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Abstract

This paper develops inference methods for a general class of varying coefficient

models defined by a set of moment inequalities and/or equalities, where unknown

functional parameters are not necessarily point-identified. We propose an inferential

procedure for a subvector of the parameters and establish the asymptotic validity

of the resulting confidence sets uniformly over a broad family of data generating

processes. We also propose a specification test for the varying coefficient models

considered in this paper. Monte Carlo studies show that the proposed methods

work well in finite samples.
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1 Introduction

This paper considers making inferences in a general class of varying coefficient models

defined by a set of moment inequalities and/or equalities, where the unknown functional

parameters are not necessarily point-identified. Since the seminal paper of Hastie and

Tibshirani (1993), varying coefficient models have been widely adopted in empirical re-

searches in economics and finance for their balance of providing both dimension reduction

and flexible modeling of heterogeneous effects. See, for example, Li, Huang, Li, and Fu

(2002), Ang and Liu (2004), Cai, Ren, and Yang (2015) and more recently Cai, Chen, and

Fang (2018), among others.1 Li, Huang, Li, and Fu (2002) proposed a semiparametric

varying coefficient model to estimate production functions in which the elasticity of inputs

varies with the intermediate production and management expenses. Ang and Liu (2004)

studied how to discount cash flows with time-varying expected returns based on varying

coefficient models. Cai, Ren, and Yang (2015) used varying coefficient models to estimate

time-varying betas and alpha in the conditional capital asset pricing model (CAPM). And

Cai, Chen, and Fang (2018) used varying coefficient models to estimate the growth effect

of FDI. Motivated by empirical applications, the econometric theory of varying coefficient

models has been developed and extended to a variety of modeling environments. For

instance, Chen and Tsay (1993) considered the time series setting and developed varying

coefficient autoregressive models. Fan and Zhang (1999), Cai, Fan, and Li (2000), and

Ahmad, Leelahanon, and Li (2005) discussed efficient estimation. Fan and Zhang (2000)

and Fan and Li (2004) considered the panel data setting. Cai and Xu (2008) proposed

quantile regression methods for a class of smooth coefficient models. Cai, Das, Xiong,

and Wu (2006) and Cai, Fang, Lin, and Su (2019) studied a class of instrumental variable

regression under a functional coefficient representation for the regression function. And

Su, Murtazashvili, and Ullah (2013) proposed consistent inferential procedure for testing

constancy of varying coefficients.

While the theoretical development of varying coefficient models is fruitful, the existing

1See Cai and Hong (2009) and Cai (2010) for more references on applications of varying coefficient
models.
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works primarily focus on cases in which the functional parameters are point-identified.

However, depending upon the empirical context, the assumptions that deliver point-

identification of the models may not necessarily hold. For example, in a varying coef-

ficient linear regression model or quantile regression model, the slope parameter is not

point-identified if the outcome variable is interval-observed or censored, as is quite com-

mon in many survey data. In a varying coefficient instrumental regression model, the

structural parameter may not be point-identified if the instrumental variable is imperfect

(e.g. not independent with the structural error). In an oligopoly market entry model,

the profit function with varying coefficients is typically not point-identified if there are

multiple equilibria and the equilibrium selection mechanism is unknown to researchers.

It is, therefore, useful to develop inferential procedures for varying coefficients that are

robust to partial identification.

Our paper contributes to the literature of varying coefficient models by filling this

gap. Following Andrews and Shi (2014), we consider a general class of varying coefficient

models defined by a set of conditional moment inequalities and/or equalities as follows.

For any z ∈ Z,

EP [mj(W, θ0(z))|X,Z = z] ≥ 0 a.s. X, for j = 1, . . . , p and

EP [mj(W, θ0(z)|X,Z = z] = 0 a.s. X, for j = p+ 1, . . . , k, (1.1)

where mj(·, θ) for j = 1, . . . , k are known real-valued moment functions, X ∈ X ⊆ Rdx ,

Z ∈ Z ⊆ Rdz . The varying coefficient θ(·) : Z → Θ ⊆ Rdθ varies with z and takes

value in a compact set Θ. The random vector W contains X, Z and possibly some other

random variables Y ∈ Y ⊆ Rdy , so that W = (X ′, Y ′, Z ′)′ ∈ Rdw with dw = dy + dx + dz.

In empirical applications, Y is often the outcome variable of interest. We allow X be

part of Z, to overlap with Z, or to have no common components with Z. P denotes

the probability measure that generates the data, and EP denotes the expectation under

the distribution P . As in existing varying coefficient literature, we consider the cases in

which researchers are interested in a subvector of the varying coefficients evaluated at a
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given point z0 ∈ Z, that is, a subvector of θ0(z0). However, we allow that, conditioning

on Z = z0, θ0(z0) is only partially identified in the sense that its identified set

ΘP (z0) = {θ ∈ Θ : (1.1) holds with θ in place of θ0(z).}

may contain more than one element. As we will illustrate in Section 2, where we will review

examples in more detail, Model (1.1) encompasses a broad class of models and applies

to many empirical contexts, including those mentioned above. Of course, it also includes

the conventional point-identified varying coefficient models as special cases (where the

model only contains conditional moment equalties). Under this framework, we propose a

multiplier-bootstrap procedure to construct confidence sets for subvectors of the functional

coefficients and show that the proposed confidence sets are asymptotically valid uniformly

over a set of DGPs. We also propose a specification test that is consistent for necessary

implications (to be specified later) of Model (1.1).

Our approach is built upon and extends Andrews and Shi (2014, AS hereafter). AS

focus on confidence sets for the whole parameter vector of θ0(z); however, motivated by

some empirical applications of varying coefficient models, we instead focus on construct-

ing confidence sets for a subvector of the parameters. Therefore, we consider different

test statistics from those in AS. Specifically, we extend the profiling-based method of

Bugni, Canay, and Shi (2017), which was initially designed for subvector inference in un-

conditional moment inequality models with finite-dimensional parameters, to the current

setup of conditional moment inequality with functional parameters. We also propose a

specification test for the necessary implications of the model, which was not considered in

AS. In particular, we consider testing the Model (1.1) over a set of pre-chosen grid points

ZL ≡ {z1, · · · , zL}. We show that over the pre-chosen ZL, our test controls the size

uniformly and is consistent. The proposed test is, therefore, a specification test for condi-

tional moment inequalities with infinite-dimensional parameters, and it complements the

existing work of Andrews and Shi (2013) and Bugni, Canay, and Shi (2015), where the

parameters are finite-dimensional.

Our paper also contributes to the literature of conditional moment inequality mod-
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els.2 Recently, a line of work studies partially identified conditional moment models; an

incomplete list includes Fan (2008), Kim (2008), Andrews and Shi (2013, 2017), Cher-

nozhukov, Lee, and Rosen (2013), Lee, Song, and Whang (2013), Armstrong (2014, 2015,

2018), Bontemps and Magnac (2017), and Hsu and Shi (2017), among others. All these

papers consider finite-dimensional parameters and hence do not accommodate varying co-

efficients. There are a small number of papers that allow the parameter vector to contain

an infinite-dimensional component, for example, Santos (2012), Tao (2015), Hong (2017),

but they consider only conditional moment equalties. Chernozhukov, Newey, and San-

tos (2015) allows for infinite dimensional parameters and handles both moment equation

and inequality. However, the null asymptotic distribution is not established for their test

statistics. Instead, the critical values for their test are obtained by building a strong ap-

proximation to the test statistic and then bootstrapping a (conservatively) relaxed form

of it.

The rest of the paper is organized as follows. We discuss a few motivating examples

in Section 2. In Section 3, we construct the uniformly valid confidence set and propose

the model specification test. In Section 4, we use Monte Carlo simulations to illustrate

the finite sample performance of the proposed methods. Section 5 concludes. For ease of

exposition, we collect all the proofs in the Appendix.

2 Motivating Examples

In this section, we provide a few motivating examples of partially identified varying coef-

ficient models, all of which are special cases of Model (1.1).

Example 2.1 (Varying Coefficient Model with Interval-Outcome). Let Y ∗ be a

latent dependent variable with Y ∗ = X ′θ0(Z) + ε with E[ε|X,Z] = 0 a.s. X and Z, where

2There has been a large literature on unconditional moment inequality models under partial identifica-
tion, see, for example, Andrews, Berry, and Jia (2004), Imbens and Manski (2004), Chernozhukov, Hong,
and Tamer (2007), Andrews and Guggenberger (2009), Romano and Shaikh (2008, 2010), Andrews and
Soares (2010), Wan (2013), Menzel (2014), Bugni, Canay, and Shi (2015, 2017), Pakes, Porter, Ho, and
Ishii (2015), Andrews and Kwon (2019), and Belloni, Bugni, and Chernozhukov (2019) among others.
For a more thorough review, please see Canay and Shaikh (2017) and references therein.
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(X,Z) are exogenous regressors. If Y ∗ were to be observed, then the model is the classical

varying coefficient regression model, see for instance Hastie and Tibshirani (1993). When

the latent variable Y ∗ is unobserved, but known to lie in the observed interval [Y`, Yu].

Then, the following moment inequalities hold for any fixed z ∈ Z.

EP [Yu −X ′θ0(Z)|X,Z = z] ≥ 0 a.s. X and

EP [X ′θ0(Z)− Y`|X,Z = z] ≥ 0 a.s. X.

Example 2.2 (Varying Coefficient Quantile Regression with Interval-Outcome).

Consider the following quantile varying coefficient model:

Y ∗ = X ′θ0(Z) + ε, qε|X,Z (τ |X,Z) = 0, a.s.− (X,Z) (2.1)

where Y ∗ is a latent dependent variable and qε|X,Z (τ |X,Z) denotes the τ th conditional

quantile of ε on X,Z. If Y ∗ were observed by researchers, it is the quantile varying

coefficient model analyzed by Honda (2004). If Y ∗ is not directly observef but known to

lie in the observed interval [Y`, Yu], then the following moment inequalities hold for any

z ∈ Z:

EP [τ − 1 {Yu ≤ X ′θ0(Z)} |X,Z = z] ≥ 0 a.s. X and

EP [1 {Y` ≤ X ′θ0(Z)} − τ |X,Z = z] ≥ 0 a.s. X.

Example 2.3 (Varying Coefficient Quantile Regression with Censoring). Con-

sider again the quantile varying coefficient model in Equation (2.1). Suppose now Y ∗ is

subject to censoring according to an observed binary variable D ∈ {0, 1}: Y ∗ is observed

only when D = 1. Then, the following moment inequalities hold for any z ∈ Z:

EP [τ − 1 {Y ∗ ≤ X ′θ0(Z), D = 1} |X,Z = z] ≥ 0 a.s. X and

EP [1 {Y ∗ ≤ X ′θ0(Z), D = 1}+ 1 {D = 0} − τ |X,Z = z] ≥ 0 a.s. X.
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Example 2.4 (Entry Game with Incomplete Information). Consider a simulta-

neous oligopoly entry game of complete information (Ciliberto and Tamer, 2009):

Y1 = 1 {X ′β1,0(Z) + γ1,0(Z)Y2 − ε1 ≥ 0} ;

Y2 = 1 {X ′β2,0(Z) + γ2,0(Z)Y1 − ε2 ≥ 0} ,

where, for j = 1, 2, player j’s payoff from entering the market, given the other player’s

action Y−j, is specified as X ′βj,0(Z) + γj,0(Z)Y−j − εj. In practice, it is common to

assume the magnitude of the strategic interaction γ0(Z) = (γ1,0(Z), γ2,0(Z))′ depends on

certain observed market characteristics Z. Assume the profit shock εj has a known joint

distribution G (ε1, ε1;α) up to finite dimensinoal parameter α and is independent with

(X,Z). Following Ciliberto and Tamer (2009), and similar to the example in AS, we can

characterize the equilibrium outcome by the following conditional moment equalities and

inequalities for a given market characteristics z:

E [Pr (0, 0|X,Z = z, θ0)− (1− Y1) (1− Y2) |X,Z = z] = 0;

E [Pr (1, 1|X,Z = z, θ0)− Y1Y2|X,Z = z] = 0;

E [Pr (0, 1|X,Z = z, θ0)− (1− Y1)Y2|X,Z = z] ≥ 0;

E [Pr (1, 0|X,Z = z, θ0)− Y1 (1− Y2) |X,Z = z] ≥ 0,

where θ0 =
(
α0, β1,0 (z)′ , β2,0 (z)′ , γ′0

)′
and

Pr (0, 0|X,Z = z, θ) = 1−G1 (X ′β1 (z) ;α)−G2 (X ′β2 (z) ;α) +G (X ′β1 (z) , X ′β2 (z) ;α) ;

Pr (1, 1|X,Z = z, θ) = G (X ′β1 (z) + γ1(z), X ′β2 (z) + γ2(z);α) ;

Pr (0, 1|X,Z = z, θ) = G2 (X ′β2 (z) ;α)−G (X ′β1 (z) + γ1(z), X ′β2 (z) ;α) ;

Pr (1, 0|X,Z = z, θ) = G1 (X ′β1 (z) ;α)−G (X ′β1 (z) , X ′β2 (z) + γ2(z);α) ,

with G1 and G2 denoting marginal CDF’s of ε1 and ε2, respectively. Typically, we are

interested in (some subvector of) β0 (z) =
(
β1,0 (z)′ , β2,0 (z)′

)′
and/or γ0, which is a sub-
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vector of θ0.

Example 2.5 (Imperfect IV). Consider the a version of the model entertained by Cai,

Fang, Lin, and Su (2019):

Y = X ′1θ(Z) + ε,

where X1 is a vector of endogenous variables and Z is an exogenous control variable.

Let X2 be a vector of instruments satisfying EP [ε|X2, Z = z] = 0 for some z and a.s.

in X2. One possible application of this model is estimating return to education, where

Y is the wage income, X1 is the endogenous education level, Z can be experiences or

demographic variables, ε is the unobserved talent, and the instrumental variable X2 is

parents’ education. The varying coefficient captures the idea that return to education

depends on experiences. However, the validity of parents’ education as an instrumental

variable may hold in some empirical contexts but not in others. For example, Kédagni and

Mourifié (2020) found evidence that the independence assumption can fail to hold even

conditioning on children’s ability. On the other hand, it is more reasonable to assume that

the children’s talent is positively correlated with their parents’ education conditioning on

Z, that is, E[X2ε|Z = z] ≥ 0 for all z, which implies

E[X2(Y −X ′1θ(Z)|Z = z] ≥ 0.

This is a special case of our Model (1.1) in which X = (X1, X2) does not appears in the

conditioning variables.

Example 2.6 (Testing Local Average Treatment Effect (LATE) Assumptions).

Consider a potential outcome model with binary treatment D ∈ {0, 1} and binary instru-

ment T ∈ {0, 1}. Let X1 and X0 be two potential outcomes, and D0 and D1 be two

potential treatments. Let Z be a vector of covariates (here we name variables differently

from the conventional treatment effect literature to match our notation). Suppose for any

z ∈ Z, we have (i) (X1, X0, D0, D1) ⊥ T |Z = z, (ii) P(D = 1|T = 1, Z = z) 6= P(D =

1|T = 0, Z = z), and (iii) D1 ≥ D0 or D0 ≥ D1 a.s., then the conditional local average
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treatment effect EP [X1−X0|Z = z] is identified by the Wald estimand. Mourifié and Wan

(2017, Corollary 1) formulated the testable implication of LATE identifying assumptions

(i)–(iii) as a set of conditional moment inequalities:

EP [c1(Z)D(1− T )− c0(Z)DT |Z = z,X] ≤ 0, a.s. X

EP [c0(Z)(1−D)T − c1(Z)(1−D)(1− T )|Z = z,X] ≤ 0, a.s. X

EP [c1(Z)− T |Z = z] = 0;

EP [c0(Z)− (1− T )|Z = z] = 0.

It fits the Model (1.1) with θ0(Z) = (c1(Z), c0(Z)) be the varying coefficient, and W =

(T, Z,D,X,Z ′)′. In this case, the random coefficients c1(z) and c0(z) are point-identified

as the conditional probability P (T = 1|Z = z) and P (T = 0|Z = z), respectively. Re-

searchers are interested in testing the model specification instead of estimation. Unlike

Mourifié and Wan (2017)’s algorithm, we allow Z be either discrete or continuous.3

3 Confidence Set

In this section, we will propose a profiled test statistics for constructing confidence set

(CS) of subvectors of θ0(z0), for instance the first component θ01(z0), where z0 ∈ Z is a

pre-specified value that an applied researcher is interested in. Without loss of generality,

we assume that the support of X, X = [0, 1]dx .4 We consider a countable set of instrument

3Mourifié and Wan (2017)’s implementation procedure is built upon the Stata package of Cher-
nozhukov, Kim, Lee, and Rosen (2015) and accommodates only a single continuous conditioning variable.
So a continuous Z needs to be discretized. Our method, on the other hand, allows for both discrete and
continuous Z.

4We can always normalize an observed xij to the unit interval by applying the transformation

Φ
(
xij−x̄j
σ̂x,j

)
, where Φ is the standard nomral CDF, and (x̄j , σ̂x,j) are sample mean and standard de-

viation of observations {x1j , x2j , · · · , xnj}, respectively.
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functions that are indicator functions of hyper-cubes in X :

Gc-cube = {g`(·) = 1(· ∈ C`) : ` ≡ (x, r) ∈ Lc-cube} , where

C` =
(
×dxj=1(xj, xj + r]

)
and

Lc-cube =
{

(x, q−1) : q · x ∈ {0, 1, 2, · · · , q − 1}dx , and q = 1, 2, · · ·
}
. (3.1)

For notation simplicity, we let C1 = C(0,1) = X and g1 = g(0,1) = 1. One can also consider

other instrument functions that satisfy Andrews and Shi (2013, Assumption CI). Let

fz(z0) denote the probability density function (pdf) of Z evaluated at Z = z0 and assume

that fz(z0) ≥ δ > 0. Let µ`(θ, z0) = EP [g`(X) ·m(W, θ)|Z = z0] · fz(z0). AS show that

the moment conditions in (1.1) are equivalent to

µ`,j(θ, z0) ≥ 0 for j = 1, . . . , p and (3.2)

µ`,j(θ, z0) = 0 for j = p+ 1, . . . , k, for all ` ∈ L.

In this paper, unlike AS, we are interested in constructing CS for a subvector of θ0(z0)

or a functional of θ0(z0) for a fixed z0 . We focus on the case that we are interested in

the first element of the vector of parameter, θ0,1(z0).5 A valid CS, ĈSn, with confidence

level 1− α for θ0,1(z0) should satisfy that

lim inf
n→∞

inf
(θ1,P )∈H0

PrP (θ1 ∈ ĈSn) ≥ 1− α. (3.3)

where H0 is a collection of (θ1, P ) and will be made specific later.

To construct our test statistics, we define some notation. Let K(·) denote a kernel

function with support on [−1, 1]dz and hn is a bandwidth. For j = 1, . . . , k, define

µ̂`,n(θ, z0) =
1

nhdzn

n∑
i=1

K
(Zi − z0

hn

)
g`(Xi) ·m(Wi, θ)

5We can extend our method to the case in which researchers are interested in λ(z0) ≡ λ(θ(z0)) for
some function λ : Θ→ Λ ⊆ Rdλ , as Bugni, Canay, and Shi (2017) for unconditional moment inequalities.
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which will be a consistent estimator for µ`(θ, z0) and with undersmoothing, we have√
nhdzn (µ̂`,n(θ, z0) − µ`(θ, z0)) will be a k-dimensional mean zero Guassian process with

covariance kernel ρ2 ·CovP [g`(1)(X) ·m(W, θ(1)), g`(2)(X) ·m(W, θ(2))|Z = z0] ·fz(z0), where

the constant ρ2 =
∫
u
K2(u)du. Let µ̂1,n(θ, z0) = 1

nhdzn

∑n
i=1K

(
Zi−z0
hn

)
m(Wi, θ) and define

Σ̂n(θ, 1, z0) =
1

nhdzn

n∑
i=1

(
K
(Zi − z0

hn

)
(m(Wi, θ)− µ̂1,n(θ, z0)

)(
K
(Zi − z0

hn

)
m(Wi, θ)− µ̂1,n(θ, z0)

)′
,

Σ̂n(θ, `, z0) =
1

nhdzn

n∑
i=1

(
K
(Zi − z0

hn

)
g`(Xi)m(Wi, θ)− µ̂`,n(θ, z0)

)
·
(
K
(Zi − z0

hn

)
g`(Xi)m(Wi, θ)− µ̂`,n(θ, z0))

)′
,

Σ̂ε,n(θ, `, z0) = Σ̂n(θ, `, z0) + ε · diag
(

Σ̂n(θ, 1, z0)
)
.

Let S(m,Σ) be a testing function, which can be chosen as one of the following two forms.

S(m,Σ) =

p∑
j=1

[mj

σj

]2

−
+

k∑
j=p+1

[mj

σj

]2

, or

S(m,Σ) = max
{[m1

σ1

]2

−
, . . . ,

[mp

σp

]2

−
,
[mp+1

σp+1

]2

, . . . ,
[mk

σk

]2}
where [a]− = min{0, a} and σj =

√
Σjj. Then for a fixed value of θ1, we can define the

following Cramér-von-Mises-type (CvM) (profiled) test statistic as

T̂ Sn(θ1) ≡ inf
θ∈Θ(θ1)

T̂n(θ, z0),

where Θ(θ1) ≡ {θ̃ ∈ Θ : θ̃1 = θ1} is the possible value that the rest of parameters can

take when the first parameter is fixed at θ1, and

T̂n(θ, z0) =

Qn∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(
√
nhdzn µ̂`,n(θ, z0), Σ̂ε,`,n(θ, z0)).

with Qn →∞ as n→∞.

Next, we approximate the distribution of T̂ Sn(θ1) to construct the critical value. We
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consider multiplier bootstrap. Let {Ui : i = 1, . . .} be a sequence of pseudo random

variables with zero mean and unit variance that are independent of the sample path. The

multiplier bootstrap process is

Ψu
n(θ, `, z0) =

1√
nhdzn

n∑
i=1

Ui

(
K
(Zi − z0

hn

)
g`(Xi) ·m(Wi, θ)− µ̂`,n(θ, z0)

)
.

Following AS, we define the slackness function as ν̂`,n(θ, z0) = κ−1
n

√
nhdzn µ̂`(θ, z0), where

κn =
√

log(n). The bootstrap version of simulated CvM test statistic for θ as

T̂ un (θ, z0) =

Qn∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS
(
Ψu
n(θ, `, z0) + ν̂`,n(θ, z0), Σ̂ε,`,n(θ, z0)

)
.

And for a fixed value of θ1, the bootstrap test statistic as6

T̂ S
u

n(θ1) ≡ min
θ∈Θ(θ1)

T̂ un (θ, z0).

For a fixed positive number η, for example, 10−6, define Ĉη,n(θ1, α) as the (1 − α)-th

quantile of the conditional distribution of T̂ S
u

n(θ1) given data plus η, i.e.,

Ĉη,n(θ1, α) = sup
{
C
∣∣P u
(
T̂ S

u

n(θ1) ≤ C
)
≤ 1− α

}
+ η. (3.4)

The confidence set for θ0,1(z0) is then given as

ĈSn = {θ1 : T̂ Sn(θ1) ≤ Ĉη,n(θ1, α)}. (3.5)

6The statistic T̂ S
u

n(θ1) defined here is analogous to the statistic TPRn (λ0) of (2.13) in Bugni, Canay, and

Shi (2017). As we show later, critical value based on T̂ S
u

n(θ1) would work. We might, in addition, consider

an alternative bootstrap statistic TDRn (θ1) analogous to their TDRn (λ0), and use min{T̂ S
DR

n (θ1), T̂ S
u

n(θ1)}
for a potential power improvement. Please see discussions in Bugni, Canay, and Shi (2017, section 4.1)
for a detailed discussion.
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3.1 Asymptotics of Confidence Sets

Let {Wi}ni=1 denote a random sample of size n generated from P . Let P denote the set of

P that we consider. Let Fz, Fx, and Fxz denote the marginal distributions of Z, X, and

(X,Z) under P . Let fz denote the density function of Z under P .

We now introduce the regularity conditions for establishing the asymptotic proper-

ties of the proposed CSs in (3.5). We first impose conditions on the moment functions

{mj(W, θ) : θ ∈ Θ} for j = 1, . . . , k to regulate their complexity.

Assumption 3.1 {(Xi, Yi, Zi)}ni=1 is a random sample of i.i.d. observations.

Assumption 3.2 Θ is compact and convex.

One special case of Assumption 3.2 is that Θ is a Cartesian product of dθ closed

intervals Θ = Πdθ
j=1 [θj`, θju], in which case Θ(θ1) ≡ {θ̃ ∈ Θ : θ̃1 = θ1} is independent with

θ1, and that Θ−1 ≡ ∪θ1Θ(θ1) = Πdθ
j=2 [θj`, θju].

Assumption 3.3 Assume that for fixed δ > 0 and 0 < Q <∞ not depending on P ,

1. maxj=1,...,k

∣∣mj(w, θ)
∣∣ ≤ M(w) for all w ∈ W, for all θ ∈ Θ for some envelope

function M(w);

2. EP [M(W )4|Z = z] ≤ Q <∞ on Nδ(z0) for all P ∈ P;

3. the processes {mj(Wn,i, θ) : θ ∈ Θ, i ≤ n, 1 ≤ n} for j = 1, . . . , k are manageable

with respect to the envelope functions {M(Wn,i) : i ≤ n, 1 ≤ n} where {Wn,i : i ≤

n, 1 ≤ n} is a row-wise i.i.d. triangular array with Wn,i ∼ Pn for any sequence

{Pn ∈ P}.

Assumption 3.3 implies that {n−1/2h
−dz/2
n K((Zi − z0)/hn) · g`(Xi)mj(Wn,i, θ) : θ ∈

Θ, ` ∈ L, i ≤ n, 1 ≤ n} are manageable with respect to the envelope functions {n−1/2h
−dz/2
n K((Zi−

z0)/hn) ·M(Wn,i) : i ≤ n, 1 ≤ n}.

Assumption 3.4 For the same δ and Q as in Assumption 3.3, assume that

13



1. fz(z) ≥ δ > 0 and is continuous on Nδ(z0) ⊂ Z;

2. fz(z) is twice continuously differentiable on Nδ(z0);

3. |fz(z)| ≤ Q, |f ′z(z)| ≤ Q and |f ′′z (z)| ≤ Q on Nδ(z0).

where Nδ(z0) = Nδ(z0) ≡ {z : ‖z − z0‖ ≤ δ}.

Assumption 3.4 imposes some regularity conditions on the distribution of Z and assumes

z0 is in the interior of the support. When Z is discrete, the Model (1.1), the inference can

be done using Andrews and Shi (2013) by conditioning on each realization of Z.

Let m(W, θ) = (m1(W, θ), . . . ,mk(W, θ))
′, µ(θ, x, z) = EP [m(W, θ)|X = x, Z = z], and

µj(θ, x, z) = EP [mj(W, θ)|X = x, Z = z]. We next impose conditions on the conditional

moment conditions.

Assumption 3.5 For all x ∈ X , µj(θ, x, z) is twice continuously differentiable on Θ ×

Nδ(z0) . Also, for all x ∈ X , for the same δ and Q as in Assumption 3.3 and for all

j = 1, . . . , k,

1. ‖∂µj(θ, x, z)/∂θ‖ ≤ Q and ‖∂2µj(θ, x, z)/∂θ∂θ′‖ ≤ Q on Θ×Nδ(z0);

2. |µj(θ, x, z)| ≤ Q, |∂µj(θ, x, z)/∂z| ≤ Q and |∂2µj(θ, x, z)/∂z∂z| ≤ Q on Θ×Nδ(z0).

Assumption 3.6 Assume that

1. The K(·) is a non-negative symmetric bounded kernel with a compact support in R

(say [−1, 1]).

2.
∫
K(u)du = 1 and

∫
ujK(u)du = 0.

3. hn → 0, nhn →∞ and nhdz+4
n → 0 as n→∞.

Assumption 3.6 imposes conditions on kernel function and bandwidth. Assumption

3.6(i)-(ii) are satisfied for commonly used second-order kernels. While it rules out higher-

order kernel, all of our results can be extended to higher-order kernel straightforwardly.

Assumption 3.6(iii) requires undersmoothing, so the bias term is asymptotically negligible.
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This is standard practice for nonparametric estimators being asymptotically normally

distributed with mean zero and is also adopted in AS.

Assumption 3.7 Assume that κn →∞ and κ2
nn
−1h−dzn → 0.

Assumption 3.7 specifies the condition for the slackness tuning parameter κn, and it

is satisfied if κn is proportional to log(n), or a power of log(n).

Assumption 3.8 Assume that uniformly over P ∈ P given in Assumption 3.3, the fol-

lowing hold,

lim
δ↓0

sup
‖(θ(1)−θ(2))‖≤δ

sup
`∈L

max
j=1...,k

∣∣V ar(g`(X) · (mj(W, θ
(1))−mj(W, θ

(2)))
∣∣Z = z0

)∣∣→ 0.

Assumption 3.8 is imposed to ensure that when along a (sub)sequence of distributions

such that Ψ̂n(θ, `, z0) =
√
nhdzn (µ̂`,n(θ, z0)−µ`(θ, z0)) weakly converges to a tight Gaussian

process along a (sub)sequence of distributions, the limiting process will have a continuous

path in θ uniformly over ` ∈ L. Define population-level quantities:

Σ((θ(1), `(1)), (θ(2), `(2))) = ρ2 · CovP (g`(1)(X) ·m(W, θ(1)), g`(2)(X) ·m(W, θ(2))|Z = z0) · fz(z0)

Σ((θ, `)) = Σ((θ, `), (θ, `)),

Σ((θ, 1)) = ρ2 · CovP (m(W, θ),m(W, θ)|Z = z0) · fz(z0),

Σε((θ, `)) = Σ((θ, `)) + ε · Σ((θ, 1)),

and define

TP (θ, z0) =
∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(µ`(θ, z0),Σε,`((θ))). (3.6)

Assumption 3.9 Let P0 be the collection of P ∈ P such that ΘP (z0) is not empty. Then

for all P ∈ P0, TP (θ, z0) ≥ cmin{δ, inf θ̃∈ΘP (z0) ‖θ − θ̃‖2} for some constants c > 0 and

δ > 0.
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Assumption 3.9 is an identification strength assumption. It is a type of polynomial

minorant condition introduced by Chernozhukov, Hong, and Tamer (2007). A similar

condition is also assumed in Bugni, Canay, and Shi (2017, Assumption A.3) for subvector

inference in unconditional moment inequality models. This assumption excludes weakly

identified models. For instance, it requires the instrumental variable and the endogenous

variable have a correlation bounded away from zero.

We define H0 as the collection of (θ1, P ) such that P ∈ P and there exists a θ−1 ∈ Θ−1

such that (θ1, θ−1) ∈ ΘP (z0). That is,

H0 ≡ {(θ1, P ) : P ∈ P , exist θ−1 ∈ Θ−1 such that (θ1, θ−1) ∈ ΘP (z0)}.

Theorem 3.1 Let the confidence level be 1−α. Suppose Assumptions 3.1-3.9 hold, then

lim inf
n→∞

inf
(θ1,P )∈H0

Pr(θ1 ∈ ĈSn) ≥ 1− α. (3.7)

In addition, if these exists (θ∗1, P
∗) ∈ H0 such that the limiting distribution function under

P ∗ of T̂ Sn(θ1) is continuous and strictly increasing at its (1− α)-th quantile, then

lim
η↓0

lim inf
n→∞

inf
(θ1,P )∈H0

Pr(θ1 ∈ ĈSn) = 1− α. (3.8)

Remark 3.1 The confidence sets in the Theorem 3.1 depends on z0. In some applica-

tions, researchers may be interested in a joint inference on θ01(·) evaluated at multiple

pre-specified values: ZT = {z1, z2, · · · , zT}.7 The results of Theorem 3.1 can be read-

ily extended to analyze this case because the confidence sets conditioning on different zt,

t = 1, 2, · · · , T are asymptotically independent due to kernel smoothing. To be specific,

define Ĉjoint
η,n (θ1(z1), . . . , θ(zT ), α) as

Ĉjoint
η,n (θ1(z1), . . . , θ(zT ), α) = sup

{
C
∣∣P u
(

max
t=1,...,T

T̂ S
u

n(θzt) ≤ C
)
≤ 1− α

}
+ η.

7Researchers may also be interested in the confidence band for the functional parameter θ01(·). This
is beyond the scope of this paper and we leave it for future research.
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The joint confidence set for {θ0,1(zt) : t = 1, . . . , T} is then given as

ĈS
joint

n = {{θ1(zt) : t = 1, . . . , T} : max
t=1,...,T

T̂ Sn(θ1(zt)) ≤ Ĉjoint
η,n (θ1(z1), . . . , θ(zT ), α)}.

3.2 Specification Test

In many empirical settings (e.g., Example 2.6), an important concern is whether the model

is correctly specified in the sense that there exists a function θ(·) such that for all Z = z

EP [mj(W, θ(Z))|X,Z = z] ≥ 0 for j = 1, . . . , p

EP [mj(W, θ(Z))|X,Z = z] = 0 for j = p+ 1, . . . , k

a.s. X (3.9)

To examine whether the model specification is consistent with the data, we propose

to test the necessary condition that whether there exist a function θ(·) that makes the

condition moment conditions of (3.9) to hold at a fixed grid of points in the support of

Z, say ZT = {z1, z2, · · · , zT}. Consequently, we aim to test the null hypothesis

H0 : There exist a θ(·) s.t.EP [mj(W, θ(z))|X,Z = z] ≥ 0 for j = 1, . . . , p

EP [mj(W, θ(z))|X,Z = z] = 0 for j = p+ 1, . . . , k

hold for all z = z1, · · · , zT and a.s. X (3.10)

We define

P0 ≡ {P ∈ P : Conditions (3.10) hold}.

Note that P0 implicitly depends on the grid points ZT . For testing the H0 of P ∈ P0

agaist H1 of P ∈ P/P0, we propose the following test statistic

T̂n ≡ max
t=1,··· ,T

[
min
θ∈Θ

T̂n(θ, zt)

]
,

and set the critical value Cu
n(α) as the (1−α)-th quantile of maxt=1,··· ,T

[
minθ∈Θ T̂

u
n (θ, zt)

]
17



plus η, and define the test be φn = 1[T̂n > Cu
n(α)]. It is easy to see that the test statistic

T̂n and Cu
n(α) utilize respectively T̂n(θ, zt) and T̂ un (θ, zt), both of which are used earlier

for constructing CSs of (3.3). The following theorem establishes the consistency of the

proposed procedure above for testing the null of (3.10).

Theorem 3.2 Suppose Assumptions 3.1-3.9 hold, then

lim sup
n→∞

sup
P∈P0

Pr(φn = 1) ≤ α. (3.11)

In addition, if these exists P ∗ ∈ P such that the limiting distribution function under P ∗

of T̂n is continuous and strictly increasing at its (1− α)-th quantile, then

lim
η↓0

lim sup
n→∞

sup
P∈P0

Pr(φn = 1) = α. (3.12)

Remark 3.2 Focusing on the fixed grid ZT = {z1, z2, · · · , zT}, the proposed procedure

does not guarantee to consistently test for the null of correct specification (i.e. the existence

of a θ(·) that makes the conditional moment conditions of (3.9) to hold for all values in

Z). Nevertheless, by rejecting the null of a correct specification upon rejection of H0

of (3.10), one can consistently reject the null of a correct specification when it is false

(i.e. when the model is misspecified). This is because H0 of (3.10) is necessary but not

sufficient condition for H0 of (3.9). And empirical researchers can adopt the proposed

testing procedure as a practical way of checking the model specification and can pick a

larger number of grid points (of z) to make the testing result more credible.

Remark 3.3 In calculating the (1−α)-th quantile of maxt=1,··· ,T

[
minθ∈Θ T̂

u
n (θ, zt)

]
. One

can follow the idea of Bugni, Canay, and Shi (2015) and replace the minimization region

Θ with Θ
log(n)
P (zt) , an expansion of the identified set ΘP (zt), or with a set estimator

Θ̂P (zt). In this paper, we do not further pursue in this direction.

Corollary 3.1 Fix ZT = {z1, z2, · · · , zT}. Suppose the conditions for Theorem 3.2 are

satisfied for all z ∈ ZT . Let TP (θ, zt) be as defined in Equation (3.6) with zt in place of
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z0 and Pn be a sequence of DGP such that

cn = max
t=1,··· ,T

inf
θ∈Θ

TPn(θ, zt) > 0.

Then for any chosen η < +∞, we have lim infn→∞ Pr(φn = 1) = 1 if cn → c > 0. If

nhdzcn → c > 0, and let r(c) ≡ lim infn→∞ Pr(φn = 1), then we have limc→+∞ r(c) = 1.

Remark 3.4 The condition maxt=1,··· ,T infθ∈Θ TPn(θ, zt) = cn > 0 is a high level con-

dition. cn → c ∈ (0,∞) can occur if a moment inequality is violated at a particular

zt. For example, for some j = 1, · · · , p, EPn [mj(W, θ0(Z))|X, z = zt] ≡ hj(X, zt) such

that hj(X, zt) < −δ < 0 over a subset of X̃zt with Pr(X ∈ X̃zt |Z = zt) > 0. It can

also occur when a moment equality is violated, for example, for some j = p + 1, · · · , k,

Ep[mj(W, θ0(Z))|X, z = zt] ≡ bj(X, zt) such that |bj(X, zt)| > δ > 0 over a subset of X̃zt
with Pr(X ∈ X̃zt|Z = zt) > 0.

4 Simulation

This section provides some Monte Carlo simulations to illustrate our method and demon-

strate its finite sample performance. In Section 4.1, we mainly focus on the property of

the proposed confidence set. In Section 4.2, we investigate the property of the proposed

specification test. Throughout all the simulation exercises, we consider three sample sizes

n ∈ {500, 1000, 2000, 4000}, bootstrap sample size B = 1000, number of replications

R = 1000, input parameter of the interval class Qn = 10. The instrumental functions are

selected based on Equation (3.1). We use the second-order Epanechnikov kernel function

and (under-smoothed) rule-of-thumb bandwidth: h = hrot×nc for c = −0.1.8 Finally, we

choose the infinitesimal constant η = 10−6, and the slackness constant κn =
√

log n.

8We also tried other reasonable choices of Qn (such as 5 or 15) and c (such as −0.05 or −0.08). The
results are qualitatively similar.
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4.1 Finite Sample Performances of the CS

4.1.1 Linear Regression with Interval-Outcome

Let Y be a latent dependent variable with Y ∗ = X ′θ0(Z) + ε with E[ε|X,Z] = 0 a.s. X

and Z, where (X,Z) are exogenous regressors. The latent variable Y ∗ is known to lie in

the observed interval [Y`, Yu]. Then, the following moment inequalities hold for any fixed

Z = z0 ∈ Z, the support of Z:

EP [Yu −X1θ10(Z)−X2θ20(Z)|X,Z = z0] ≥ 0 a.s. X and (4.1)

EP [X1θ10(Z) +X2θ20(Z)− Y`|X,Z = z0] ≥ 0 a.s. X. (4.2)

We consider the following specification:

Y ∗ = X1θ10(Z) +X2θ20(Z) + ε,

where X1 ∼ N(0, 1), X2 ∼ N(0, 1), Z ∼ U [2, 6], ε ∼ N(0, 1) are all mutually independent.

For some δ > 0, let Yu = δ(Ceil[Y ∗/δ]) and Y` = δ(Ceil[Y ∗/δ]− 1), where Ceil[x] rounds

x to integer toward +∞. Under this construction, the bracket length Yu− Y` is exactly δ

and the researchers only observe this bracket around the true value of Y ∗. We consider

the following varying coefficients:

θ10(z) = (1.6 + 0.6z)e−0.4(z−3)2 , θ20(z) = 2(1 + cos(z))

This specification of θ10 is taken from Cai, Fang, Lin, and Su (2019). We focus on z0 = 4,

which implies the true value of θ10(z0) equals to 2.68. In this model, the upper and lower

bounds of the identified set for θ10(z0) would be θ1 is [θ1,`b, θ1,ub], where

θ1,`b = inf
θ∈Θ

θ1 s.t. EP [Y` | X = x, Z = z0] ≤ xᵀθ ≤ EP [Yu | X = x, Z = z0], x–a.e.

θ1,ub = sup
θ∈Θ

θ1 s.t. EP [Y` | X = x, Z = z0] ≤ xᵀθ ≤ EP [Yu | X = x, Z = z0], x–a.e.

20



 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.3 2.4 2.5 2.52 2.54 2.56 2.57 2.59 2.61 2.63 2.65 2.67 2.69 2.74 2.755 2.77 2.85 2.95

Coverage Frequencies (95% nominal)

n=500 n=1000 n=2000 n=4000

Figure 1: Coverage Frequency: Linear Model

For this linear regression with interval-observed outcome variable designs, we consider

interval lengths δ = 0.5, which implies the identified set to be [2.6, 2.73].9 We calculate

coverage frequencies at 95% nominal levels for different values of θ1 and plot in Figure 1.10

We can see that the coverage frequency is no smaller than the nominal level near the

identified set, which shows that our CS is asymptotically valid. It is higher than the

nominal level because the asymptotic coverage probability for points in the interior of the

identified set is higher (and converges to 1 as n goes to infinity). We can also see that the

coverage probability declines quickly when moving away from the identified set. Also, the

coverage frequency decreases quickly as the sample size increases for each given θ outside

of the identified set. This shows that our CS has a good finite sample power.

9The “approximated identified sets” reported here are calculated by evaluating sample objective func-
tions with a very large sample size (n = 100, 000) and Qn = 10. Therefore these sets are essentially
approximations of the approximated identified region of the set of unconditional moment inequalities
corresponding to Qn = 10, and they should be larger than the true identified sets of the conditional
moment inequalities. We also consider = 0.1 and δ = 1.0. The results are qualitatively similar and
therefore omitted to save space.

10When the dimension of the parameter vector is high, instead of considering a fixed grid points, one
can use the EAM algorithm of Kaido, Molinari, and Stoye (2019) to select testing points to reduce
computation cost.
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4.1.2 Entry Game with Complete Information

Consider a simultaneous entry game of complete information with two players:

Y1 = 1 {θ1,0(Z)Y2 − ε1 ≥ 0} ;

Y2 = 1 {θ2,0(Z)Y1 − ε2 ≥ 0} ,

where the coefficient θ1,0(z) = − ez−1
e−1

, θ2,0(z) = − e1−z−1
e−1

, Z ∼ U [0, 1], and (ε1, ε2) ∼

N
((

0
0

)
,
(

1 ρ
ρ 1

))
. In this model, the strength of the strategic interaction depends on

observed variable Z. We assume that players play a pure strategy Nash equilibrium,

and when there are multiple equilibria, the nature tosses a fair coin to select. Researchers

observe Y1, Y2 and Z, but do not know the functional form of θj,0(z), j = 1, 2. Researchers

are also agnostic about the equilibrium selection mechanism. The goal is to construct the

confidence interval for θ1,0(z0) at z0 = 0.5.

Let Φρ(t1, t2) be the probability of the event {ε1 ≤ t1 & ε2 ≤ t2}. The necessary

condition of Nash equilibrium implies the following conditional moment restrictions:

EP [0.5− Φρ(θ1,0(Z), 0)− (1− Y1)Y2 | Z = z] ≥ 0,

EP [0.5− Φρ(0, θ2,0(Z))− Y1(1− Y2) | Z = z] ≥ 0,

EP [Φρ(θ1,0(Z), θ2,0(Z))− Y1Y2 | Z = z] = 0,

EP [Φρ(0, 0)− (1− Y1)(1− Y2) | Z = z] = 0.

In this model, the unknown parameters are (θ1,0(·), θ2,0(·), ρ). However, ρ is identified

from the fourth moment equality. Therefore we solve ρ from the fourth equation and

focus on the first three conditional moment restrictions:

Φρ(θ1, 0) ≤ 0.5− p(0, 1|z), (4.3)

Φρ(0, θ2) ≤ 0.5− p(1, 0|z), (4.4)

Φρ(θ1, θ2) = p(1, 1|z), (4.5)
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where p(`, k|z) ≡ Pr(Y1 = `, Y2 = k|Z = z). Note that given the joint normal distribution

of epsilons, the upper and lower bound of the identified set for θ01(z0) can be analytically

calculated from Equations (4.3) to (4.5). In particular, Equation (4.5) says that the joint

identified set is a curve in the two-dimensional space. Equation (4.3) and Equation (4.4)

provide the coordinates of the two endpoints of the curve. Based on our calculation, the

identified set for θ01(z0) is [−0.47,−0.29] when ρ = 0.5.

Crefentry-a reports the coverage frequencies under different sample sizes for different θ1

values. We also considered other values of ρ and other significance levels but omitted the

results due to the qualitative similarity. When parameter values are inside the identified

set, the coverage frequency is above the nominal levels, demonstrating its validity. The

coverage frequencies are closer to the nominal level when θ1 is closer to the boundary of

the identified set. When θ1 moves away from the identified set, the coverage frequencies

decline dramatically and declines faster for larger sample sizes.
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Figure 2: Coverage Frequency: Entry Game

4.2 Specification Test

In this subsection, we examine the finite sample performance of our specification test,

for which we consider examples that are parallel to those that we used in the previous
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subsection for confidence sets. For each example, we change the DGP so that the moment

inequalities are mis-specified.

4.2.1 Linear Regression with Interval-Outcome

The DGP is the same as the linear regression with an interval-outcome example, except

now we also consider cases in which δ < 0. In such cases, the model is mis-specified, and

we should expect high rejection frequency. To implement the test, we consider five grid

points in the space of z: {3.0, 3.5, 4.0, 4.5, 5.0}. We expect that the test performs better

if we use finer grids.

Table 1: Rejection Frequency: Linear Regression with Interval Outcome

δ n α = 0.1 α = 0.05 α = 0.01

δ = −1.0 n = 500 1.000 1.000 1.000
n = 1000 1.000 1.000 1.000
n = 2000 1.000 1.000 1.000

δ = −0.5 n = 500 1.000 1.000 1.000
n = 1000 1.000 1.000 1.000
n = 2000 1.000 1.000 1.000

δ = −0.2 n = 500 0.7625 0.6350 0.3950
n = 1000 0.9725 0.8775 0.5125
n = 2000 1.000 1.000 0.9300

δ = 0.0 n = 500 0.1925 0.1100 0.0450
n = 1000 0.1500 0.0725 0.0200
n = 2000 0.1125 0.0750 0.0200

δ = 0.2 n = 500 0.0450 0.0325 0.0050
n = 1000 0.0075 0.0025 0.000
n = 2000 0.000 0.000 0.000

δ = 0.5 n = 500 0.000 0.000 0.000
n = 1000 0.000 0.000 0.0000
n = 2000 0.000 0.000 0.000

δ = 1.0 n = 500 0.000 0.000 0.000
n = 1000 0.000 0.000 0.000
n = 2000 0.000 0.000 0.000

The following Table 1 reports the rejection frequencies under different significance

level α and δ. When the model is correctly specified and has a positive interval length
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(δ > 0), the rejection frequency is very low and close to zero. This is not surprising

because the true model lies in the “interior” of the null hypothesis. When the model is

correctly specified but point-identified (δ = 0), we are in the knife-edge case, and the

rejection frequency is close to the nominal value when the sample size is large enough.

Finally, when the model is mis-specified (δ > 0), our test can detect it and show good

power—the rejection frequencies increases as the size of the misspecification increases.

4.2.2 Entry Game with Complete Information

Our second example corresponds to the design in Section 4.1.2. We consider the same

game and use the same set of inequalities, except that change the error terms (ε1, ε2) ∼

N
((
−δ
−δ

)
,
(

1 0
0 1

))
and Φ is the standard normal CDF. However, the researcher incorrectly

parameterizes the joint distribution as to be (ε1, ε2) ∼ N
((

0
0

)
,
(

1 0
0 1

))
. In this desisn,

the size of δ measures the mangnitude of the mis-sepcification. For example, as δ → +∞,

the probability of the outcome (0, 0) will converges to zero, but if under the mis-sepcified

model, for any given value of ρ, the outcome (0, 0) would occur with positive probability.

We consider five z values when implement the test: z ∈ {0.2, 0.35, 0.5, 0.65, 0.8}. Table 2

reports the rejection frequencies when ρ = 0. When δ = 0, the model is correctly specified,

and we see the rejection frequencies are below nominal values across the broad. When

δ > 0, the model is mis-specified. Our test rejects the model with large frenqucies and

the rejection rate increases with both sample size n and mis-specification magnitude δ.

5 Conclusion

In this paper, we provide a consistent inference procedure for varying coefficients that

are defined by a set of moment inequalities and/or equalties. The proposed procedure is

based on multiplier-bootstrap and as shown, can be readily used to construct confidence

sets for subvector of interest of the parameters. We establish that the resulting confidence

sets are asymptotically valid uniformly over a broad family of DGPs and robust to par-

tial identification. We also propose a specification test for a finite number of necessary
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Table 2: Rejection Frequency: Entry Game

δ n α = 0.1 α = 0.05 α = 0.01

δ = 0.0 n = 500 0.0075 0.0025 0.0000
n = 1000 0.0200 0.0075 0.0000
n = 2000 0.0200 0.0050 0.0000

δ = 0.2 n = 500 0.6350 0.3675 0.0050
n = 1000 0.9050 0.7750 0.2275
n = 2000 1.0000 0.9725 0.7425

δ = 0.4 n = 500 0.9975 0.9850 0.6800
n = 1000 1.0000 1.0000 0.9925
n = 2000 1.0000 1.0000 1.0000

implications of the varying coefficient models we considered.
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Appendix

A Notations

We introduce more notations. Let Ω be a specified closed set of k×k covariance matrices.

Recall that

ΣP ((θ(1), `(1)), (θ(2), `(2))) = ρ2 · CovP (g`(1)(X) ·m(W, θ(1)), g`(2)(X) ·m(W, θ(2))|Z = z0) · fz(z0)

ΣP ((θ, `)) = ΣP ((θ, `), (θ, `)),

ΣP ((θ, 1)) = ρ2 · CovP (m(W, θ),m(W, θ)|Z = z0) · fz(z0),

ΣP,ε((θ, `)) = ΣP ((θ, `)) + ε · ΣP ((θ, 1)),

µ`(θ, z0) = EP (m(W, θ)g`(X)|Z = z0) · fz(z0).

For a given pair of (`(1), `(2)), let C(Θ2) denote the space of continuous functions ΣP ((·, `(1)), (·, `(2))) :

Θ2 → Ω. For notation simplicity, we write ΣP to denote ΣP ((θ(1), `(1)), (θ(2), `(2))) when

it causes no confusion.

For a given θ1, define

Λn,P (θ1) = {(θ, ξ) ∈ Θ(θ1)× {Rk
±∞}`∈L : ξ` =

√
nhdzn µ`(θ, z0)},

Λ∗n,P (θ1) = {(θ, ξ) ∈ Θ(θ1)× {Rk
±∞}`∈L : ξ` = κ−1

n

√
nhdzn µ`(θ, z0)},

Λ̂∗n,P (θ1) = {(θ, ξ) ∈ Θ(θ1)× {Rk
±∞}`∈L : ξ` = κ−1

n

√
nhdzn µ̂`(θ, z0)}.

where µ`(θ, z0) = EP [g`(X) ·m(W, θ)|Z = z0] · fz(z0).

For any two points (θ, ξ) and (θ′, ξ′) in Θ× {Rk
±∞}`∈L, define the metric as

d((θ, ξ), (θ′, ξ′)) =
[ dθ∑
j=1

(Φ(θj)− Φ(θ′j))
2

+
∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dx
k∑
j=1

(Φ(ξj,`)− Φ(ξ′j,`))
2
]1/2

,
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where Φ(·) is the CDF of the standard normal. Then it is true that the space (Θ ×

{Rk
±∞}`∈L, d) constitutes a compact metric space because that R±∞ is a compact space

under metric dR with dR(r, r′) = |Φ(r)−Φ(r)|, r, r′ ∈ R±∞. Let S(Θ×{Rk
±∞}`∈L) denote

the collection of compact subsets of the metric space (Θ× {Rk
±∞}`∈L, d). Note that this

is true only when the dimension of Θ × {Rk
±∞}`∈L is countably many infinite and this

is the main reason that we have to use instrument functions Gc-cube that is countably

many. Let dH denote the Hausdorff metric associated to the metric d, i.e., for any sets

A,B ⊆ Θ× {Rk
±∞}`∈L,

dH(A,B) = max
{

sup
(θ,ξ)∈A

inf
(θ′,ξ′)∈B

d((θ, ξ), (θ′, ξ′)), sup
(θ′,ξ′)∈B

inf
(θ,ξ)∈A

d((θ, ξ), (θ′, ξ′))
}
.

At last, define the metric space (Θ(θ1)×{Rk
±∞}`∈L, d) and the collection of its compact

subsets S(Θ(θ1)× {Rk
±∞}`∈L) analogously.

B Lemmas

Lemma B.1 Suppose Assumptions 3.1-3.9 hold. Let {(λun , Pun ∈ H0)}n≥1 be a (sub)sequence

of parameters and distributions such that for some (Σ,ΛL) ∈ {C(θ2)}(`1,`2)∈L2 × S(Θ ×

{Rk
±∞}`∈L), (i) ΣPun → Σ uniformly and (ii) Λun,Pun (θun)

H→ ΛL. Then, along the

(sub)sequence,

T̂ Sun(θ1,un)
d→ inf

(θ,λL)∈ΛL

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(ΨΣ(θ, `) + λ`,Σε(θ, `)), (B.1)

where ΨΣ : Θ × L → Rk is a Rk-valued tight Guassian process with covariance kernel

Σ ∈ C(θ2), and Σε = Σ(θ, `) + εΣ(θ, 1).

Proof. Without loss of generality, we let un = n. Recall that

T̂ Sn(θ1) ≡ inf
θ∈Θ(θ1)

T̂n(θ, z0),
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where Θ(θ1) ≡ {θ̃ ∈ Θ : θ̃1 = θ1} and

T̂n(θ, z0) =
∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(
√
nhdzn µ̂n(θ, `, z0), Σ̂ε,n(θ, `, z0)).

Let Ψ̂n(θ, `, z0) =
√
nhdzn (µ̂`,n(θ, z0)− µ`(θ, z0)). We have

T̂ Sn(θ1) = inf
θ∈Θ(θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(
√
nhdzn µ̂`,n(θ, z0), Σ̂ε,n(θ, `, z0))

= inf
(θ,ξ)∈Λn,P (θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(Ψ̂n(θ, `, z0) + ξ`, Σ̂ε,n(θ, `, z0)).

For a generic uniform continuous function γ : Θ× L → RK , define

gn(γ(·),Σ(·)) ≡ inf
(θ,ξ)∈Λn,P (θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(γ(θ, `) + ξ`,Σε(θ, `)), and

g(γ(·),Σ(·)) ≡ inf
(θ,ξ)∈ΛL(θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(γ(θ, `) + ξ`,Σε(θ, `)).

Let {γn(·),Σn(·)}n≥1 be a sequence of functions such that

lim
n→∞

sup
θ∈Θ(θ1)

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dx‖(γn(θ, `),Σn(θ, `))− (γn(θ, `),Σ(θ, `))‖ = 0

where ‖ · ‖ denotes the Euclidean norm, then by the same argument of Theorem 3.1 of

Bugni, Canay, and Shi (2015), we can show that

lim
n→∞

gn(γn(·),Σn(·)) = g(γ(·),Σ(·)).

Therefore, Lemma B.1 holds following the extended continuous mapping theorem (Van

Der Vaart and Wellner, 1996, Theorem 1.11.1) and by observing Ψn
d→ ΨΣ. ���

Lemma B.2 Suppose Assumptions 3.1-3.9 hold. Let {(λun , Pun ∈ H0)}n≥1 be a (sub)sequence

of parameters and distributions such that for some (Σ,Λ∗L) ∈ {C(θ2)}(`1,`2)∈L2 × S2(Θ ×
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{Rk
±∞}`∈L), (i) ΣPun → Σ uniformly and (ii) Λ∗un,Pun ,L(θun)

H→ Λ∗L. Then, there exists a

further subsequence {kn}n≥1 of {un}n≥1,

T̂ S
u

kn(θkn)
d→ inf

(θ,λL)∈Λ∗L

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(νΣ(θ, `) + λ`,Σε(θ, `)), (B.2)

conditional on the sample path almost surely.

Proof. First, by (ii) of Lemma B.5, we have

sup
(θ,`))∈(Θ(θ1),L)

‖Σ̂n((θ, `))− ΣP ((θ, `))‖ p→ 0,

and this is sufficient to show that

sup
(θ,`))∈(Θ(θ1),L)

‖Σ̂ε,n((θ, `))− Σε,P ((θ, `))‖ p→ 0.

Second, note that

κ−1
n

√
nhdzn µ̂`(θ, z0) = κ−1

n Ψ̂n(θ, `, z0) + κ−1
n

√
nhdzn µ`(θ, z0)

and by (i) of Lemma B.5 and the fact that κ−1
n → 0, we have dH(Λ∗n,P (θ1), Λ̂∗n,P (θ1))

p→ 0.

Then given that dH(Λ∗n,P (θ1),Λ∗L)→0, we have dH(Λ∗n,P (θ1),Λ∗L)
p→ 0.

Therefore, there exists a subsequence {kn}n≥1 of {n}n≥1 such that (a) Ψ̂kn(·) ⇒ ΨΣ

conditional on sample path almost surely, (b) sup(θ,`))∈(Θ(θ1),L) ‖Σ̂n((θ, `))−ΣP ((θ, `))‖ a.s.→

0 and (c) dH(Λ∗n,P (θ1),Λ∗L)
a.s.→ 0. Then by the same proof of Lemma B.1 and by conditional

on the sample path, we have

T̂ S
u

kn(θkn)
d→ inf

(θ,λL)∈Λ∗L

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(νΣ(θ, `) + λ`,Σε(θ, `)),

conditional on the sample path almost surely.���

Lemma B.3 Let {(θ1,un , Pun ∈ H0)}n≥1 be a (sub)sequence of parameters and distribu-

tions such that for some (Σ,ΛL,Λ
∗
L) ∈ {C(θ2)}(`1,`2)∈L2×S2(Θ×{Rk

±∞}`∈L), (i) ΣPun → Σ
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uniformly, (ii) Λun,Pun ,L(θ1,un)
H→ ΛL and (iii) Λ∗un,Pun ,L(θ1,un)

H→ Λ∗L. Suppose Assump-

tions 3.1-3.9 hold. Then we have that for all (θ, ξ∗) ∈ Λ∗L such that ξ∗(`) ∈ Rp
+∞(−∞,∞]×

Rk−p for all ` ∈ L with

∞∑
q=1

1

q2 + 100

∑
{`: r=q−1}

q−dxS(ξ∗(`),Σε(θ, `)) <∞,

there exists ξ such that (θ, ξ) ∈ ΛL and ξj(`) ≥ ξ∗j (`) for j ≤ p and ξj(`) ≥ ξ∗j (`) for

p < j ≤ k for all ` ∈ L.

Proof. We apply the proof of Lemma S.3.8 of Bugni, Canay, and Shi (2017) to show our

case. Without loss of generality, let un = n. If (θ, ξ∗) ∈ Λ∗L, there exists a sequence {θn}

such that θn ∈ Θ(θ1,n) with θn → θ, and κ−1
n

√
nhdzn µ`(θn, z0)→ ξ∗(`) for all ` ∈ L. Similar

to (S.16) of Bugni, Canay, and Shi (2017), there exists a sequence of θ̃n ∈ ΘPn(θ1,n, z0)

such that ‖θn − θ̃n‖ ≤ O(κn/
√
nhdxn ). Define θ̂n = (1 − κ−1

n )θ̃n + κ−1
n θn. By the same

arguments of (S.17) and (S.18), we have

√
nhdzn µ`(θ̂n, z0) = κ−1

n

√
nhdzn µ`(θn, z0) + ε1,n(`) + ε2,n(`)

where ε1,n(`) = (∇θµ`(θ
∗∗
n , z0)−∇θµ`(θ

∗
n, z0))

√
nhdzn (θ̂n − θn) with θ∗n and θ∗∗n both being

between θ̂n and θn, and ε2,n(`) = (1 − κ−1
n )
√
nhdzn µ`(θ̃n, z0). Note that θ̃n ∈ ΘPn(θ1,n, z0)

and κ−1
n → 0, so it follows that ε2,n,j(`) ≥ 0 for j ≤ p and ε2,n,j(`) = 0 for j > p for all

`. Note that ∇θµ`(θ, z0) = E[g`(X)µ`(θ,X, Z)|Z = z0] and by Assumption 3.5 1., it is

true that ‖∇θµ`(θ
∗∗
n , z0)−∇θµ`(θ

∗
n, z0)‖ ≤ cQ‖θ∗∗n − θ∗n‖ for some positive constant c not

depending on `. Therefore, we have ‖∇θµ`(θ
∗∗
n , z0)−∇θµ`(θ

∗
n, z0)‖ = o(1) uniformly over

`. By the fact that
√
nhdxn ‖θ̂n − θ̃n‖ = O(1), we have uniformly over `,

‖ε1,n(`)‖ ≤ ‖(∇θµ`(θ
∗∗
n , z0)−∇θµ`(θ

∗
n, z0))‖

√
nhdxn ‖θ̂n − θ̃n‖ = o(1).

Given that the space (Θ×{Rk
±∞}`∈L, d) constitutes a compact metric space, it is true that

there exists a subsequence {un} of {n} such that
√
unhdzunµ`(θ̂un , z0) and κ−1

un

√
unhdzunµ`(θun , z0)

converge for all `. To be specific, {Rk
±∞, dk} where for any two points δ1, δ2 ∈ Rk

±∞,
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dk(θ1, θ2) = (
∑k

j=1(Φ(θ1,j)− Φ(θ2,j)
2)1/2 is a compact set. Note that because L is count-

able, we can order ` = 1, 2, . . . with those `’s with smaller q being ordered first. For ` = 1,

then there exists a subsequence {a1,n} of {n} so that

ξj(1) = lim
n→∞

√
a1,nhdza1,nµ`(θ̂a1,n , z0) ≥ lim

n→∞
κ−1
a1,n

√
a1,nhdza1,nµ`(θa1,n , z0) = ξ∗j (1) for j ≤ p,

ξj(1) = lim
n→∞

√
a1,nhdza1,nµ`(θ̂a1,n , z0) = lim

n→∞
κ−1
a1,n

√
a1,nhdza1,nµ`(θa1,n , z0) = ξ∗j (1) for j ≤ p.

Similarly, for ` = 2, there exists a subsequence {a2,n} of {a1,n} so that

ξj(2) = lim
n→∞

√
a2,nhdza2,nµ`(θ̂a2,n , z0) ≥ lim

n→∞
κ−1
a2,n

√
a2,nhdza2,nµ`(θa2,n , z0) = ξ∗j (2) for j ≤ p,

ξj(2) = lim
n→∞

√
a2,nhdza2,nµ`(θ̂a2,n , z0) = lim

n→∞
κ−1
a2,n

√
a2,nhdza2,nµ`(θa2,n , z0) = ξ∗j (2) for j ≤ p.

Then we keep doing this for ` = 3, 4, . . . and set {un} = {an,n}. This completes the

proof.���

Lemma B.4 Suppose Assumptions 3.1-3.9 hold. For any (sub)sequence {(θun , Pun ∈

H0)}n≥1, there exists a further subsequence {kn}n≥1 of {un}n≥1 such that (i) ΣPkn
→ Σ

uniformly, (ii) Λkn,Pkn ,L(θkn)
H→ ΛL and (iii) Λ∗kn,Pkn ,L(θkn)

H→ Λ∗L for some (Σ,ΛL,Λ
∗
L) ∈

{C(θ2)}(`1,`2)∈L2 × S2(Θ× {Rk
±∞}`∈L).

Proof. We apply the proof of Lemma D.7 of Bugni, Canay, and Shi (2015) to show our

case. For ` = 1, by the same arguments of Lemma D.7 of Bugni, Canay, and Shi (2015),

we can show that there exists a subsequence {a1,n} of {n} such that

ΣPa1,n
((·, `1), (·, `2))→ Σ((·, `1), (·, `2)) uniformly for `1, `2 ∈ {1},

Λa1,n,Pa1,n ,`
(θa1,n)

H→ Λ`,

Λ∗a1,n,Pa1,n ,`(θa1,n)
H→ Λ∗` ,

for some (Σ,ΛL,Λ
∗
L) ∈ {C(θ2)}(`1,`2)∈L2×S2(Θ×{Rk

±∞}`∈L). For ` = 2, we can show that
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there exists a subsequence {a2,n} of {a1,n} such that

ΣPa1,n
((·, `1), (·, `2))→ Σ((·, `1), (·, `2)) uniformly for `1, `2 ∈ {1, 2},

Λa2,n,Pa2,n ,`
(θa2,n)

H→ Λ`,

Λ∗a2,n,Pa2,n ,`(θa2,n)
H→ Λ∗` .

Then we keep doing this for ` = 3, 4, . . . and set {kn} = {an,n}. This completes the proof.

���

Lemma B.5 Suppose Assumptions 3.1-3.9 hold. Let {Pun ∈ P}n≥1 be a (sub)sequence

of distributions such that for some Σ ∈ {C(Θ2)}(`1,`2)∈L2, ΣPun → Σ uniformly. Then, the

following statements hold:

(i) Ψ̂un(·)⇒ ΨΣ, where ΨΣ is a tight zero-mean Guassian process with covariance kernel

Σ. In addition, for any fixed ε > 0, there exists a δ > 0 such that

Pr
(

sup
‖θ(1)−θ(2)‖≤δ

sup
`∈L
‖ΨΣ(θ(1), `)−ΨΣ(θ(2), `)‖ ≤ ε

)
= 1.

(ii) We have

sup
(θ(1),`(1)),(θ(2),`(2))∈(Θ(θ1),L)

‖Σ̂n((θ(1), `(1)), (θ(2), `(2)))− ΣP ((θ(1), `(1)), (θ(2), `(2)))‖ p→ 0, where

Σ̂n((θ(1), `(1)), (θ(2), `(2))) =
1

nhdzn

n∑
i=1

(
K
(Zi − z0

hn

)
g`(1)(Xi)m(Wi, θ

(1))− µ̂`(1),n(θ(1), z0)
)

·
(
K
(Zi − z0

hn

)
g`(2)(Xi)m(Wi, θ

(2))− µ̂`(2),n(θ(2), z0)
)′
.

(iii) We have Ψu
n(·)⇒ ΨΣ conditional on sample path with probability 1.

Proof. Parts (i) and (ii) are the same as those of Lemma AN3 of Andrews and Shi (2014).

Given part (ii), the proof of part (iii) follows from the same argument of Theorem 4.1 of

Hsu (2016). ���
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C Proof of Theorems

Proof of Theorem 3.1. Given Lemma B.1-Lemma B.5 above, the proof to Theorem 3.1

follows the same arguments of Equation (C.5) of Bugni, Canay, and Shi (2017), and we

omit the details for brevity.

Proof of Theorem 3.2. The proof of Theorem 3.2 follows analogously from those

in Theorem 3.1. In particular, the limiting distribution of minθ∈Θ T̂n(θ, zt) can be ob-

tained in a similar way as in Lemma B.1. For a set of pre-chosen grid points {z1, . . . , zT},

minθ∈ΘT̂n(θ,zt)
are mutually asymptotically independent, so their asymptotic joint distribu-

tion is the product of their asymptotic marginal distributions. Finally, the max operator

is a continuous function, so the limiting distribution of T̂n follows by continuous mapping

theorem. The validity of multipier bootstrap holds as shown in Lemma B.5.

The results in Corollary 3.1 hold because (i) the critical value Cu
n(α) is stochastically

bounded, and (ii) T̂n
nhdz
− cn

p→ 0.
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