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Abstract

This paper considers a general class of varying coefficient models defined by a set

of moment equalities and/or inequalities, where unknown functional parameters are

not necessarily point-identified. We propose an inferential procedure for a subvec-

tor of the varying parameters and establish the asymptotic validity of the resulting

confidence sets uniformly over a broad family of data-generating processes. We also

propose a practical specification test for a set of necessary conditions of our model.

Monte Carlo studies show that the proposed methods have good finite sample prop-

erties. We apply our method to estimate the return to education in China using its

1%-population census data from 2005.
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1 Introduction

Since the seminal paper by Hastie and Tibshirani (1993), varying coefficient models have

been widely adopted in empirical research in economics and finance for their practicality in

semi-nonparametric modeling of heterogeneous effects. For example, Li, Huang, Li, and

Fu (2002) proposed a semiparametric varying coefficient model to estimate production

functions in which the elasticity of inputs varies with the intermediate production and

management expenses. Ang and Liu (2004) studied how to discount cash flows with

time-varying expected returns based on varying coefficient models. Cai, Ren, and Yang

(2015) employed varying coefficient models to estimate time-varying betas and alphas in

the conditional capital asset pricing model. Cai, Chen, and Fang (2018) used varying

coefficient models to estimate the growth effect of FDI. See Cai and Hong (2009) and Cai

(2010) for more references on applications of varying coefficient models.

The econometric theory of varying coefficient models has been developed and ex-

tended to various modeling environments based on empirical applications. For instance,

Chen and Tsay (1993) considered the time series setting and developed varying coeffi-

cient autoregressive models. Fan and Zhang (1999), Cai, Fan, and Li (2000), and Ahmad,

Leelahanon, and Li (2005) discussed efficient estimation. Fan and Zhang (2000) and Fan

and Li (2004) considered the panel data setting. Cai and Xu (2008) proposed quantile

regression methods for a class of smooth coefficient models. Cai, Das, Xiong, and Wu

(2006) and Cai, Fang, Lin, and Su (2019) studied a class of instrumental variable regres-

sion functional-coefficient representation for the regression function. Su, Murtazashvili,

and Ullah (2013) proposed a consistent inference procedure for testing the constancy of

varying coefficients.

Our paper contributes to the literature on varying coefficient models. We consider

making inferences in a general class of varying coefficient models defined by a set of con-

ditional moment equalities and/or inequalities. The notable difference from the existing

literature is that the unknown functional parameters may be partially identified in our

setup. In practice, the assumptions that deliver point identification of the parameters may

not necessarily hold. To demonstrate, in a varying coefficient linear regression or quantile
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regression model, the slope parameter is not point-identified if the outcome variable is

interval-observed or censored, which is rather typical in many survey data. In a varying

coefficient instrumental regression model, the structural parameter may not be point-

identified if the instrumental variable is imperfect (e.g., not independent of the structural

error). In an oligopoly market entry model, the profit function with varying coefficients

is typically not point-identified if there are multiple equilibria and the equilibrium selec-

tion mechanism is unknown to researchers. As we will discuss these examples in detail

in Section 2 and revisit them in our empirical and simulation studies (Sections 4 and 5,

respectively), we hope to emphasize that it is useful to develop inferential procedures for

varying coefficients that are robust to partial identification.

Our approach is built upon and extends Andrews and Shi (2014, AS hereafter), who

considered a class of conditional moment inequality models in which the parameter is

also a function of a subset of covariates. They focus on confidence sets for the whole

varying parameter vector evaluated at a given point. We, instead, focus on constructing

confidence sets for a subvector of the parameters, motivated by empirical applications of

varying coefficient models. For this purpose, we use a different test statistic from that in

AS. Specifically, we extend the profiling-based method of Bugni, Canay, and Shi (2017),

which was initially designed for subvector inference in unconditional moment inequality

models with finite-dimensional parameters, to the current setup of conditional moment

inequality with functional parameters.

Our paper also contributes to the literature of conditional moment inequality mod-

els.1 Recently, a line of work studies partially identified conditional moment models; an

incomplete list includes Kim (2008), Andrews and Shi (2013, 2017), Chernozhukov, Lee,

and Rosen (2013), Lee, Song, and Whang (2013), Armstrong (2014, 2015, 2018), Bon-

temps and Magnac (2017), and Hsu and Shi (2017), among others. All aforementioned

1There has been a large literature on unconditional moment inequality models under partial identifica-
tion, see, for example, Andrews, Berry, and Jia (2004), Imbens and Manski (2004), Chernozhukov, Hong,
and Tamer (2007), Andrews and Guggenberger (2009), Romano and Shaikh (2008, 2010), Andrews and
Soares (2010), Wan (2013), Menzel (2014), Bugni, Canay, and Shi (2015, 2017), Pakes, Porter, Ho, and
Ishii (2015), Andrews and Kwon (2019), and Belloni, Bugni, and Chernozhukov (2019) among others.
For a more thorough review, please see Canay and Shaikh (2017) and references therein.
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papers consider finite-dimensional parameters and, hence, do not accommodate varying

coefficients. There exists a small number of papers that allow the parameter vector to

contain an infinite-dimensional component; for example, Santos (2012), Tao (2015), Hong

(2017), and Chernozhukov, Newey, and Santos (2023), but they consider only conditional

moment equalities.

We propose a specification test for the necessary implications of the model, which was

not considered in AS. We show that our test controls the size uniformly over a set of DGPs

and is consistent against any violation of the necessary implication under testing. Our

paper, therefore, also contributes to the literature of specification tests for conditional

moment inequalities with infinite-dimensional parameters. It complements the existing

work of Andrews and Shi (2013), Bugni, Canay, and Shi (2015), and Marcoux, Russell,

and Wan (2024), where the parameters are finite-dimensional.

To illustrate the empirical implementation of our method, we estimate the varying

returns to education in different areas of China using the mother’s education as the IV.

Local development factors, such as the quality of the local labor market and the local in-

frastructure development, can affect the return to education. Therefore, we construct the

model such that the parameter associated with return to education varies with a measure

of the local development level. Instead of imposing the IV-independence assumption, we

assume the mother’s education positively correlates with children’s talent, which leads to

a set of moment inequalities. Our estimation results show that the confidence interval

for the return to education varies substantially across local development levels in both

its width (reflecting the identification power) and location (reflecting the magnitude of

the educational effect). These features can not be captured by either a point-identified

varying coefficient model or moment inequality models with non-varying coefficients.

The rest of the paper is organized as follows: we present the model and a few motivat-

ing examples in Section 2. In Section 3, we construct the uniformly valid confidence set

and propose the model specification test. In Section 4, we use Monte Carlo simulations

to illustrate the finite sample performance of the proposed methods. Section 5 reports

results from our empirical application and Section 6 concludes. We collect all the proofs
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and additional empirical and simulation results in the Appendix for ease of exposition.

2 Model and Examples

We consider varying coefficient models defined by a set of conditional moment inequalities

and/or equalities. Specifically, for any z ∈ Z, let

EP [mj(W, θ0(z))|X,Z = z] ≥ 0 a.s. X, for j = 1, . . . , p and

EP [mj(W, θ0(z))|X,Z = z] = 0 a.s. X, for j = p+ 1, . . . , k. (2.1)

In this model, mj(·, θ), for j = 1, . . . , k, are known real-valued moment functions. X ∈
X ⊆ Rdx and Z ∈ Z ⊆ Rdz are observed conditioning variables. The varying coefficient

θ0(·) : Z → Θ ⊆ Rdθ varies with z and takes value in a compact set Θ. The random

vector W contains some other random variables Y ∈ Y ⊆ Rdy and possibly (X,Z), so

that W = (X ′, Y ′, Z ′)′ ∈ Rdw with dw = dy +dx+dz. In empirical applications, Y is often

the dependent variable of interest. Without loss of generality, we assume that X and Z

do not overlap. We use P for the probability measure that generates the data and EP

for the expectation under the distribution P . The main departure of our paper from the

classical varying coefficient models is that we allow θ0(z) to be partially identified in the

sense that its identified set

ΘP (z) = {θ ∈ Θ : (2.1) holds with θ in place of θ0(z).} (2.2)

may contain more than one element.

Model (2.1) encompasses a broad class of models and applies to many empirical con-

texts, like those in the introduction, with the conventional point-identified varying co-

efficient models being special cases. Here, we discuss four detailed examples relating to

imperfect IV, interval data, entry games, and a firm-level gravity model, respectively. The

first example is followed by an empirical study in Section 5, and the second and third ones

are followed by simulation studies. We provide a few additional examples in Appendix E,
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including quantile regression with interval-valued outcome, quantile regression with cen-

soring, and testing local average treatment effect (LATE) assumptions, respectively.

Example 2.1 (Imperfect IV) Consider an empirical study of estimating the return to

education using a linear model:

Y = X1θ01(Z) +X ′2θ02(Z) + ε. (2.3)

In this model, Y is the logarithm of wage, X1 is the key explanatory variable education,

X2 is a vector of exogenous demographic variables (may include an intercept term), ε is

the unobserved talent or ability, and Z is the variable that drives the varying coefficients

θ0(z) ≡ (θ01(z), θ02(z)′)′. The choice of Z depends on the research context. For example,

some literature argues that the return to education depends on experiences (see discussions

in Card, 2001; Schultz, 2003; Su, Murtazashvili, and Ullah, 2013), and it can be restrictive

to impose a parametric assumption on θ(z) without additional information. Therefore, in

this case, Z represents individual working experience.2 In our empirical illustration in

Section 5, we highlight that the return to education depends on the quality of the local

labor market and infrastructure; so, Z in this case is a proxy of the local development

level.

Regardless of the research goals, if the education is correlated with the structural error

ε, one may consider using the instrumental variable approach to estimate parameters. The

model becomes a version of the IV-varying coefficient model studied by Cai, Fang, Lin,

and Su (2019). However, the (mean)-independence assumption of many popular instru-

mental variables, such as parent’s education, can be controversial in some applications.3

In such cases, as discussed in Nevo and Rosen (2012), it may be more reasonable to as-

sume the children’s talent is positively correlated with their parent’s education (denoted by

XIV ) conditioning on Z; that is, EP [εXIV |X2, Z = z] ≥ 0 for all z. Such an imperfect

2These discussions were confirmed by the empirical study in Cai, Fang, Lin, and Su (2019, see Figure
5), who found that the effect of schooling on earning (logarithm of hourly wage) increases monotonically
in experience using an index of labor market attitudes as the instrument.

3See the recent literature on testing on IV-validity, e.g., Kitagawa (2015), Huber and Mellace (2015),
Mourifié and Wan (2017), and Kédagni and Mourifié (2020), Sun (2023), among others.

6



instrument leads to the following moment inequality model:

EP [XIV (Y −X1θ01(Z)−X ′2θ02(Z))|X2, Z = z] ≥ 0 a.s. X2. (2.4)

Together with the unconditional (with respect to X1 and X2) mean restriction E[ε|Z =

z] = 0, this forms a special case of our model in Equation (2.1) with X = (X1, X
′
2, X

′
IV )′

and θ0(z) = (θ01(z), θ′02(z))′, p = 1, and k = 2. The parameter of interest is the partial

effect of education on wage at a particular value z0, which is the subvector θ01(z0) of θ0(z0).

Example 2.2 (Interval Data) Even if all the right-hand side variables (X1, X2, Z) in

Equation (2.3) are exogenous, and there is no endogeneity issue in estimating return to

education, we may still not be able to point-identify the parameters if researchers only

observe the wage bracket but not the wage itself. Interval-observed data is common in

household-level datasets such as the Current Population Survey (CPS), and its implica-

tions on identification and inference in constant-coefficient models are well-studied in the

literature; see, for instance, Manski and Tamer (2002), Imbens and Manski (2004), and

Kaido (2017). In this scenario, the following varying coefficient moment inequalities hold

for any fixed z0 ∈ Z,

EP [Yu −X1θ10(Z)−X2θ20(Z)|X,Z = z0] ≥ 0 a.s. X and (2.5)

EP [X1θ10(Z) +X2θ20(Z)− Y`|X,Z = z0] ≥ 0 a.s. X. (2.6)

We will offer a simulation study using this example to illustrate the use of our method in

Section 4.

Example 2.3 (Entry Game) In the literature on industrial organization, researchers

frequently employ discrete games to examine firms’ entry and exit behavior and estimate

the competitive effect. These models are often point-identified if researchers know a priori

that the data are generated from the same equilibrium or covariates satisfy certain support

conditions. However, if researchers prefer to be more robust on the equilibrium selection

mechanism or the support conditions do not hold, the moment inequality approach offers
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an alternative (Ciliberto and Tamer, 2009). Meanwhile, the key parameter—the strength

of the strategic interaction—can differ in different markets. For instance, Aradillas-López

and Gandhi (2016, Section 6.3.4 and Figures 5-6) found that the competition effect among

Walgreens, CVS, and Rite Aid decreases with the market size (population) in the U.S.

retail drugstore industry. Our model can be useful in these applications, which we illustrate

in a simulation study in Appendix D.2.

Example 2.4 Consider a gravity model where exporting firm i, for i = 1, ..., n, chooses

between L destination countries in each period. Assuming away any inter-temporal depen-

dence in export profits, the firm’s exporting decision can be characterized by a (simplified)

static version of Morales, Sheu, and Zahler (2019)’s conditional moment inequality model,

constructed based on the revealed preference principle, as follows:

E[(πil − πil′)Vil(1− Vil′)|Xi, Zi] ≥ 0 for all pairs (l, l′) ∈ {1, 2, ..., L}2 s.t. l 6= l′. (2.7)

In this model, πil is the profits of exporting to destination l by firm i, and Vil is a dummy

variable with Vil = 1 indicating country l is chosen by i. Zi represents firm size, and Xi

is the vector of firm’s other characteristics. Let ril and cil denote the exporter’s revenue

and cost, respectively. One may consider the following specification for the revenue ril

(see Chaney, 2018):

ril = exp [αl +X ′iβ + ρ(Zi)Dil] + εil, and E(εi|Xi, Zi) = 0, (2.8)

where Dil is a proxy of the distance between firm i and destination country l, ρ(Zi) rep-

resenting the (semi-)elasticity of revenue with respect to revenue, capturing the economic

observation that the elasticity varies with firm’s size.4 For its detailed specification, refer

to Morales, Sheu, and Zahler (2019). For each (l, l′) pair s.t. l 6= l′, substituting Equation

(2.8) into Equation (2.7) yields a conditional moment inequality with varying coefficient

4Dil is commonly calculated as the distance of the shipment, which represents the geodetic distance
between the population center of the city where firm i is located and the population center of its export
destination l (Mayer and Zignago, 2011; Dingel, 2017; Almunia, Antràs, Lopez-Rodriguez, and Morales,
2021).
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ρ(Zi).

In practice, the pre-specified value z0 is chosen by empirical needs. For example,

Aradillas-López and Gandhi (2016) estimate the competition effect of CVS and Walgreens

on Rite Aid, respectively, in a market with a population size of 820,000.5 They find that

from the perspective of Rite Aid, Walgreens poses a stronger competition effect than CVS

in this market. Researchers may also be interested in making a joint inference on θ01(z)

over a collection of z: ZT ≡ {z1, z2, · · · , zT}.6 We will analyze the statistical properties

of these confidence sets in Section 3 and construct both types of confidence sets in our

empirical application in Section 5.

3 Confidence Set

In this section, we propose a profiled test statistic for constructing confidence sets (CS) of

subvectors of θ0(z0); for instance, the first component θ01(z0).7 z0 ∈ Z is a pre-specified

value. A valid CS, denoted by ĈSn, with confidence level 1− α for θ01(z0) should satisfy

that

lim inf
n→∞

inf
(θ1,P )∈H0

Pr(θ1 ∈ ĈSn) ≥ 1− α, (3.1)

where H0 is a collection of (θ1, P ) and is formally defined in Equation (3.9).

We first define a set of instrument functions to transform the conditional inequalities

5Aradillas-López and Gandhi (2016) define a market as a CBSA (core-based statistical area) in the
continental United States. This market corresponds to the CBSA 29404 (Lake County–Kenosha County,
IL–WI). In this market, the distances from CVS, CVS, and Evergreen to their nearest distribution centers
are 191, 226, and 21 miles, respectively. See Aradillas-López and Gandhi (2016, Section 6) for details.

6In some empirical contexts, there are other natural choices of z0. For example, let Z be the running
variable of a fuzzy regression discontinuity design (FRD) and let z0 be the known cutoff. Under the local
monotonicity and local continuity, the local average treatment effect (LATE) is identified at the cutoff
z0, see Imbens and Lemieux (2008). In this case, LATE is the key parameter, and the cutoff point z0

is the natural choice of interest. If the FRD has multiple cutoffs ZT ≡ {z1, z2, · · · , zT }, then ZT is the
natural collection of interest. It is, in fact, possible to partially identify the LATE at z0 by relaxing the
local continuity condition to the first-order stochastic dominance between the distributions of potential
outcomes on either side of the cutoff when the FRD assumptions are rejected.

7We can extend our method to the case in which researchers are interested in λ(z0) ≡ λ(θ(z0)) for
some function λ : Θ→ Λ ⊆ Rdλ , as Bugni, Canay, and Shi (2017) for unconditional moment inequalities.
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(in X) into unconditional ones. Without loss of generality, we assume that X contains

only continuous variables, and its support is X = [0, 1]dx .8,9 We define a countable set of

hyper-cubes in X as

Gc-cube = {g`(·) = 1(· ∈ C`) : ` ≡ (x, r) ∈ Lc-cube} , where

C` =
(
×dxj=1(xj, xj + r]

)
and

Lc-cube =
{

(x, q−1) : q · x ∈ {0, 1, 2, · · · , q − 1}dx , and q = 1, 2, · · ·
}
. (3.2)

For notation simplicity, we let C1 = C(0,1) = X and g1 = g(0,1) = 1. One can also

consider other instrument functions that satisfy Andrews and Shi (2013, Assumption CI).

When there are discrete components in Z, we can apply our analysis to the subsample

determined by the corresponding discrete component in z0. If all components of Z are

discrete, we can then apply Bugni, Canay, and Shi (2017)’s subvector inference procedure

for constant coefficients to each subsample. Therefore, we assume all the elements in Z

are continuous variables without loss of generality and use fz(·) to denote its probability

density function (pdf). Following the same argument in AS, the moment conditions in

(2.1) are equivalent to

µ`,j(θ, z0) ≥ 0 for j = 1, . . . , p and (3.3)

µ`,j(θ, z0) = 0 for j = p+ 1, . . . , k, for all ` ∈ L

where µ`,j(θ, z0) = EP [g`(X) ·mj(W, θ)|Z = z0] · fz(z0). Let µ`(θ, z0) be a k × 1 vector

(µ`,1(θ, z0), · · · , µ`,k(θ, z0))′.

8Suppose X = {X1, X2} in which X1 is a binary variable taking values in {0, 1} and X2 is a contin-
uous variable. Then EP [mj(W, θ0(z1, z2))|X,Z = z] ≥ (=) 0 if and only if EP [mj(W, θ0(Z)) · 1(X1 =
0)|X2, Z = z] ≥ (=) 0 and EP [mj(W, θ0(Z)) · 1(X1 = 1)|X2, Z = z] ≥ (=) 0. In other words, by expand-
ing the number of moment conditions, we can rewrite the model so that X1 is not in the conditioning set
and X2 remains in it. Therefore, it is no loss of generality to assume that X contains only continuous
variables.

9In practice, we can always transform an observed variable Xj to the unit interval by applying the

transformation Φ
(
xij−x̄j
σ̂x,j

)
, where Φ is the standard normal CDF, and (x̄j , σ̂x,j) are sample mean and

standard deviation of a sample of n observations {x1j , x2j , · · · , xnj}, respectively. Note that such nor-
malization will not affect the asymptotics of our proposed test because the sample mean and standard
deviation of observations converge at a faster rate than our proposed test statistics.
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Let K(·) denote a kernel function with support on [−1, 1]dz and hn is a bandwidth.

For j = 1, . . . , k, define

µ̂`,n(θ, z0) =
1

nhdzn

n∑
i=1

K
(Zi − z0

hn

)
g`(Xi) ·m(Wi, θ).

µ̂`,n(θ, z0) is a consistent estimator for µ`(θ, z0) under the assumptions formally stated

in the next section; with undersmoothing,
√
nhdzn (µ̂`,n(θ, z0) − µ`(θ, z0)) converges in

distribution to a k-dimensional mean zero Gaussian process with covariance kernel ρ2 ·
CovP [g`(1)(X) ·m(W, θ(1)), g`(2)(X) ·m(W, θ(2))|Z = z0] · fz(z0), where the constant ρ2 =∫
u
K2(u)du. Let µ̂1,n(θ, z0) = n−1h−dzn

∑n
i=1K

(
Zi−z0
hn

)
m(Wi, θ). We define

Σ̂n(θ, 1, z0) =
1

nhdzn

n∑
i=1

(
K
(Zi − z0

hn

)
m(Wi, θ)− µ̂1,n(θ, z0)

)(
K
(Zi − z0

hn

)
m(Wi, θ)− µ̂1,n(θ, z0)

)′
,

Σ̂n(θ, `, z0) =
1

nhdzn

n∑
i=1

(
K
(Zi − z0

hn

)
g`(Xi)m(Wi, θ)− µ̂`,n(θ, z0)

)
·
(
K
(Zi − z0

hn

)
g`(Xi)m(Wi, θ)− µ̂`,n(θ, z0))

)′
,

Σ̂ε,n(θ, `, z0) = Σ̂n(θ, `, z0) + ε · diag
(

Σ̂n(θ, 1, z0)
)
.

Let S(m,Σ) be a testing function, which can be chosen as one of the following two forms,

S(m,Σ) =

p∑
j=1

[mj

σj

]2

−
+

k∑
j=p+1

[mj

σj

]2

, or

S(m,Σ) = max
{[m1

σ1

]2

−
, . . . ,

[mp

σp

]2

−
,
[mp+1

σp+1

]2

, . . . ,
[mk

σk

]2}
where [a]− = min{0, a} and σj =

√
Σjj.

With these notations, we can define the following Cramér-von-Mises-type profiled test

statistic (for a given value of θ1) as

T̂ Sn(θ1, z0) ≡ inf
θ∈Θ(θ1)

T̂n(θ, z0), (3.4)
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where Θ(θ1) ≡ {θ̃ ∈ Θ : θ̃1 = θ1} is the possible value that the rest of the parameters

can take when the first parameter is fixed at θ1, and

T̂n(θ, z0) =

Qn∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(
√
nhdzn µ̂`,n(θ, z0), Σ̂ε,`,n(θ, z0)) (3.5)

with Qn →∞ as n→∞.10

Next, we approximate the asymptotic distribution of T̂ Sn(θ1, z0) to construct the

critical value. We consider the multiplier bootstrap. Let {Ui : i = 1, . . . , n} be a sequence

of pseudo-random variables with zero mean and unit variance that are independent of the

sample path. The multiplier bootstrap process is

Ψu
n(θ, `, z0) =

1√
nhdzn

n∑
i=1

Ui

(
K
(Zi − z0

hn

)
g`(Xi) ·m(Wi, θ)− µ̂`,n(θ, z0)

)
.

Following Bugni, Canay, and Shi (2017), we define the slackness function as ν̂`,n(θ, z0) =

κ−1
n

√
nhdzn µ̂`(θ, z0), where κn =

√
log(n). The bootstrap version of simulated CvM test

statistic for θ is

T̂ un (θ, z0) =

Qn∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS
(
Ψu
n(θ, `, z0) + ν̂`,n(θ, z0), Σ̂ε,`,n(θ, z0)

)
.

And for a fixed value of θ1, the bootstrap test statistic is11

T̂ S
u

n(θ1, z0) ≡ min
θ∈Θ(θ1)

T̂ un (θ, z0).

Let η be a prespecified infinitesimal positive number, for example, 10−6. We define

10Note that our test with non-standardized moment conditions would still work. That is, our test is
still valid if we replace Σ̂ε,`,n(θ, z0) with the identity matrix in (3.4). In the main text, we consider the
standardized version. In Appendix D.3, we also report the CS with non-standardized moment conditions
for our empirical application, and the results are similar qualitatively.

11The statistic T̂ S
u

n(θ1) defined here is analogous to the statistic TPRn (λ0) of (2.13) in Bugni, Canay,

and Shi (2017). As we demonstrate later, the critical value based on T̂ S
u

n(θ1) delivers valid inference.
We might, in addition, consider an alternative bootstrap statistic TDRn (θ1) analogous to their TDRn (λ0)

and use min{T̂ SDRn (θ1), T̂ S
u

n(θ1)} for a potential power improvement. See Bugni, Canay, and Shi (2017,
section 4.1) for a detailed discussion.
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Ĉη,n(θ1, α) as the sum of (1−α+η)-th quantile of the conditional distribution of T̂ S
u

n(θ1)

conditioning on data and η, i.e.,

Ĉη,n(θ1, α) = sup
{
C
∣∣P u
(
T̂ S

u

n(θ1, z0) ≤ C
)
≤ 1− α + η

}
+ η. (3.6)

The confidence set for θ0,1(z0) is then given as

ĈSn = {θ1 : T̂ Sn(θ1, z0) ≤ Ĉη,n(θ1, α)}. (3.7)

3.1 Asymptotics of Confidence Sets

We now introduce the regularity conditions for establishing the asymptotic properties of

the proposed confidence sets in (3.7). Let {Wi}ni=1 denote a random sample of size n

generated from P . Let P denote the set of P that we consider. Let Fz, Fx, and Fxz

denote the marginal distributions of Z, X, and (X,Z) under P .

Assumption 3.1 {(Xi, Yi, Zi)}ni=1 is a random sample of i.i.d. observations.

Assumption 3.2 Θ is compact and convex.

One special case of Assumption 3.2 is that Θ is a Cartesian product of dθ closed

intervals Θ = Πdθ
j=1 [θj`, θju], in which case Θ(θ1) ≡ {θ̃ ∈ Θ : θ̃1 = θ1} is independent with

θ1, and that Θ−1 ≡ Πdθ
j=2 [θj`, θju]. Our next assumption regulates the complexity of the

class of moment functions.

Assumption 3.3 There exist constants δ > 0 and 0 < Q <∞ that do not depend on P ,

such that

i. maxj=1,...,k

∣∣mj(w, θ)
∣∣ ≤ M(w) for all w ∈ W, for all θ ∈ Θ for some envelope

function M(w);

ii. EP [M(W )4|Z = z] ≤ Q <∞ on Nδ(z0) for all P ∈ P;

13



iii. the processes {mj(Wn,i, θ) : θ ∈ Θ, i ≤ n, 1 ≤ n} for j = 1, . . . , k are manageable

with respect to the envelope functions {M(Wn,i) : i ≤ n, 1 ≤ n} where {Wn,i : i ≤
n, 1 ≤ n} is a row-wise i.i.d. triangular array with Wn,i ∼ Pn for any sequence

{Pn ∈ P}.

Assumption 3.3 implies {n−1/2h
−dz/2
n K((Zi − z0)/hn) · g`(Xi)mj(Wn,i, θ) : θ ∈ Θ, ` ∈

L, i ≤ n, 1 ≤ n} are manageable with respect to the envelope functions {n−1/2h
−dz/2
n K((Zi−

z0)/hn) ·M(Wn,i) : i ≤ n, 1 ≤ n}.

Assumption 3.4 For the same δ and Q as in Assumption 3.3, assume

i. fz(z) ≥ δ > 0 and is continuous on Nδ(z0) ⊂ Z;

ii. fz(z) is twice continuously differentiable on Nδ(z0);

iii. |fz(z)| ≤ Q, |f ′z(z)| ≤ Q and |f ′′z (z)| ≤ Q on Nδ(z0)

where Nδ(z0) = Nδ(z0) ≡ {z : ‖z − z0‖ ≤ δ}.

Assumption 3.4 imposes some regularity conditions on the distribution of Z and as-

sumes z0 is in the interior of the support. Assumption 3.5 below imposes smoothness

conditions on the conditional moment conditions.

Assumption 3.5 Let µj(θ, x, z) = EP [mj(W, θ)|X = x, Z = z]. For all x ∈ X , µj(θ, x, z)

is twice continuously differentiable on Θ × Nδ(z0). Furthermore, for all x ∈ X , for the

same δ and Q as in Assumption 3.3 and for all j = 1, . . . , k,

i. ‖∂µj(θ, x, z)/∂θ‖ ≤ Q and ‖∂2µj(θ, x, z)/∂θ∂θ
′‖ ≤ Q on Θ×Nδ(z0);

ii. |µj(θ, x, z)| ≤ Q, |∂µj(θ, x, z)/∂z| ≤ Q and |∂2µj(θ, x, z)/∂z∂z| ≤ Q on Θ×Nδ(z0).

Assumption 3.6 The kernel function K(·) and bandwidth h satisfy the following condi-

tions:

i. K(·) is a non-negative symmetric bounded kernel with a compact support in R (say

[−1, 1]);
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ii.
∫
K(u)du = 1 and

∫
ujK(u)du = 0;

iii. hn → 0, nhn →∞ and nhdz+4
n → 0 as n→∞.

Assumption 3.6 (i)-(ii) are satisfied for commonly used second-order kernels. All our

results can straightforwardly be extended to higher-order kernels. Assumption 3.6 (iii) is

an undersmoothing condition. It ensures that the bias in estimating µ`(θ, z) is asymptot-

ically negligible. Undersmoothing is also adopted in AS.

Assumption 3.7 κn →∞ and κ2
nn
−1h−dzn → 0.

Assumption 3.7 specifies the condition for the slackness tuning parameter κn, and it

is satisfied if κn is proportional to log(n), or a power of log(n).

Assumption 3.8 The following condition holds uniformly over P ∈ P:

lim
δ↓0

sup
‖(θ(1)−θ(2))‖≤δ

sup
`∈L

max
j=1...,k

∣∣V ar(g`(X) · (mj(W, θ
(1))−mj(W, θ

(2)))
∣∣Z = z0

)∣∣→ 0.

Assumption 3.8 is imposed to ensure that when Ψ̂n(θ, `, z0) =
√
nhdzn (µ̂`,n(θ, z0) −

µ`(θ, z0)) weakly converges to a tight Gaussian process along a (sub)sequence of distribu-

tions in P , the limiting process will have a continuous path in θ uniformly over ` ∈ L.

Our next assumption involves a “population quantity” TP (θ, z0), defined as

TP (θ, z0) =
∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(µ`(θ, z0),Σε,`((θ))), (3.8)

where the weighting matrix Σε((θ, `)) = Σ((θ, `)) + ε · Σ((θ, 1)) and

Σ((θ(1), `(1)), (θ(2), `(2))) = ρ2 · CovP (g`(1)(X) ·m(W, θ(1)), g`(2)(X) ·m(W, θ(2))|Z = z0) · fz(z0)

Σ((θ, `)) = Σ((θ, `), (θ, `)),

Σ((θ, 1)) = ρ2 · CovP (m(W, θ),m(W, θ)|Z = z0) · fz(z0).
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Assumption 3.9 Let Θ(θ1) ≡ {θ̃ ∈ Θ : θ̃1 = θ1} and ΘP (z0) as defined in Equa-

tion (2.2). Let P0 be the collection of P ∈ P such that ΘP (z0) is not empty. Then for

all P ∈ P0 and for all θ ∈ Θ(θ1), TP (θ, z0) ≥ cmin{δ, inf θ̃∈Θ(θ1)∩ΘP (z0) ‖θ − θ̃‖2} for some

constants c > 0 and δ > 0 that are independent of θ1 and z0.

Assumption 3.9 is an identification strength assumption. It is a type of polynomial

minorant condition introduced by Chernozhukov, Hong, and Tamer (2007). A similar

condition is also assumed in Bugni, Canay, and Shi (2017, Assumption A.3) for subvector

inference in unconditional moment inequality models. This assumption excludes weakly

identified models. For instance, it requires the correlation between the instrument and

the endogenous variable to be bounded away from zero.

We define H0 as the collection of (θ1, P ) such that P ∈ P and there exists a θ−1 ∈ Θ−1

such that (θ1, θ−1) ∈ ΘP (z0). That is,

H0 ≡ {(θ1, P ) : P ∈ P , exist θ−1 ∈ Θ−1 such that (θ1, θ−1) ∈ ΘP (z0)}. (3.9)

Theorem 3.1 Let the confidence level be 1−α. Suppose Assumptions 3.1-3.9 hold, then

lim inf
n→∞

inf
(θ1,P )∈H0

Pr(θ1 ∈ ĈSn) ≥ 1− α. (3.10)

In addition, if there exists (θ∗1, P
∗) ∈ H0 such that the limiting distribution function under

P ∗ of T̂ Sn(θ1, z0) is continuous and strictly increasing at its (1− α)-th quantile, then

lim
η↓0

lim inf
n→∞

inf
(θ1,P )∈H0

Pr(θ1 ∈ ĈSn) = 1− α. (3.11)

3.2 Joint Confidence Set

The confidence set characterized in the Theorem 3.1 depends on z0. In some applica-

tions, researchers may be interested in a joint inference on θ01(·) evaluated at multi-

ple pre-specified values: ZT = {z1, z2, · · · , zT}.12 The results of Theorem 3.1 can be

12Researchers may also be interested in the confidence band for the functional parameter θ01(·). This
is beyond the scope of this paper, and we will leave it for future research.
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readily extended to analyze this case. One way to proceed is to define T̂ S
u

n(θ̃T1 ,ZT ) =

maxt=1,2,··· ,T T̂ S
u

n(θ1t, zt) and the critical value Ĉjoint
η,n (θ̃T1 , α) as

Ĉjoint
η,n (θ̃T1 , α) = sup

{
C
∣∣P u
(
T̂ S

u

n(θ̃T1 ,ZT ) ≤ C
)
≤ 1− α + η

}
+ η,

where θ̃T1 ≡ (θ11, θ12, · · · , θ1t, · · · , θ1T ) is a generic T × 1 vector. The joint confidence set

for {θ01(zt) : t = 1, . . . , T} is then given as

ĈS
joint

n =
{
θ̃T1 : max

t=1,...,T
T̂ Sn(θ1t, zt) ≤ Ĉjoint

η,n (θ̃T1 , α)
}
, (3.12)

where is T̂ Sn(θ1t, zt) is defined in the same way as in Equation (3.4).

Computing the joint confidence set ĈS
joint

n defined by Equation (3.12) can be time-

consuming because one needs to search in the T -dimensional space. To illustrate, we

take T = 10 and consider 100 grid points for each θ01(zt). In this case, there are 10010

grid points for the vector θ̃T1 , and, consequently, one needs to invert the corresponding

test 10010 times. When T is large, it is infeasible to compute such a joint confidence set.

Therefore, we utilize the fact that over a finite number of distinct values {z1, . . . , zT},
the individual confidence sets for θ01(z1), . . . , θ01(zT ) are asymptotically mutually inde-

pendent. This is because we use subsamples that are mutually exclusive to compute each

confidence set when the bandwidth h converges to zero. Then, a valid joint confidence

set with 1− α confidence level for {θ01(zt) : t = 1, . . . , T} is given as

C̃S
joint

n = ×t=1,...,T ĈSn(zt, αT ), (3.13)

where for each t, ĈSn(zt, αT ) is a valid confidence set with confidence level 1 − αT for

θ01(zt) as in Equation (3.7) and (1 − αT )T = 1 − α. It is much less time-consuming to

compute C̃S
joint

n than ĈS
joint

n . Again, we take T = 10 and 100 grid points for θ01(zt)

as an example. In this case, we only need to invert the test 10 × 100 = 1000 times.13

13When the dimension of the parameter vector is high, instead of considering a grid of fixed points,
one can use the EAM algorithm of Kaido, Molinari, and Stoye (2019) to select testing points to reduce
computation cost. However, the computation simplification of the product-confidence set still applies, in
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Therefore, even if the number of z we consider gets larger, it is still feasible to compute

C̃S
joint

n . However, when the number of z is large, those grid points can be very dense in

Z. In this case, we would need the bandwidth h to be small enough (or the sample size n

to be big enough) so the subsamples for computing confidence sets at different z do not

overlap. This ensures mutual independence among these confidence sets.

3.3 Specification Test

In many empirical settings, researchers may want to examine whether the model is cor-

rectly specified over the pre-chosen set ZT = {z1, · · · , zT}. It can be stated as the following

null hypothesis:

P0 ≡ {P ∈ P : There exists a θ(·) such that (2.1) holds for all z ∈ ZT}. (3.14)

Note that the condition stated in (3.14) is a necessary condition for the stronger statement

in (2.1), which requires the existence of a function θ0(·) such that the moment inequalities

hold for all z ∈ Z.14 For this reason, a rejection of (3.14) implies the rejection of the

original model in (2.1), but not vice versa. Still, empirical researchers can consider testing

(3.14) as a practical way of checking the model specification and can pick a larger number

of grid points (of z) to make the testing result more credible. Also note that, although

the null DGP set P0 implicitly depends on ZT , we suppress this dependence for the ease

of notation.

For testing the H0 of P ∈ P0 against H1 of P ∈ P/P0, one can certainly construct

the confidence set for θ0(z) and verify if this confidence set is empty. However, as dis-

cussed in Bugni, Canay, and Shi (2015), checking the emptiness of the confidence set can

be unnecessarily costly in computation, and the test statistics defined as the infimum

(or supremum) of an appropriate sample objective function can achieve better power.

addition to the savings brought by the EAM algorithm.
14In this sense, we are testing a collection of local specifications instead of the global specification.
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Therefore, we consider the following test statistics,

T̂n ≡ max
t=1,··· ,T

[
min
θ∈Θ

T̂n(θ, zt)

]
,

and its bootstrapped analog

T̂ un ≡ max
t=1,··· ,T

[
min
θ∈Θ

T̂ un (θ, zt)

]
.

We set the critical value Cu
η,n(α) as the (1 − α + η)-th quantile of T̂ un plus η, and define

the test as φn = 1[T̂n > Cu
η,n(α)]. It is clear to see how the test statistic T̂n and T̂ un utilize

respectively T̂n(θ, zt) and T̂ un (θ, zt), both of which were used earlier for constructing CSs

of (3.1). The following theorem establishes the consistency of the proposed procedure

above for testing the null hypothesis of (3.14).

Theorem 3.2 Suppose Assumptions 3.1-3.9 hold, then

lim sup
n→∞

sup
P∈P0

Pr(φn = 1) ≤ α. (3.15)

In addition, if there exists P ∗ ∈ P such that the limiting distribution function under P ∗

of T̂n is continuous and strictly increasing at its (1− α)-th quantile, then

lim
η↓0

lim sup
n→∞

sup
P∈P0

Pr(φn = 1) = α. (3.16)

Remark 3.1 In calculating the quantile of T̂ un , one can replace the minimization region

Θ with Θ̂P (zt) , a consistent estimator of the identified set ΘP (zt). This would allow us to

use other GMS functions. Please see Bugni, Canay, and Shi (2015, footnote 8) for more

discussions on the choice of the minimization region and slackness functions.

Corollary 3.1 Fix ZT = {z1, z2, · · · , zT}. Suppose the conditions for Theorem 3.2 are

satisfied for all z ∈ ZT . Let TP (θ, zt) be as defined in Equation (3.8) with zt in place of
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z0 and Pn be a sequence of DGP such that

cn = max
t=1,··· ,T

inf
θ∈Θ

TPn(θ, zt) > 0.

Then, for any chosen η < +∞, we have lim infn→∞ Pr(φn = 1) = 1 if cn → c > 0. If

nhdzcn → c > 0, and let r(c) ≡ lim infn→∞ Pr(φn = 1), we have limc→+∞ r(c) = 1.

The condition maxt=1,··· ,T infθ∈Θ TPn(θ, zt) = cn > 0 is a high level condition. cn →
c ∈ (0,∞) can occur if a moment inequality is violated at a particular zt. For example,

if for some j = 1, · · · , p, EPn [mj(W, θ0(Z))|X, z = zt] < −δ < 0 over a subset of X̃zt
with Pr(X ∈ X̃zt|Z = zt) > 0, then we can expect cn → c > 0. It can also occur when

|Ep[mj(W, θ0(Z))|X, z = zt]| > δ > 0 over a subset of X̃zt with Pr(X ∈ X̃zt |Z = zt) > 0

for some j = p+ 1, · · · k.

Remark 3.2 Our specification test can also test other restrictions on the θ0(z). For

example, one may be interested in whether θ0(z) ≡ θ0 for all z ∈ ZT . Here, θ0 is an

unknown constant but with a known possible region of S. To test this hypothesis, we can

modify the test statistics to

T̂n ≡ min
θ∈S

[
max

t=1,··· ,T
T̂n(θ, zt)

]
.

Another possible scenario is that researchers may impose a parametric assumption on

θ0(z) such that θ0(z) ≡ ϕ(z, γ0), where ϕ is known up to a finite-dimensional parameter

γ0 ∈ Γ. Then, the test statistics can be defined as

T̂n ≡ min
γ∈Γ

[
max

t=1,··· ,T
T̂n(ϕ(zt, γ), zt)

]
.

In the above two cases, if the test rejects, then we can interpret it as either the ini-

tial moment inequalities are misspecified, or the extra parametric assumption on θ0(z) is

misspecified, or both.
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4 Simulations

This section provides Monte Carlo simulations to illustrate our method and demonstrate

its finite sample performance. We mainly focus on the properties of the proposed con-

fidence sets in Section 4.1. In Section 4.2, we investigate the property of the proposed

specification test. We set the number of bootstrap samples B = 1000 and the num-

ber of replications R = 1000 throughout this section. We consider four sample sizes

n ∈ {500, 1000, 2000, 4000} for all simulation designs.

There are several tuning parameters we need to decide on when implementing our

tests. Here, we summarize our recommendations.

1. We set κn =
√

log n. It is recommended by Andrews and Soares (2010) and Bugni,

Canay, and Shi (2017).

2. We use the Epanechnikov kernel. As in Andrews and Shi (2014), we consider the

bandwidth h = τ × 4.68σ̂zn
−2/7 with τ = 0.5, where σ̂z is the estimated standard

deviation of Zi.
15

3. η = 10−6, which is recommended by Andrews and Shi (2013) and Andrews and Shi

(2014).

4. ε = 1/20, which is recommended by Andrews and Shi (2014).

5. Qn is set such that the smallest cube contains, on average, no fewer than 15 sample

points.16

15If Z is a vector with a generic element Zd, d = 1, 2, · · · , dz, then we will use a product kernel and set
the bandwidth for the d-th dimension as hd = τ × 4.68σ̂zdn

−2/7, where σ̂zd is the standard deviation of
Zi,d. We also try other τ values between 0.1 and 1 in our main simulation; the results are similar.

16In our simulations, we set Qn = 10, and the average sample size for the smallest cube is around 27
when n = 2000.
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4.1 Finite Sample Performances of the CS

We illustrate our method by linear regression with interval observed outcomes that we

introduced in Example 2.2. Again, the latent variable regression is given by

Y = X1θ10(Z) +X2θ20(Z) + ε,

where Y is not observed, but known to belong to [Y`, Yu]. X1 ∼ N(0, 1), X2 ∼ N(0, 1),

Z ∼ U [2, 6], ε ∼ N(0, 1) are all mutually independent. For some δ > 0, let Yu =

δ(Ceil[Y/δ]) and Y` = δ(Ceil[Y/δ] − 1), where Ceil[x] rounds x to the nearest integer

toward +∞. Under this construction, the bracket length Yu−Y` is exactly δ. We consider

the following varying coefficients:

θ10(z) = (1.6 + 0.6z)e−0.4(z−3)2 , θ20(z) = 2(1 + cos(z)).

This specification of θ10(z) is taken from Cai, Fang, Lin, and Su (2019). We focus on

z0 = 4, which implies the true value of θ10(z0) equals to 2.68. In this model, the upper

and lower bounds of the identified set for θ10(z0) is [θ1,`b, θ1,ub], where

θ1,`b = inf
θ∈Θ

θ1 s.t. EP [Y`|X,Z = z0] ≤ xᵀθ ≤ EP [Yu|X,Z = z0], a.s. X,

θ1,ub = sup
θ∈Θ

θ1 s.t. EP [Y`|X,Z = z0] ≤ xᵀθ ≤ EP [Yu|X,Z = z0], a.s. X.

For this linear regression with interval-observed outcome variable designs, we consider

interval lengths δ = 0.5, which implies the identified set to be [2.6, 2.73].17 We also

consider interval lengths δ = 0.1 and δ = 1.0. The results are qualitatively similar and,

thus, omitted to save space. We calculate coverage frequencies at 95% nominal levels for

different values of θ1 deviating from the upper boundary of the identified set, that is,

θ1,ub + c for c ≥ 0. In Figure 1, we plot the coverage frequency against the distance to

17The “approximated identified sets” reported here are calculated by evaluating sample objective func-
tions with a very large sample size (n = 100, 000) and Qn = 10. Therefore, these sets are essentially
approximations of the identified region of the set of unconditional moment inequalities corresponding to
Qn = 10.
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Figure 1: Coverage Frequency of ĈSn at a Single z

the upper boundary c. We can see that the coverage frequency is not smaller than the

nominal level at the upper bound (c = 0), which shows our CS is asymptotically valid.

Furthermore, we see the coverage probability declines quickly when moving away from

the identified set for a given sample size, and it also decreases quickly as the sample size

increases for each given c value. This shows that our CS has good finite sample power.

The pattern of the coverage frequency near the lower boundary is similar and, therefore,

omitted.

Next, we examine the finite sample performance of the joint CS characterized in

Equation (3.13). Instead of focusing on z0 = 4, we consider a set of z values of ZT =

{3.6, 4.0, 4.4, 4.8, 5.2}. Our goal is to construct a joint CS for the vector

−→
θ01 ≡ (θ01(3.6), θ01(4.0), · · · , θ01(5.2))′ ∈ R5.

Note the identified set for the vector
−→
θ01 is a Cartesian product:

[θ1,`b(3.6), θ1,ub(3.6)]× [θ1,`b(4), θ1,ub(4)]× · · · × [θ1,`b(5.2), θ1,ub(5.2)],

where θ1,`b(z) and θ1,ub(z) are the lower and upper bounds of the identified set for θ01(z).
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Figure 2: Coverage Frequency of the Joint CS

Because
−→
θ01 is a multi-dimensional vector, it is challenging to draw the coverage probability

for each
−→
θ01. To have an intuitive comparison with the results in Figure 1, we report

the coverage frequency of the joint CS for a deviation from the upper boundary of the

identified set, namely
−−→
θ1,ub + cι, where

−−→
θ1,ub ≡ (θ1,ub(3.6), θ1,ub(4), · · · , θ1,ub(5.2))′ is the

upper boundary of the identified set (evaluated at Z), ι is a vector of ones with same

dimension as
−−→
θ1,ub, and c ≥ 0 measures the size of the deviation. Increasing c again means

that we are moving away from the identified set. Similar to the CS at a single z value,

we can see from Figure 2 that the coverage frequencies decline as c increases for all the

sample sizes, which shows that the joint CS also has a good finite sample power property.

4.2 Specification Test

In this subsection, we examine the finite sample performance of our specification test,

for which we also consider the interval data example, but change the DGP so that the

moment inequalities are misspecified. Specifically, the model is the same as the one in

Section 4.1, except that we now consider cases in which δ < 0. The model is misspecified

in such cases, and we should expect a high rejection frequency. We conduct the test at

the same five grid points ZT = {3.6, 4.0, 4.4, 4.8, 5.2}.
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Table 1: Rejection Frequency: Linear Regression with Interval Outcome

δ n α = 0.1 α = 0.05 α = 0.01

δ = −1.0 n = 500 1.000 0.997 0.952
n = 1000 1.000 1.000 1.000
n = 2000 1.000 1.000 1.000

δ = −0.5 n = 500 0.992 0.967 0.715
n = 1000 1.000 1.000 0.992
n = 2000 1.000 1.000 1.000

δ = −0.2 n = 500 0.650 0.420 0.112
n = 1000 0.917 0.735 0.335
n = 2000 0.997 0.975 0.665

δ = 0.0 n = 500 0.117 0.057 0.012
n = 1000 0.102 0.035 0.005
n = 2000 0.145 0.067 0.005

δ = 0.2 n = 500 0.015 0.002 0.0050
n = 1000 0.005 0.002 0.000
n = 2000 0.005 0.000 0.000

δ = 0.5 n = 500 0.002 0.000 0.000
n = 1000 0.000 0.000 0.000
n = 2000 0.000 0.000 0.000

δ = 1.0 n = 500 0.000 0.000 0.000
n = 1000 0.000 0.000 0.000
n = 2000 0.000 0.000 0.000

Table 1 reports the rejection frequencies under different significance levels α and δ.

When the model is correctly specified and has a positive interval length (δ > 0), the

rejection frequency is very low and close to zero, which is not surprising because the true

model lies in the “interior” of the null hypothesis. When the model is correctly specified

but point-identified (δ = 0), we are in the knife-edge case, and the rejection frequency

is close to the nominal value when the sample size is large enough. Finally, when the

model is misspecified (δ < 0), our test can detect it and show good power—the rejection

frequencies increase as the size of the misspecification increases.
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5 Empirical Illustration

In this section, we illustrate our method by estimating the return to education using

a subset of China’s 2005 “1% population census”, which is also known as the “mini-

census”. It is well documented that the return to education in China is heterogeneous

across regions with different development levels, and it is very crucial for policy-makers to

account for such heterogeneity when designing new policies (see discussions in Heckman,

2005). Because of the endogeneity of education, researchers have been employing the

instrumental variable (IV) approach to identify the causal effect, where a popular choice

of IV is the parents’ education. For example, using the mother and father’s education as

one of the key IVs, Heckman and Li (2004) estimated that in China, a four-year college

education increases wages by about 43%.18 However, Liu, Mourifié, and Wan (2020, Table

S1) found that one needs to be cautious about the validity of the parents’ education as

the IV for some provinces. In this empirical scenario, our method would be useful to

partially identify the causal effect of a return to schooling under a weaker assumption

while nonparametrically accounting for its dependence on the regional development level.

After matching children with their parents, our data set contains 176, 458 individuals

between 18 and 60 years of age. It covers all 31 provinces of China and 343 prefectures.

For illustration, we retain the subsample for which the IV-validity was rejected in Liu,

Mourifié, and Wan (2020), which results in 44, 112 observations.19 The core variables

are the logarithm of the monthly wage (outcome variable Y ) in 2005 Chinese Yuan, a

prefecture-level average of the logarithm of monthly income (Z), an education level (X1),

and the mother’s education level XIV . Both education levels are classified into three

categories: elementary school and below, middle school, high school and above. In this

exercise, we use local (prefecture) level contemporaneous average income as the proxy for

the regional development level; please see Figure 3 for its histogram. Table 2 reports some

descriptive statistics of the variables.

18They used the data from the China Urban Household Income and Expenditure Survey(CUHIES) for
2000.

19These provinces are Shanghai, Hubei, Guangdong, Chongqing, Xizang, and Qinghai.
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Table 2: Descriptive Statistics

Variables Average Std Max Min

Log-wage (Y ) 6.26 0.89 10.5 2.30
Local Average Income (Z) 6.51 0.51 7.48 5.33
Education (X1) 1.09 0.69 2 0
Mother’s Education (XIV ) 0.31 0.58 2 0
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Figure 3: Histogram of z (regional development level)

We consider the model that we introduced earlier in Equation (2.4),

EP [XIV (Y −X1θ01(Z)− θ02(Z))|Z = z] ≥ 0,

EP [Y −X1θ01(Z)− θ02(Z)|Z = z] = 0.

We create a grid of ZT = {5.8, · · · , 6.7, 6.8, 7.1, 7.2, 7.3} and construct a 95% joint CS

for θ01(z) with z ∈ ZT .20 The choice of tuning parameters is the same as those in our

20In this example, the bandwidth h ≈ 0.056, and there are few overlap observations when constructing
confidence intervals at each z. The grid does not contain the two points 6.9 and 7.0 because there are no
observations within their h-neighborhood. For this sample of 44, 112 observations, the total computation
time of brute-force grid search is already manageable (a few hours); however, it can be much improved
by more sophisticated algorithms, e.g., the EAM algorithm of Kaido, Molinari, and Stoye (2019).
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simulation studies, except that we increase the number of bootstraps to 8000 to increase

accuracy. We specify the parameter space as [−1, 2]× [4, 6].

The results are reported in Figure 4. We connect the upper and lower points of the

joint confidence set and plot it as the (blue) shadowed area. For comparison, for each

z ∈ ZT , we also plot the pointwise confidence intervals as the black vertical lines. Finally,

the black line with circle markers plots the 2SLS estimator θ̂2SLS(z) using the observations

whose Zi ∈ [z−0.1, z+0.1]. We chose the half-window length as 0.1 to ensure the matrices

in the 2SLS estimates calculation are not rank-deficient; we also experimented with larger

numbers and obtained similar results. The 2SLS estimate using the entire sample (not

binning on z) is 1.02, with a 95% confidence interval of [0.990, 1.045]. As a robustness

analysis, we also calculate the confidence sets without standardizing the moments and

using subsamples defined by gender and age. The results are similar and collected in

Figures 7 and 8 in the Appendix D.3.

We have two observations from Figure 4. First, there is indeed substantial hetero-

geneity in the return to education. If one is willing to assume IV validity, then the 2SLS

estimates suggest that the return to education varies substantially across different local

development levels: the estimates range from 0.5 to 1.2, which is far wider than the

95% CI [0.990, 1.045] of the pooled 2SLS. On the other hand, based on the moment in-

equality model, we can see that the location of confidence intervals for θ01(z) also varies
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substantially across different values of z. The width of the confidence intervals changes

significantly, too. This implies that after conditioning on different values of z, the data and

model offer different levels of identification power for the parameter of interest θ01(z).21

These features will not be observed if we do not allow θ01(z) to vary across z. Regardless

of the point or partial identification approach, the results show the empirical virtue of

considering a model that allows for varying coefficients.

The second observation based on Figure 4 is that the 2SLS estimates are close to

the upper boundaries of the pointwise or joint CS for nearly all z values. Hence, even

if one considers the heterogeneity in the return to education, it is still possible to make

misleading policy recommendations based on 2SLS when the IV validity assumption is

violated. For example, our results show that the return to education can be much lower

(even negative) for the relatively underdeveloped areas than the 2SLS estimates, which

may result from a frictional labor market or weak infrastructure. A policy implication is

that the government needs to improve the labor market conditions or local infrastructure

before investing in education. Therefore, our model can offer additional information

compared to the traditional varying coefficient models.

6 Conclusion

This paper provides an inference procedure for varying coefficients defined by moment

inequalities and/or equalities. The proposed procedure is based on multiplier-bootstrap

and, as shown, can be readily used to construct confidence sets for the parameters’ sub-

vector of interest. We show that the resulting confidence sets are asymptotically valid

uniformly over a broad family of DGPs and robust to partial identification. We also

propose a specification test for a set of necessary implications of the varying coefficient

models we considered. We illustrate the proposed method in simulation and empirical

studies.

21As shown by Figure 3, there are relatively fewer observations when z takes smaller values. This is
one possible reason the confidence interval is wider for smaller values of z than for larger values.
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Appendix

A Notations

We introduce more notations. Let Ω be a closed set of k × k covariance matrices. Recall

that

ΣP ((θ(1), `(1)), (θ(2), `(2))) = ρ2 · CovP (g`(1)(X) ·m(W, θ(1)), g`(2)(X) ·m(W, θ(2))|Z = z0) · fz(z0),

ΣP ((θ, `)) = ΣP ((θ, `), (θ, `)),

ΣP ((θ, 1)) = ρ2 · CovP (m(W, θ),m(W, θ)|Z = z0) · fz(z0),

ΣP,ε((θ, `)) = ΣP ((θ, `)) + ε · ΣP ((θ, 1)).

For a given pair of (`(1), `(2)), let C(Θ2) denote the space of continuous functions ΣP ((·, `(1)), (·, `(2))) :

Θ2 → Ω. For notation simplicity, we write ΣP to denote ΣP ((θ(1), `(1)), (θ(2), `(2))) when

it causes no confusion.

For a given θ1, define

Λn,P (θ1) = {(θ, ξ) ∈ Θ(θ1)× {Rk
±∞}`∈L : ξ` =

√
nhdzn µ`(θ, z0)},

Λ∗n,P (θ1) = {(θ, ξ) ∈ Θ(θ1)× {Rk
±∞}`∈L : ξ` = κ−1

n

√
nhdzn µ`(θ, z0)},

Λ̂∗n,P (θ1) = {(θ, ξ) ∈ Θ(θ1)× {Rk
±∞}`∈L : ξ` = κ−1

n

√
nhdzn µ̂`(θ, z0)},

where µ`(θ, z0) = EP [g`(X) ·m(W, θ)|Z = z0] · fz(z0).

For any two pairs (θ, ξ) and (θ′, ξ′) in Θ× {Rk
±∞}`∈L, define the metric as

d((θ, ξ), (θ′, ξ′)) =
[ dθ∑
j=1

(Φ(θj)− Φ(θ′j))
2

+
∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dx
k∑
j=1

(Φ(ξj,`)− Φ(ξ′j,`))
2
]1/2

,

where Φ(·) is the CDF of the standard normal. Then it holds that the space (Θ ×
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{Rk
±∞}`∈L, d) constitutes a compact metric space because R±∞ is a compact space under

metric dR with dR(r, r′) = |Φ(r) − Φ(r)|. Let S(Θ × {Rk
±∞}`∈L) denote the collection of

compact subsets of the metric space (Θ×{Rk
±∞}`∈L, d). Note that this is true only when

the dimension of Θ × {Rk
±∞}`∈L is countably many infinite, and this is the main reason

that we have to use instrument functions Gc-cube that is countably many. Let dH denote

the Hausdorff metric associated to the metric d, i.e., for any sets A,B ⊆ Θ× {Rk
±∞}`∈L,

dH(A,B) = max
{

sup
(θ,ξ)∈A

inf
(θ′,ξ′)∈B

d((θ, ξ), (θ′, ξ′)), sup
(θ′,ξ′)∈B

inf
(θ,ξ)∈A

d((θ, ξ), (θ′, ξ′))
}
.

At last, define the metric space (Θ(θ1)×{Rk
±∞}`∈L, d) and the collection of its compact

subsets S(Θ(θ1)× {Rk
±∞}`∈L) analogously.

B Lemmas

In this section, we abbreviate T̂ Sn(θ1, z0) as T̂ Sn(θ1) when it causes no confusion; but it

is understood that the test statistic depends on the pre-chosen z0 value.

Lemma B.1 Suppose Assumptions 3.1-3.9 hold. Let {(λun , Pun ∈ H0)}n≥1 be a (sub)sequence

of parameters and distributions such that for some (Σ,ΛL) ∈ {C(θ2)}(`1,`2)∈L2 × S(Θ ×
{Rk
±∞}`∈L), (i) ΣPun → Σ uniformly and (ii) Λun,Pun (θun)

H→ ΛL. Then, along the

(sub)sequence,

T̂ Sun(θ1,un)
d→ inf

(θ,λL)∈ΛL

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(ΨΣ(θ, `) + λ`,Σε(θ, `)), (B.1)

where ΨΣ : Θ × L → Rk is a Rk-valued tight Guassian process with covariance kernel

Σ ∈ C(θ2), and Σε = Σ(θ, `) + εΣ(θ, 1).

Proof. Without loss of generality, we let un = n. Recall that

T̂ Sn(θ1) ≡ inf
θ∈Θ(θ1)

T̂n(θ, z0),
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where Θ(θ1) ≡ {θ̃ ∈ Θ : θ̃1 = θ1} and

T̂n(θ, z0) =
∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(
√
nhdzn µ̂n(θ, `, z0), Σ̂ε,n(θ, `, z0)).

Let Ψ̂n(θ, `, z0) =
√
nhdzn (µ̂`,n(θ, z0)− µ`(θ, z0)). We have

T̂ Sn(θ1) = inf
θ∈Θ(θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(
√
nhdzn µ̂`,n(θ, z0), Σ̂ε,n(θ, `, z0))

= inf
(θ,ξ)∈Λn,P (θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(Ψ̂n(θ, `, z0) + ξ`, Σ̂ε,n(θ, `, z0)).

For a generic uniform continuous function γ : Θ× L → RK , define

gn(γ(·),Σ(·)) ≡ inf
(θ,ξ)∈Λn,P (θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(γ(θ, `) + ξ`,Σε(θ, `)), and

g(γ(·),Σ(·)) ≡ inf
(θ,ξ)∈ΛL(θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(γ(θ, `) + ξ`,Σε(θ, `)).

Let {γn(·),Σn(·)}n≥1 be a sequence of functions such that

lim
n→∞

sup
θ∈Θ(θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dx‖(γn(θ, `),Σn(θ, `))− (γn(θ, `),Σ(θ, `))‖ = 0,

where ‖ · ‖ denotes the Euclidean norm, then by the same argument of Theorem 3.1 of

Bugni, Canay, and Shi (2015), we can show that

lim
n→∞

gn(γn(·),Σn(·)) = g(γ(·),Σ(·)).

Therefore, Lemma B.1 holds following the extended continuous mapping theorem (Van

Der Vaart and Wellner, 1996, Theorem 1.11.1) and by observing Ψn
d→ ΨΣ. ���

Lemma B.2 Suppose Assumptions 3.1-3.9 hold. Let {(λun , Pun ∈ H0)}n≥1 be a (sub)sequence

of parameters and distributions such that for some (Σ,Λ∗L) ∈ {C(θ2)}(`1,`2)∈L2 × S2(Θ ×
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{Rk
±∞}`∈L), (i) ΣPun → Σ uniformly and (ii) Λ∗un,Pun ,L(θun)

H→ Λ∗L. Then, there exists a

further subsequence {kn}n≥1 of {un}n≥1,

T̂ S
u

kn(θkn)
d→ inf

(θ,λL)∈Λ∗L

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(νΣ(θ, `) + λ`,Σε(θ, `)), (B.2)

conditional on the sample path almost surely.

Proof. First, by (ii) of Lemma B.5, we have

sup
(θ,`))∈(Θ(θ1),L)

‖Σ̂n((θ, `))− ΣP ((θ, `))‖ p→ 0,

and this is sufficient to show that

sup
(θ,`))∈(Θ(θ1),L)

‖Σ̂ε,n((θ, `))− Σε,P ((θ, `))‖ p→ 0.

Second, Lemma B.5 (i), in conjuncture with the fact that κ−1
n → 0 and

κ−1
n

√
nhdzn µ̂`(θ, z0) = κ−1

n Ψ̂n(θ, `, z0) + κ−1
n

√
nhdzn µ`(θ, z0),

imply that dH(Λ∗n,P (θ1), Λ̂∗n,P (θ1))
p→ 0. Then given that dH(Λ∗n,P (θ1),Λ∗L)→0, we have

dH(Λ∗n,P (θ1),Λ∗L)
p→ 0.

Therefore, there exists a subsequence {kn}n≥1 of {n}n≥1 such that (a) Ψ̂kn(·) ⇒ ΨΣ

conditional on sample path almost surely, (b) sup(θ,`))∈(Θ(θ1),L) ‖Σ̂n((θ, `))−ΣP ((θ, `))‖ a.s.→
0 and (c) dH(Λ∗n,P (θ1),Λ∗L)

a.s.→ 0. Then by the same proof of Lemma B.1 and by conditional

on the sample path, we have

T̂ S
u

kn(θkn)
d→ inf

(θ,λL)∈Λ∗L

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(νΣ(θ, `) + λ`,Σε(θ, `)),

conditional on the sample path almost surely.���

Lemma B.3 Let {(θ1,un , Pun ∈ H0)}n≥1 be a (sub)sequence of parameters and distribu-

tions such that for some (Σ,ΛL,Λ
∗
L) ∈ {C(θ2)}(`1,`2)∈L2×S2(Θ×{Rk

±∞}`∈L), (i) ΣPun → Σ
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uniformly, (ii) Λun,Pun ,L(θ1,un)
H→ ΛL and (iii) Λ∗un,Pun ,L(θ1,un)

H→ Λ∗L. Suppose Assump-

tions 3.1-3.9 hold. Then we have that for all (θ, ξ∗) ∈ Λ∗L such that ξ∗(`) ∈ Rp
+∞(−∞,∞]×

Rk−p for all ` ∈ L with

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(ξ∗(`),Σε(θ, `)) <∞,

there exists ξ such that (θ, ξ) ∈ ΛL, ξj(`) ≥ ξ∗j (`) for j ≤ p, and ξj(`) = ξ∗j (`) for

p < j ≤ k, for all ` ∈ L.

Proof. We apply the proof of Lemma S.3.8 of Bugni, Canay, and Shi (2017) to show our

case. Without loss of generality, let un = n. If (θ, ξ∗) ∈ Λ∗L, there exists a sequence {θn}
such that θn ∈ Θ(θ1,n) with θn → θ, and κ−1

n

√
nhdzn µ`(θn, z0)→ ξ∗(`) for all ` ∈ L. Similar

to (S.16) of Bugni, Canay, and Shi (2017), there exists a sequence of θ̃n ∈ ΘPn(θ1,n, z0)

such that ‖θn − θ̃n‖ ≤ O(κn/
√
nhdxn ). To see this, note that

κ−2
n nhdzn TPn(θn, z0) =

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(κ−1
n

√
nhdzn µ`(θn, z0),Σε(θ, `))

→
∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(ξ∗(`),Σε(θ, `)) <∞.

Therefore, by Assumption 3.9,

O(κ2
nn
−1h−dzn ) = c−1TPn(θn, z0) ≥ min{δ, inf

θ̃∈Θ(θ1)∩ΘP (z0)
‖θ − θ̃‖2},

and this further implies that there exists a sequence of θ̃n ∈ ΘPn(θ1,n, z0) such that

‖θn − θ̃n‖ ≤ O(κn/
√
nhdxn ).

Define θ̂n = (1−κ−1
n )θ̃n+κ−1

n θn. By the same arguments of (S.17) and (S.18), we have

√
nhdzn µ`(θ̂n, z0) = κ−1

n

√
nhdzn µ`(θn, z0) + ε1,n(`) + ε2,n(`)

where ε1,n(`) = (∇θµ`(θ
∗∗
n , z0)−∇θµ`(θ

∗
n, z0))

√
nhdzn (θ̂n − θn) with θ∗n and θ∗∗n both being

between θ̂n and θn, and ε2,n(`) = (1 − κ−1
n )
√
nhdzn µ`(θ̃n, z0). Note that θ̃n ∈ ΘPn(θ1,n, z0)
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and κ−1
n → 0. So it follows that ε2,n,j(`) ≥ 0 for j ≤ p and ε2,n,j(`) = 0 for j > p for all `.

Note that ∇θµ`(θ, z0) = E[g`(X)µ`(θ,X, Z)|Z = z0] and by Assumption 3.5, it holds that

‖∇θµ`(θ
∗∗
n , z0)−∇θµ`(θ

∗
n, z0)‖ ≤ cQ‖θ∗∗n − θ∗n‖ for some positive constant c not depending

on `. Therefore, we have ‖∇θµ`(θ
∗∗
n , z0) −∇θµ`(θ

∗
n, z0)‖ = o(1) uniformly over `. By the

fact that
√
nhdxn ‖θ̂n − θ̃n‖ = O(1), we have uniformly over `,

‖ε1,n(`)‖ ≤ ‖(∇θµ`(θ
∗∗
n , z0)−∇θµ`(θ

∗
n, z0))‖

√
nhdxn ‖θ̂n − θ̃n‖ = o(1).

Given that the space (Θ×{Rk
±∞}`∈L, d) constitutes a compact metric space, it holds that

there exists a subsequence {un} of {n} such that
√
unhdzunµ`(θ̂un , z0) and κ−1

un

√
unhdzunµ`(θun , z0)

converge for all `. To be specific, {Rk
±∞, dk} where for any two points δ1, δ2 ∈ Rk

±∞,

dk(θ1, θ2) = (
∑k

j=1(Φ(θ1,j)− Φ(θ2,j)
2)1/2 is a compact set. Note that because L is count-

able, we can order ` = 1, 2, . . . with those `’s with smaller q being ordered first. For ` = 1,

then there exists a subsequence {a1,n} of {n} so that

ξj(1) = lim
n→∞

√
a1,nhdza1,nµ`(θ̂a1,n , z0) ≥ lim

n→∞
κ−1
a1,n

√
a1,nhdza1,nµ`(θa1,n , z0) = ξ∗j (1) for j ≤ p,

ξj(1) = lim
n→∞

√
a1,nhdza1,nµ`(θ̂a1,n , z0) = lim

n→∞
κ−1
a1,n

√
a1,nhdza1,nµ`(θa1,n , z0) = ξ∗j (1) for j ≤ p.

Similarly, for ` = 2, there exists a subsequence {a2,n} of {a1,n} so that

ξj(2) = lim
n→∞

√
a2,nhdza2,nµ`(θ̂a2,n , z0) ≥ lim

n→∞
κ−1
a2,n

√
a2,nhdza2,nµ`(θa2,n , z0) = ξ∗j (2) for j ≤ p,

ξj(2) = lim
n→∞

√
a2,nhdza2,nµ`(θ̂a2,n , z0) = lim

n→∞
κ−1
a2,n

√
a2,nhdza2,nµ`(θa2,n , z0) = ξ∗j (2) for j ≤ p.

Then we keep doing this for ` = 3, 4, . . . and set {un} = {an,n}. This completes the

proof.���

Lemma B.4 Suppose Assumptions 3.1-3.9 hold. For any (sub)sequence {(θun , Pun ∈
H0)}n≥1, there exists a further subsequence {kn}n≥1 of {un}n≥1 such that (i) ΣPkn

→ Σ

uniformly, (ii) Λkn,Pkn ,L(θkn)
H→ ΛL and (iii) Λ∗kn,Pkn ,L(θkn)

H→ Λ∗L for some (Σ,ΛL,Λ
∗
L) ∈

{C(θ2)}(`1,`2)∈L2 × S2(Θ× {Rk
±∞}`∈L).
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Proof. We apply the proof of Lemma D.7 of Bugni, Canay, and Shi (2015) to show our

case. For ` = 1, by the same arguments of Lemma D.7 of Bugni, Canay, and Shi (2015),

we can show that there exists a subsequence {a1,n} of {n} such that

ΣPa1,n
((·, `1), (·, `2))→ Σ((·, `1), (·, `2)) uniformly for `1, `2 ∈ {1},

Λa1,n,Pa1,n ,`
(θa1,n)

H→ Λ`,

Λ∗a1,n,Pa1,n ,`(θa1,n)
H→ Λ∗` ,

for some (Σ,ΛL,Λ
∗
L) ∈ {C(θ2)}(`1,`2)∈L2×S2(Θ×{Rk

±∞}`∈L). For ` = 2, we can show that

there exists a subsequence {a2,n} of {a1,n} such that

ΣPa1,n
((·, `1), (·, `2))→ Σ((·, `1), (·, `2)) uniformly for `1, `2 ∈ {1, 2},

Λa2,n,Pa2,n ,`
(θa2,n)

H→ Λ`,

Λ∗a2,n,Pa2,n ,`(θa2,n)
H→ Λ∗` .

Then we keep doing this for ` = 3, 4, . . . and set {kn} = {an,n}. This completes the proof.

���

Lemma B.5 Suppose Assumptions 3.1-3.9 hold. Let {Pun ∈ P}n≥1 be a (sub)sequence

of distributions such that for some Σ ∈ {C(Θ2)}(`1,`2)∈L2, ΣPun → Σ uniformly. Then, the

following statements hold:

(i) Ψ̂un(·)⇒ ΨΣ, where ΨΣ is a tight zero-mean Guassian process with covariance kernel

Σ. In addition, for any fixed ε > 0, there exists a δ > 0 such that

Pr
(

sup
‖θ(1)−θ(2)‖≤δ

sup
`∈L
‖ΨΣ(θ(1), `)−ΨΣ(θ(2), `)‖ ≤ ε

)
= 1.
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(ii) We have

sup
(θ(1),`(1)),(θ(2),`(2))∈(Θ(θ1),L)

‖Σ̂n((θ(1), `(1)), (θ(2), `(2)))− ΣP ((θ(1), `(1)), (θ(2), `(2)))‖ p→ 0, where

Σ̂n((θ(1), `(1)), (θ(2), `(2))) =
1

nhdzn

n∑
i=1

(
K
(Zi − z0

hn

)
g`(1)(Xi)m(Wi, θ

(1))− µ̂`(1),n(θ(1), z0)
)

·
(
K
(Zi − z0

hn

)
g`(2)(Xi)m(Wi, θ

(2))− µ̂`(2),n(θ(2), z0)
)′
.

(iii) We have Ψu
n(·)⇒ ΨΣ conditional on sample path with probability 1.

Proof. Parts (i) and (ii) are the same as those of Lemma AN3 of Andrews and Shi (2014).

Given part (ii), the proof of part (iii) follows from the same argument of Theorem 4.1 of

Hsu (2016). ���

C Proofs of Theorems

Proof of Theorem 3.1. Given Lemma B.1-Lemma B.5 above, the proof to Theorem 3.1

follows the same arguments of Equation (C.5) of Bugni, Canay, and Shi (2017), and we

omit the details for brevity.

Proof of Theorem 3.2. The proof of Theorem 3.2 follows analogously from those in

Theorem 3.1. In particular, the limiting distribution of minθ∈Θ T̂n(θ, zt) can be obtained

in a similar way as in Lemma B.1. For a set of pre-chosen grid points {z1, . . . , zT},
minθ∈Θ T̂n(θ, zt) are mutually asymptotically independent, so their asymptotic joint dis-

tribution is the product of their asymptotic marginal distributions. Finally, the max

operator is a continuous function, so the limiting distribution of T̂n follows by continuous

mapping theorem. The validity of multiplier bootstrap holds as shown in Lemma B.5.

The results in Corollary 3.1 hold because (i) the critical value Cu
n(α) is stochastically

bounded, and (ii) T̂n
nhdz
− cn p→ 0.
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D Additional Empirical and Simulation Results

In this appendix section, we report some additional simulations and empirical results.

D.1 Magnitude of fz(z0)

Our Assumption 3.4 requires that fz(z0) ≥ δ > 0 in a neighborhood of z0. For a given

instrument function g`, our test statistics involve estimating the conditional moment

µ`(θ, z0) = E[g`(Xi)m(Wi, θ)|Z = z0]. When fz(z0) is small, there are fewer observations

in the neighborhood of z0. Given everything else equal, we expect that the confidence set

for θ01(z0) will perform worse when fz(z0) is small.

To verify this conjecture, we run a simulation that has the same design as Figure 1,

except that we focus on n = 2000 and vary the underlying DGPs such that fz(z0)

varies. To be specific, we take Z to be a mixture of two independent uniform distri-

butions ZA and ZB, where ZA has a support of [2, 3.5] ∪ [4.5, 6] and ZB has a support of

[3.5, 4.5], respectively. The mixing weight for ZB, denoted by τ , takes values from the set

{0.05, 0.1, 0.15, 0.2, 0.25}. Note that when τ = 0.25, Z is a uniform distribution over [2, 6],

which is the same as the DGP considered in Figure 1. When τ is smaller, the density

value fz(4) is lower.
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Figure 5: Coverage Frequency: Varying fz(z0)
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Figure 5 plots the coverage probability for θ1(4) ∈ [2.7, 2.9]. Note that the upper

boundary of the identified interval for θ1(4) is approximately 2.73. We expect the coverage

frequencies to decrease as the parameter value moves away from the upper boundary. It

is indeed true for all values of τ . However, when τ is small, the curve decreases slower,

indicating that our confidence set has less power.

D.2 Entry Game with Complete Information

In this section, we apply our method to a simple discrete choice game of complete infor-

mation. Suppose two firms are making simultaneous entry decisions:

Y1 = 1 {θ1,0(Z)Y2 − ε1 ≥ 0} ,

Y2 = 1 {θ2,0(Z)Y1 − ε2 ≥ 0} ,

where the coefficient θ1,0(z) = − ez−1
e−1

, θ2,0(z) = − e1−z−1
e−1

, Z ∼ U [0, 1], and (ε1, ε2) ∼
N
((

0
0

)
,
(

1 ρ
ρ 1

))
. In this model, the strength of the strategic interaction depends on the

observed variable Z. We assume that players play a pure strategy Nash equilibrium, and

when there are multiple equilibria, a fair coin is tossed to make the selection. Researchers

observe Y1, Y2 and Z, but do not know the functional form of θj,0(z), j = 1, 2. Researchers

are also agnostic about the equilibrium selection mechanism.

Let Φρ(t1, t2) be the probability of the event {ε1 ≤ t1 & ε2 ≤ t2}. The necessary

condition of Nash equilibrium implies the following conditional moment restrictions:

EP [0.5− Φρ(θ1,0(Z), 0)− (1− Y1)Y2 | Z = z] ≥ 0,

EP [0.5− Φρ(0, θ2,0(Z))− Y1(1− Y2) | Z = z] ≥ 0,

EP [Φρ(θ1,0(Z), θ2,0(Z))− Y1Y2 | Z = z] = 0,

EP [Φρ(0, 0)− (1− Y1)(1− Y2) | Z = z] = 0.

In this model, the unknown parameters are (θ1,0(·), θ2,0(·), ρ). However, ρ is identified

from the fourth moment equality. Therefore, we solve ρ from the fourth equation and
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focus on the first three conditional moment restrictions:

Φρ(θ1, 0) ≤ 0.5− p(0, 1|z), (D.1)

Φρ(0, θ2) ≤ 0.5− p(1, 0|z), (D.2)

Φρ(θ1, θ2) = p(1, 1|z), (D.3)

where p(`, k|z) ≡ Pr(Y1 = `, Y2 = k|Z = z). Note that given the joint normal distribution

of epsilons, the upper and lower bound of the identified set for θ01(z0) can be analytically

calculated from Equations (D.1) to (D.3). In particular, Equation (D.3) says that the joint

identified set is a curve in the two-dimensional space. Equation (D.1) and Equation (D.2)

provide the coordinates of the two endpoints of the curve.

D.2.1 Confidence sets

In this subsection, the first goal is to examine the performance of the confidence interval

for θ1,0(z0) at z0 = 0.5. Based on our calculation, when ρ = 0.5, then true value is

θ01(0.5) = −0.3775 and the identified set for θ01(z0) is [−0.47,−0.29].

Figure 6a reports the coverage frequencies at 95% level under different sample sizes

for θ1,ub+c values when ρ = 0.5, where c ≥ 0 measures the distance of the testing value to

the upper boundary of the identified set. We also considered other values of ρ and other

significance levels but omitted the results due to the qualitative similarity. When c gets

larger, the coverage frequencies decline dramatically and decline faster for larger sample

sizes.

Next, we investigate the performance of the confidence set for θ01(z), where z ∈
{0.2, 0.35, 0.5, 0.65, 0.8}. Similar to Section 4, we report the coverage frequency of the

joint CS for
−−→
θ1,ub + cι, where

−−→
θ1,ub ≡ (θ1,ub(0.2), θ1,ub(0.35), · · · , θ1,ub(0.8))′. The results are

shown in Figure 6b. The patterns are similar to those reported for the single CS in that

when we move away from the identified set, the joint coverage frequency also declines

quickly.
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Figure 6: Coverage Frequency: Entry Game

D.2.2 Specification Test

To examine the performance of the specification test, we consider the same game and use

the same set of inequalities, except that we change the error terms (ε1, ε2) ∼ N
((
−δ
−δ

)
,
(

1 0
0 1

))
.

We assume that the researcher incorrectly parametrizes the joint distribution as to be

(ε1, ε2) ∼ N
((

0
0

)
,
(

1 0
0 1

))
. In this design, the size of δ measures the magnitude of the

misspecification. As δ → +∞, the probability for the outcome (0, 0) to occur will con-

verge to zero. Under the misspecified model, for any given value of ρ, we expect our test

to reject the model specification with high frequencies, and we expect the rejection rate

to increase with both sample size n and misspecification magnitude δ. Table 3 reports

the rejection frequencies when ρ = 0. When δ = 0, the model is correctly specified, and

the rejection frequencies are below the nominal values across the board. When δ > 0, the

model is mis-specified. And, as expected, our test rejects the model with large frequencies

and the rejection rate increases in sample size n and misspecification magnitude δ.

D.3 Additional Empirical Results

Figure 7 reports the joint and pointwise confidence set for the return to schooling without

standardization. As we can see, the results are quite similar. Figure 8 reports the inference

results with subsamples defined by gender and age.
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Table 3: Rejection Frequency: Entry Game

δ n α = 0.1 α = 0.05 α = 0.01

δ = 0.0 n = 2000 0.002 0.000 0.000
n = 4000 0.005 0.000 0.000
n = 8000 0.020 0.005 0.000

δ = 0.2 n = 2000 0.597 0.145 0.000
n = 4000 0.980 0.682 0.012
n = 8000 1.000 1.000 0.407

δ = 0.4 n = 2000 1.000 0.967 0.002
n = 4000 1.000 1.000 0.402
n = 8000 1.000 1.000 1.000

E Additional Motivating Examples

This section lists some additional examples in which our method is potentially applicable.

Example E.1 (Quantile Regression with Interval-Outcome). Consider a similar

regression as Example 2.2 but under the conditional quantile independence assumption:

Y = X ′θ0(Z) + ε, qε|X,Z (τ |X,Z) = 0, a.s.− (X,Z), (E.1)

where Y is a latent dependent variable and qε|X,Z (τ |X,Z) denotes the τ th conditional

quantile of ε on X,Z. If Y were observed by researchers, it is the quantile varying coef-

ficient model analyzed by Honda (2004). If Y is not directly observed but known to lie in

the observed interval [Y`, Yu], then the following moment inequalities hold for any z ∈ Z:

EP [τ − 1 {Yu ≤ X ′θ0(Z)} |X,Z = z] ≥ 0 a.s. X and

EP [1 {Y` ≤ X ′θ0(Z)} − τ |X,Z = z] ≥ 0 a.s. X.

Example E.2 (Quantile Regression with Censoring). Consider again the quantile

varying coefficient model in Equation (E.1). Suppose now Y is subject to censoring ac-

cording to an observed binary variable D ∈ {0, 1}: Y is observed only when D = 1. Then,
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the following moment inequalities hold for any z ∈ Z:

EP [τ − 1 {Y ≤ X ′θ0(Z), D = 1} |X,Z = z] ≥ 0 a.s. X and

EP [1 {Y ≤ X ′θ0(Z), D = 1}+ 1 {D = 0} − τ |X,Z = z] ≥ 0 a.s. X.

Example E.3 (Testing LATE Assumptions). Consider a potential outcome model

with binary treatment D ∈ {0, 1} and binary instrument T ∈ {0, 1}. Let X1 and X0 be

two potential outcomes, and D0 and D1 be two potential treatments. Let Z be a vector

of covariates (here we name variables differently from the conventional treatment effect

literature to match our notation). Suppose for any z ∈ Z, we have (i) (X1, X0, D0, D1) ⊥
T |Z = z, (ii) Pr(D = 1|T = 1, Z = z) 6= Pr(D = 1|T = 0, Z = z), and (iii) D1 ≥ D0

or D0 ≥ D1 a.s., then the conditional local average treatment effect EP [X1 − X0|Z = z]

is identified by the Wald estimand. Mourifié and Wan (2017, Corollary 1) formulated

the testable implication of LATE identifying assumptions (i)–(iii) as a set of conditional

moment inequalities:

EP [c1(Z)D(1− T )− c0(Z)DT |Z = z,X] ≤ 0, a.s. X

EP [c0(Z)(1−D)T − c1(Z)(1−D)(1− T )|Z = z,X] ≤ 0, a.s. X

EP [c1(Z)− T |Z = z] = 0;

EP [c0(Z)− (1− T )|Z = z] = 0.

It fits the Model (2.1) with θ0(Z) = (c1(Z), c0(Z)) be the varying coefficient, and W =

(T, Z,D,X,Z ′)′. In this case, the random coefficients c1(z) and c0(z) are point-identified

as the conditional probability Pr(T = 1|Z = z) and Pr(T = 0|Z = z), respectively.

Researchers are interested in testing the model specification instead of estimation. Unlike

Mourifié and Wan (2017)’s algorithm, we allow Z be either discrete or continuous.22

22Mourifié and Wan (2017)’s implementation procedure is built upon the Stata package of Cher-
nozhukov, Kim, Lee, and Rosen (2015) and accommodates only a single continuous conditioning variable.
So a continuous Z needs to be discretized. Our method, on the other hand, allows for both discrete and
continuous Z.
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