) is small.

To verify this conjecture, we run a simulation that has the same design as Figure 1,

except that we focus on n = 2000 and vary the underlying DGPs such that fz(z0)

varies. To be specific, we take Z to be a mixture of two independent uniform distri-

butions ZA and ZB, where ZA has a support of [2, 3.5] ∪ [4.5, 6] and ZB has a support of

[3.5, 4.5], respectively. The mixing weight for ZB, denoted by τ , takes values from the set

{0.05, 0.1, 0.15, 0.2, 0.25}. Note that when τ = 0.25, Z is a uniform distribution over [2, 6],

which is the same as the DGP considered in Figure 1. When τ is smaller, the density

value fz(4) is lower.

Figure 4 plots the coverage probability for θ1 ∈ [2.7, 2.9]. Note that the upper bound-

ary of the identified interval for θ1(4) is approximately 2.73. We expect the coverage

frequencies to decrease as θ1 value moves away from the upper boundary. It is indeed

true for all values of τ . However, when τ is small, the curve decreases slower, indicating

that our confidence set has less power.
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Figure 4: Coverage Frequency: Varying fz(z0)

D.2 Entry Game with Complete Information

In this section, we apply our method to a simple discrete choice game of complete infor-

mation. Suppose two firms are making simultaneous binary choices:

Y1 = 1 {θ1,0(Z)Y2 − ε1 ≥ 0} ;

Y2 = 1 {θ2,0(Z)Y1 − ε2 ≥ 0} ,

where the coefficient θ1,0(z) = − ez−1
e−1

, θ2,0(z) = − e1−z−1
e−1

, Z ∼ U [0, 1], and (ε1, ε2) ∼
N
((

0
0

)
,
(

1 ρ
ρ 1

))
. In this model, the strength of the strategic interaction depends on the

observed variable Z. We assume that players play a pure strategy Nash equilibrium,

and when there are multiple equilibria, the nature tosses a fair coin to select. Researchers

observe Y1, Y2 and Z, but do not know the functional form of θj,0(z), j = 1, 2. Researchers

are also agnostic about the equilibrium selection mechanism.

Let Φρ(t1, t2) be the probability of the event {ε1 ≤ t1 & ε2 ≤ t2}. The necessary

38



condition of Nash equilibrium implies the following conditional moment restrictions:

EP [0.5− Φρ(θ1,0(Z), 0)− (1− Y1)Y2 | Z = z] ≥ 0,

EP [0.5− Φρ(0, θ2,0(Z))− Y1(1− Y2) | Z = z] ≥ 0,

EP [Φρ(θ1,0(Z), θ2,0(Z))− Y1Y2 | Z = z] = 0,

EP [Φρ(0, 0)− (1− Y1)(1− Y2) | Z = z] = 0.

In this model, the unknown parameters are (θ1,0(·), θ2,0(·), ρ). However, ρ is identified

from the fourth moment equality. Therefore, we solve ρ from the fourth equation and

focus on the first three conditional moment restrictions:

Φρ(θ1, 0) ≤ 0.5− p(0, 1|z), (D.1)

Φρ(0, θ2) ≤ 0.5− p(1, 0|z), (D.2)

Φρ(θ1, θ2) = p(1, 1|z), (D.3)

where p(`, k|z) ≡ Pr(Y1 = `, Y2 = k|Z = z). Note that given the joint normal distribution

of epsilons, the upper and lower bound of the identified set for θ01(z0) can be analytically

calculated from Equations (D.1) to (D.3). In particular, Equation (D.3) says that the joint

identified set is a curve in the two-dimensional space. Equation (D.1) and Equation (D.2)

provide the coordinates of the two endpoints of the curve.

D.2.1 Confidence sets

In this subsection, the first goal is to examine the performance of the confidence interval

for θ1,0(z0) at z0 = 0.5. Based on our calculation, when ρ = 0.5, then true value is

θ01(0.5) = −0.3775 and the identified set for θ01(z0) is [−0.47,−0.29].

Figure 5a reports the coverage frequencies at 95% level under different sample sizes

for θ1,ub+c values when ρ = 0.5, where c ≥ 0 measures the distance of the testing value to

the upper boundary of the identified set. We also considered other values of ρ and other

significance levels but omitted the results due to the qualitative similarity. When c gets
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larger, the coverage frequencies decline dramatically and decline faster for larger sample

sizes.

Next, we investigate the performance of the confidence set for θ01(z), where z ∈
{0.2, 0.35, 0.5, 0.65, 0.8}. Similar to Section 4, we report the coverage frequency of the

joint CS for
−−→
θ1,ub + cι, where

−−→
θ1,ub ≡ (θ1,ub(0.2), θ1,ub(0.35), · · · , θ1,ub(0.8))′. The results are

shown in Figure 5b. The patterns are similar to those reported for the single CS in that

when we move away from the identified set, the joint coverage frequency also declines fast.
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Figure 5: Coverage Frequency: Entry Game

D.2.2 Specification Test

To examine the performance of the specification test, We consider the same game and use

the same set of inequalities, except that change the error terms (ε1, ε2) ∼ N
((
−δ
−δ

)
,
(

1 0
0 1

))
.

We assume that the researcher incorrectly parametrizes the joint distribution as to be

(ε1, ε2) ∼ N
((

0
0

)
,
(

1 0
0 1

))
. In this design, the size of δ measures the magnitude of the

misspecification. For example, as δ → +∞, the probability of the outcome (0, 0) will

converge to zero, but if under the misspecified model, for any given value of ρ, Our test

rejects the model with large frequencies, and the rejection rate increases with both sample

size n and misspecification magnitude δ. Table 3 reports the rejection frequencies when

ρ = 0. When δ = 0, the model is correctly specified, and the rejection frequencies are

below nominal values across the broad. When δ > 0, the model is mis-specified. Our test
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Figure 6: Confidence Intervals (95%) Without standardization

rejects the model with large frequencies and the rejection rate increases with sample size

n and misspecification magnitude δ.

Table 3: Rejection Frequency: Entry Game

δ n α = 0.1 α = 0.05 α = 0.01

δ = 0.0 n = 2000 0.002 0.000 0.000
n = 4000 0.005 0.000 0.000
n = 8000 0.020 0.005 0.000

δ = 0.2 n = 2000 0.597 0.145 0.000
n = 4000 0.980 0.682 0.012
n = 8000 1.000 1.000 0.407

δ = 0.4 n = 2000 1.000 0.967 0.002
n = 4000 1.000 1.000 0.402
n = 8000 1.000 1.000 1.000

D.3 Additional Empirical Results

Figure 6 reports the joint and pointwise confidence set for the return to schooling without

standardization. As we can see, the results are quite similar. Figure 7 reports the inference

results with subsamples defined by gender and age.
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E Additional Motivating Examples

This section lists some additional examples in which our method is potentially applicable.

Example E.1 (Quantile Regression with Interval-Outcome). Consider a similar

regression as Example 2.2 but under conditional quantile independence assumption:

Y = X ′θ0(Z) + ε, qε|X,Z (τ |X,Z) = 0, a.s.− (X,Z) (E.1)

where Y is a latent dependent variable and qε|X,Z (τ |X,Z) denotes the τ th conditional

quantile of ε on X,Z. If Y were observed by researchers, it is the quantile varying coef-

ficient model analyzed by Honda (2004). If Y is not directly observed but known to lie in

the observed interval [Y`, Yu], then the following moment inequalities hold for any z ∈ Z:

EP [τ − 1 {Yu ≤ X ′θ0(Z)} |X,Z = z] ≥ 0 a.s. X and

EP [1 {Y` ≤ X ′θ0(Z)} − τ |X,Z = z] ≥ 0 a.s. X.

Example E.2 (Quantile Regression with Censoring). Consider again the quantile

varying coefficient model in Equation (E.1). Suppose now Y is subject to censoring ac-

cording to an observed binary variable D ∈ {0, 1}: Y is observed only when D = 1. Then,

the following moment inequalities hold for any z ∈ Z:

EP [τ − 1 {Y ≤ X ′θ0(Z), D = 1} |X,Z = z] ≥ 0 a.s. X and

EP [1 {Y ≤ X ′θ0(Z), D = 1}+ 1 {D = 0} − τ |X,Z = z] ≥ 0 a.s. X.

Example E.3 (Testing LATE Assumptions). Consider a potential outcome model

with binary treatment D ∈ {0, 1} and binary instrument T ∈ {0, 1}. Let X1 and X0 be

two potential outcomes, and D0 and D1 be two potential treatments. Let Z be a vector

of covariates (here we name variables differently from the conventional treatment effect

literature to match our notation). Suppose for any z ∈ Z, we have (i) (X1, X0, D0, D1) ⊥
T |Z = z, (ii) Pr(D = 1|T = 1, Z = z) 6= Pr(D = 1|T = 0, Z = z), and (iii) D1 ≥ D0
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or D0 ≥ D1 a.s., then the conditional local average treatment effect EP [X1 − X0|Z = z]

is identified by the Wald estimand. Mourifié and Wan (2017, Corollary 1) formulated

the testable implication of LATE identifying assumptions (i)–(iii) as a set of conditional

moment inequalities:

EP [c1(Z)D(1− T )− c0(Z)DT |Z = z,X] ≤ 0, a.s. X

EP [c0(Z)(1−D)T − c1(Z)(1−D)(1− T )|Z = z,X] ≤ 0, a.s. X

EP [c1(Z)− T |Z = z] = 0;

EP [c0(Z)− (1− T )|Z = z] = 0.

It fits the Model (2.1) with θ0(Z) = (c1(Z), c0(Z)) be the varying coefficient, and W =

(T, Z,D,X,Z ′)′. In this case, the random coefficients c1(z) and c0(z) are point-identified

as the conditional probability Pr(T = 1|Z = z) and Pr(T = 0|Z = z), respectively.

Researchers are interested in testing the model specification instead of estimation. Unlike

Mourifié and Wan (2017)’s algorithm, we allow Z be either discrete or continuous.20

20Mourifié and Wan (2017)’s implementation procedure is built upon the Stata package of Cher-
nozhukov, Kim, Lee, and Rosen (2015) and accommodates only a single continuous conditioning variable.
So a continuous Z needs to be discretized. Our method, on the other hand, allows for both discrete and
continuous Z.
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Almunia, M., P. Antràs, D. Lopez-Rodriguez, and E. Morales (2021): “Venting

out: Exports during a domestic slump,” American Economic Review, 111(11), 3611–

3662.

Andrews, D. W., S. Berry, and P. Jia (2004): “Confidence regions for parameters

in discrete games with multiple equilibria, with an application to discount chain store

location,” manuscript, Yale University.

Andrews, D. W., and P. Guggenberger (2009): “Validity of subsampling and “plug-

in asymptotic” inference for parameters defined by moment inequalities,” Econometric

Theory, 25(3), 669–709.

Andrews, D. W., and S. Kwon (2019): “Inference in moment inequality models

that is robust to spurious precision under model misspecification,” Cowles Foundation

Discussion Paper.

Andrews, D. W., and X. Shi (2013): “Inference based on conditional moment inequal-

ities,” Econometrica, 81(2), 609–666.

(2014): “Nonparametric inference based on conditional moment inequalities,”

Journal of Econometrics, 179(1), 31–45.

(2017): “Inference based on many conditional moment inequalities,” Journal of

econometrics, 196(2), 275–287.

Andrews, D. W., and G. Soares (2010): “Inference for parameters defined by moment

inequalities using generalized moment selection,” Econometrica, 78(1), 119–157.

Ang, A., and J. Liu (2004): “How to discount cashflows with time-varying expected

returns,” The Journal of Finance, 59(6), 2745–2783.

45
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