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ABSTRACT. In this paper we propose an easy-to-implement procedure to test the key conditions for

the identification and estimation of the local average treatment effect (LATE, Imbens and Angrist,

1994), namely the valid instrument assumption (LI) and the treatment monotonicity assumption (LM).

We reformulate the testable implications of LI and LM as two conditional inequalities, which can

be tested in the intersection bounds framework of Chernozhukov, Lee, and Rosen (2013) and easily

implemented using the Stata package of Chernozhukov, Kim, Lee, and Rosen (2015). We apply

the proposed tests to the “draft eligibility” instrument in Angrist (1991), the “college proximity”

instrument in Card (1993), and the “same sex” instrument in Angrist and Evans (1998).
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1. INTRODUCTION

The instrumental variable (IV) method is one of the most-used techniques in applied economics

to identify the causal effect of an endogenous treatment on a particular outcome. In the framework

of potential outcome models, a valid instrument is often assumed to be independent of all potential

outcomes and potential treatments but dependent on the observed treatment; in the meantime, it must

have no effect on the observed outcome beyond its effect on the observed treatment. Imbens and

Angrist (1994, IA1994 hereafter) showed that a valid instrument itself does not ensure that the IV

estimand identifies the average treatment effect (ATE) when the treatment effect is heterogeneous.

To deal with this issue, IA1994 introduced LM (also known as the “no defiers” assumption), which

assumes the instrument affects the treatment decision in the same direction for every individual. When

both LI and LM hold, IA1994 showed that the IV estimand identifies the ATE for the subpopulation

of compliers, namely, the LATE.

Although the results of IA1994 have been widely influential in the applied economics literature,

there are still concerns about the validity of the key assumptions. For instance, Dawid (2000)

discussed applications where LM is likely to be violated. Such concerns, however, cannot be directly

verified since LM itself is not testable, as discussed in IA1994. Balke and Pearl (1997) and Heckman

and Vytlacil (2005) first discussed testable implications of the joint assumptions of LI and LM. Based

on these insights, Kitagawa (2008, 2015) showed that this set of testable implications is a sharp

characterization of LM and LI, in the sense that it is the most informative set of testable implications

for detecting observable violations of the joint LI and LM assumptions and first proposed a test for

these implications.

In this paper, we revisit the existing discussions on testing the joint validity of LM and LI and

show that this set of testable implications can be tested in an easy-to-implement way. In particular, we

reveal that the sharp characterization of LI and LM can be represented by a set of conditional moment

inequalities. The novelty and a nice feature of this conditional moment inequality representation

is that the outcome variable enters the inequalities as a conditioning variable, and one can easily

incorporate additional covariates into the moment inequalities as additional conditioning variables.

Interestingly, with this representation the sharp testable implications of both LI and LM assumptions

can be tested using the intersection bounds framework of Chernozhukov, Lee, and Rosen (2013, CLR
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hereafter). The test can be implemented with the Stata package provided by Chernozhukov, Kim,

Lee, and Rosen (2015) which is readily available for empirical researchers to use.

This testing procedure is different from but complements the (variance-weighed) Kolmogorov-

Smirnov test proposed by Kitagawa (2015). First, the two tests have different power properties.

Kitagawa (2015)’s test has non-trivial power against root-n local alternatives provided that the limit of

the alternatives admits a “contact set” of outcome variable with strictly positive probability mass. We

consider a conditional moment inequality reformulation and apply CLR’s test, which has nontrivial

power against local alternatives subject to a nonparametric rate but does not require existence of such

a contact set restriction. As discussed in CLR, both cases are important in applications. Second, the

proposed testing procedure requires local linear regression and therefore the choice of a smoothing

constant. We follow CLR and use the rule-of-thumb choice given by Fan and Gijbels (1996) in our

empirical applications. Kitagawa (2015)’s test is based on empirical distribution functions, whose

variance-weighted version requires a choice of a trimming constant to ensure the inverse weighting

terms to be bounded away from zero. Third, the test can accommodate continuous covariates within

the same framework. Indeed, as we further elaborate in Section 6, it requires no more than adding

covariates as new conditioning variables in the moment inequalities and estimating the conditional

expectation of the instrument given covariates. Kitagawa (2015) follows Andrews and Shi (2013)’s

approach to transform the testable implication to unconditional moment restrictions. Lastly, as we

mentioned earlier, our testing procedure can be easily implemented using the Stata package provided

by Chernozhukov, Kim, Lee, and Rosen (2015). There are other papers discuss testing issues

under different setup. Machado, Shaikh, and Vytlacil (2013) proposed tests for LM and/or outcome

monotonicity (in treatment) in a binary treatment, binary instrument, and binary outcome setup

while maintaining the LI assumption. Huber and Mellace (2013) considered a model in which the

instrument respects mean independence rather than full independence and proposed a specification

test based on a different set of testable implications.

Our paper also contributes to the empirical literature. We apply the proposed test to three well-

known instruments used in the literature: the “draft eligibility” instrument, the “college proximity”

instrument, and the “same sex” instrument. Angrist (1991) analyzed the effect of veteran status

on civilian earnings using the binary indicator of the draft eligibility as instrument. Card (1993)

analyzed the effect of schooling on earning using a binary indicator of whether an individual was
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born close to a four year college. Angrist and Evans (1998) studied the causal relationship between

fertility and women’s labor income using the variable that the first two children are of the same sex

as the instrument. Our test does not reject the testable implication of LI+LM for “draft eligibility”

and “same sex” instrument. We do, however, find that the implication is rejected for the “college

proximity” instrument on the subgroup of non-black men who lived in the metro area of southern

states. The rejection mainly takes place among individuals with higher labor income.

The rest of the paper is organized as follows: Section 2 presents the analytical framework. In

Section 3, we revisit the testable implications of the LATE assumptions, followed by Section 4,

which presents our testing procedure. We discuss empirical applications in Section 5. The last section

extends our analysis to the case with additional covariates.

2. ANALYTICAL FRAMEWORK

We adopt the potential outcome model of Rubin (1974). Let Y = Y1D + Y0(1− D), where Y

is the observed outcome taking values from the support Y , D ∈ {0, 1} is the observed treatment

indicator, and (Y1, Y0) are potential outcomes. Let Z be the instrumental variable. For the sake of

simplicity, we assume Z ∈ Z = {0, 1}, but our analysis can be extended to allow for multi-valued

Z. For each z ∈ Z , let Dz be the potential treatment if Z had been exogenously set to z. With this

notation, we can also write the observed treatment D = D1Z + D0(1− Z).

The two well-known identification assumptions for LATE as introduced by IA1994 are restated as

the following:

Assumption 1 (LATE Independence -LI). Z ⊥ (Y1, Y0, D0, D1) and P(D = 1|Z = 0) 6= P(D =

1|Z = 1).

Assumption 2 (LATE Monotonicity -LM). Either D0 ≤ D1 almost surely or D0 ≥ D1 almost

surely.

For each d and z, let D−1
z (d) denote the subset of the individuals in the population who would

select treatment d had the instrument been exogenously set to z. LM then implies that we have either

D−1
0 (1) ⊆ D−1

1 (1) or D−1
1 (1) ⊆ D−1

0 (1). In general the economic context suggests to empirical

researchers the direction of the monotonicity. In this paper, we assume that the hypothetical direction
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is known to researchers. Without loss of generality (w.l.o.g.), we focus on the direction of D0 ≤ D1

in the rest of the paper.

3. TESTABLE IMPLICATIONS OF THE LATE ASSUMPTIONS

In this section, we revisit a set of “sharp” testable implications of the LATE assumptions (LI and

LM). For the ease of exposition, we first list in Table 1 the standard notion of four subpopulations

defined by the potential treatments: always-takers, defiers, compliers, and never-takers, and we use

πij, i, j ∈ {0, 1} to denote the corresponding probability mass.

TABLE 1. Subpopulations

D0 D1 Proportion
a: Always-takers 1 1 π11
def: Defiers 1 0 π10
c: Compliers 0 1 π01
n: Never-takers 0 0 π00

Every observed subgroup {D = d, Z = z} for d, z ∈ {0, 1} is composed of a mixture of

unobserved subpopulations. Indeed,

P(D = 0|Z = 0) = P(D1Z + D0(1− Z) = 0|Z = 0) = P(D0 = 0|Z = 0)

= P(D0 = 0, D1 = 0) + P(D0 = 0, D1 = 1) = π00 + π01,

where the third equality holds under Assumption 1. By a similar derivation, we can obtain the other

three conditional probabilities, as summarized in Table 2. Notice that, by definition, we can easily

TABLE 2. Observed subgroups and unobserved subpopulations

Z = 0 Z=1
D = 0 π00 + π01 π00 + π10
D = 1 π10 + π11 π01 + π11

see that LM is equivalent to the nonexistence of defiers (i.e. π10 = 0). Let BY be a collection of
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Borel sets generated from Y , then LM and LI necessarily imply that for an arbitrary A ∈ BY ,

P(Y ∈ A, D = 1|Z = 0) = P(Y1 ∈ A, D = 1|Z = 0) = P(Y1 ∈ A, D0 = 1|Z = 0)

= P(Y1 ∈ A, D0 = 1) ≤ P(Y1 ∈ A, D1 = 1) = P(Y ∈ A, D = 1|Z = 1), (1)

where the third and fourth equalities hold by LI, and the first inequality holds by LM. Similarly, we

have

P(Y ∈ A, D = 0|Z = 1) ≤ P(Y ∈ A, D = 0|Z = 0). (2)

Therefore, as soon as there exists A ∈ BY such that either inequality (1) or (2) is violated, we

must reject the joint assumptions of LM + LI assumptions. Note inequalities (1) and (2) are not

sufficient for the joint assumptions to hold in the sense that there could exist a potential outcome

model in which both (1) and (2) hold but LM+LI is violated.1

Inequalities (1) and (2) need not be the only set of testable implications of LM and LI. Theorem 1

shows, however, that they are the sharp characterization of LI and LM in the sense that, whenever

inequalities (1) and (2) hold, there always exists another potential outcome model compatible with

the data in which LI and LM hold.

Theorem 1 (Sharp characterization of the LATE assumptions). Let Y, D1, D0, Y1, Y0, Z define a

potential outcome model Y = Y1D + Y0(1− D). (i) If LM and LI hold, then (1) and (2) hold. (ii)

If (1) and (2) hold, there exists a joint distribution of (D̃1, D̃0, Ỹ1, Ỹ0, Z) such that LM and LI hold,

and (Ỹ, D̃, Z) has the same distribution as (Y, D, Z).

Theorem 1 is essentially equivalent to, but presented in a different way from, Kitagawa (2015,

Proposition 1.1) and the proof is therefore omitted. The sharpness result shows that inequalities

(1) and (2) are the most informative observable restrictions for assessing the validity of the joint

LI and LM assumptions. However, whenever the cardinality of the outcome space is large, the

number of inequalities to visit is very high because the number of inequalities to be checked is

equal to the number of subsets of the set of observable outcomes. When Y is continuous, there are

infinite many elements in BY . In practice, the performance of a test also depends on the subsets

we search through, especially when many of the inequalities are redundant. One solution is to

1Chaisemartin (2013) refers this as “weak more compliers than defiers”.
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follow the idea discussed in Galichon and Henry (2006, 2011) and Chesher, Rosen, and Smolinski

(2013) to find a low (or the lowest) cardinality collection of sets that are sufficient to characterize

all the restrictions imposed by inequalities (1) and (2); to the best of our knowledge, the issue of

finding the smallest collection of sets in a generic setup remains open. To deal with this important

issue, we propose to use an alternative representation. Note that for every A ∈ BY , there is

P(Y ∈ A, D = 1|Z = 1)P(Z = 1) = P(D = 1, Z = 1, Y ∈ A). Let 1Y∈· be the indictor

function. Inequalities (1) and (2) can be written as

E[1Y∈AD(1− Z)]P(Z = 1) ≤ E[1Y∈ADZ]P(Z = 0), (3)

and

E[1Y∈A(1− D)Z]P(Z = 0) ≤ E[1Y∈A(1− D)(1− Z)]P(Z = 1). (4)

Since A ∈ BY , the above inequalities hold with a class of cubes too. We can apply Andrews and Shi

(2013, Lemma 3) and further write them as ∀y ∈ Y θ(y, 1) ≡ E[c1D(1− Z)− c0DZ|Y = y] ≤ 0

θ(y, 0) ≡ E[c0(1− D)Z− c1(1− D)(1− Z)|Y = y] ≤ 0
(5)

where ck = P(Z = k) for k = 0, 1. Let V = Y × {0, 1}, and then the null hypothesis can be

formulated as

H0 : θ0 ≡ sup
v∈V

θ(v) ≤ 0, H1 : θ0 > 0. (6)

The advantage of considering the hypothesis stated in Equation (6) is to facilitate implementation.

With our formulation, researchers do not have to find the lowest cardinality collection of sets and can

simply apply the existing inference methods in CLR as explained in the following section.

4. TESTING PROCEDURES

In this section, we formalize a testing procedure for the hypotheses specified in Equation (6), that

is,

H0 : θ0 ≡ sup
v∈V

θ(v) ≤ 0, H1 : θ0 > 0,

where v ∈ Y × {0, 1}. We propose to use the intersection bounds framework of CLR, which

provides an inference procedure for bounds defined by supremum (or infimum) of a nonparametric
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function. To be more specific, let 0 < α < 1
2 be the pre-specified significance level, and we reject

the H0 if θ̂α > 0, where

θ̂α ≡ sup
v∈V
{θ̂(v)− s(v)kα},

and θ̂(·) is the local linear estimator for θ(·). s(·) and kα are estimates for “point-wise standard

errors” and “critical value,” respectively. For the purpose of implementation, one does not have to

calculate θ̂, s, and kα explicitly; therefore, we leave their expressions in Appendix A.1 for the sake of

exposition. The testing procedure can be easily implemented in Stata as follows:

Implementation:

(1) Estimate c1 and c0 by ĉ1 = 1
n ∑n

i=1 Zi and ĉ0 = 1− ĉ1, respectively.

(2) Let L̂1
i = ĉ1Di(1− Zi)− ĉ0DiZi and L̂0

i = ĉ0(1− Di)Zi − ĉ1(1− Di)(1− Zi).

(3) Implement the CLRtest command with two conditional moment inequalities. Specify L̂1
i and

L̂0
i as the dependent variables for each conditional inequality, respectively. Specify Yi as the

conditioning variable for both inequalities. See Chernozhukov, Kim, Lee, and Rosen (2015)

for the full set of options. �

We make the following assumptions:

Assumption 3. {(Di, Yi, Zi)}n
i=1 are i.i.d observations.

Assumption 4. Y is convex and compact. For each (d, z), the conditional density of Y given

(D, Z) = (d, z) is bounded away from zero and twice continuously differentiable.

We assume the continuity of Y in Assumption 4 only for the purpose of exposition. If Y has

finite discrete support, the conditional inequalities in (10) can be represented by a finite number of

unconditional expectations. In this scenario, the test is “parametric” and can still be implemented

within the framework.2 The following Assumptions 5 and 6 are conditions on the choice of kernel

and bandwidth, respectively.

2In the discrete outcome case we can show that {{y1}, {y2}, · · · , {yJ}} is the lowest cardinality collection of sets that
are sufficient to characterize all the restrictions imposed on the model. Therefore, without loss of generality, the restriction
(1) can be written as

θ(y, 1) ≡
J

∑
j=1

1[y = yj]β1j ≤ 0,

where β1j = P(Z = 1)E[D(1− Z)|Y = yj]− P(Z = 0)E[DZ|Y = yj]. θ(y, 0) and β0j can be similarly defined
for restriction (2). Both β1j and β0j can be consistently estimated at root-n rate, has limiting normal distribution with
estimable covariance matrix. To implement, one can then follow the discussions in CLR (page 709).
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Assumption 5. K(·) has support on [−1, 1], is symmetric and twice differentiable, and satisfies∫
K(u)du = 1.

Assumption 6. nh4 → ∞, and nh5 → 0 at polynomial rates in n.

Proposition 1 is an application of CLR (Theorem 6), which verifies the consistency and validity of

the proposed testing procedure.

Proposition 1. Suppose that Assumptions 3 to 6 are satisfied, then (1) under H0, P(θ̂α > 0) ≤

α + o(1); (2) if θ(y, k) = 0 for all y ∈ Y and k ∈ {0, 1} , then P(θ̂α > 0) → α; and (3) if

supy∈Ya,k∈{0,1} θ(y, k) > µn
√

log n/nh for any µn → ∞, then P(θ̂α > 0)→ 1.

Proof. See Appendix A.1

Several observations were formed. First, our test is a type of sup-tests based on conditional moment

inequalities specified in expression (10) and hence does not require researchers to find the lowest

collection of sets. Our test is consistent against any fixed alternatives and local alternatives subject to

the nonparametric estimation rate of θ(·, ·). Second, regarding our test, continuous covariates can be

easily incorporated as additional conditioning variables. Lastly, because of the availability of the

STATA package, our test can be easily applied by empirical researchers to assess the validity of the

LATE assumptions.

5. APPLICATIONS

In this section we apply our test to three well-known instruments used in the literature: the “same

sex” instrument in Angrist and Evans (1998), the “draft eligibility” instrument in Angrist (1991), and

the “college proximity” instrument in Card (1993).

5.1. The “same-sex” instrument. Our first application is about the “same-sex” instrument used by

Angrist and Evans (1998), who studied the relationship between fertility and labor income. This

study was complicated by the endogeneity of the fertility. Angrist and Evans (1998) proposed to

use the sibling-sex composition to construct the IV estimator of the effect of childbearing on the

labor supply. In this application, D = 1 denotes that the household had a third child and Z = 1

denotes that the first two children are of the same sex. The direction of monotonicity under testing is

D1 ≥ D0.
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We consider a sample from the 1990 Census Public Micro Samples (PUMS). The data contains

information on age, gender, race, education, labor income, and the number of children. We consider

women with at least two children, between 21 and 50 years old, and with positive wage.3 This gives

us a sample of of 403, 011 individuals. The outcome variable of interest is log wage. Summary

statistics for the sample to which we apply the test are given in Table 3.

TABLE 3. Summary Statistics

Total D=1 Z=1
Observations 403,011 119,221 202,232

Age 33.805 (5.420) 34.026 (4.968) 33.820 (5.423)
Years of Schooling 11.119 (2.339) 10.760 (2.493) 11.119 (2.332)
Race (Non White) 0.177 (0.381) 0.220 (0.415) 0.179 (0.382)
Having the third child (D=1) 0.296 (0.456) 1.000 (0.000) 0.325 (0.468)
First two same sex (Z=1) 0.502 (0.499) 0.553 (0.497) 1.000 (0.000)
Log Wage 9.014(1.227) 8.803 (1.278) 9.010 (1.229)

Average and standard deviation (in the parentheses)

TABLE 4. Subgroups

21-28 29-35 36-42 43-50
White, <HS 9,871 13,986 4,788 751
White, HS 36,386 89,449 55,279 6,749
White, >HS 7,234 43,376 52,793 10,906
Non-white, <HS 4,718 7,283 3,195 597
Non-white, HS 10,137 18,468 8,771 1,135
Non-white, >HS 1,395 6,724 7,223 1,797

We divided 403, 011 observations into 24 subgroups according to race (white or non-white),

education (lower than high school, high school or higher than high school) and age (21-28, 29-35,

36-42, 43-50) and conducted tests on each of these groups. The subgroups sizes are reported in

Table 4. Due to the memory constraint of our computer, we implemented our test on randomly drawn

subsamples of size 25, 000 for subgroups whose sizes are larger than this number.4

3There are 35.06% of observations with missing wage. We also conducted a test on the missing wage subsample. The null
hypothesis is not rejected either.
4As a robustness check, we repeated the test over different subsamples of size 25, 000 for each of these large subgroups
and obtained the same conclusion.
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Throughout this section, we use the default choices of bandwidth and kernel functions rec-

ommended in CLR and Chernozhukov, Kim, Lee, and Rosen (2015), that is, K(u) = 15
16 (1 −

u2)21{|u| ≤ 1} and hROT × ŝ× n
1
5 × n−

2
7 , where hROT is the rule of thumb choice given by Fan

and Gijbels (1996). To avoid the boundary issue, for each subgroup, we compute the maximum in

the test statistics over the interval [Q2.5%, Q97.5%], where Qα is the α-quantile of the subgroup under

testing.

Since we conducted tests on 24 subpopulations s ∈ {1, 2, 3, · · · , 24}, we can view H0 =

H(1)
0 ∩ H(2)

0 ∩ · · · ∩ H(24)
0 , where H0 is defined as “Inequality 10 holds for every subpopulation”

and H(s)
0 is defined as “Inequality 10 holds for the subpopulation s”. Rejection of any of H(s)

0 implies

rejection of H0. Since we are checking a large number of subpopulations, it is desirable to ensure

that the Familywise Error Rate (FWER) is controlled at targeted levels. We consequently adapt the

multiple testing procedure of Holm (1979), which is a suitable framework to consider (see also an

empirical implementation in Bhattacharya, Shaikh, and Vytlacil, 2012). The testing results show

that the smallest p-values among all 24 groups is greater than 10%.5 Hence we are able to conclude

that the multiple testing procedures rejects no null hypothesis at 10% level.6 Because sex mix is

virtually randomly assigned, this result can be interpreted as evidence of the relative preference for

the mix-sibling sex over the same sex within our population of interest.

We also conducted the test using the “parametric regression” method,7 using the three demographic

variables as regressors. The null hypothesis is not rejected at all three significance levels (see Table 5),

which is consistent with the results obtained from the local linear methods.

TABLE 5. Application results: Parametric (clrtest)

AE1998 same sex Angrist1991 lottery Card1993 proximity
10% 5% 1% 10% 5% 1% 10% 5% 1%
NR NR NR R R R R R R

“R” stands for rejection and “NR” stands for no rejection.

5The Stata command does not report p-value for the “clrtest”, but one can always set difference significance levels and find
the marginal one which gives rejection.
6In the sample, there are 35.06% of observations with missing wage. We excluded those observations. We also conducted
a pointwise test conditional on the missing wage subsample. The null hypothesis is not rejected either.
7In CLR, “parametric regression” means that θ(y, k) is a known function (up to finite dimensional parameters) of y for
each k. In the Stata package, “parametric regression” specifically means θ(y, k) is linear in y for each k. It is worth noting
that the Stata “parametric regression” option has the advantage to allow for multiple conditioning variables.
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5.2. The “draft eligibility” instrument. Our second empirical application is about the “draft

eligibility” instrument in Angrist (1991), who studied the effect of veteran status on civilian earnings.

Endogeneity arises since enrollment for military service possibly involves self-selection. To deal with

the issue, Angrist (1991) constructed the binary indicator of draft eligibility, which is theoretically

randomly assigned based on one’s birthdate through the draft lotteries. In this application, D =

1 denotes the veteran status and Z = 1 denotes the individual was drafted. The direction of

monotonicity under testing is D1 ≥ D0.

TABLE 6. Summary Statistics of SIPP Data from Angrist (1991)

Total Draft Eligible (Z=1) Veteran (D=1)
Observations 3027 1379 994

Age 34.063 (2.804) 34.685 (2.607) 35.064 (2.494)
Veteran (D=1) 0.328 (0.470) 0.403 (0.491) 1.000 (0.000)
Draft Eligible (Z=1) 0.456 (0.498) 1.000 (0.000) 0.560 (0.497)
Years of Schooling 13.522 (2.864) 13.578 (2.834) 13.443 (2.260)
Race (Non White) 0.118 (0.322) 0.116 (0.320) 0.080 (0.272)
log (Weekly Wage) 2.217 (0.532) 2.247 (0.534) 2.248 (0.498)

Average and standard deviation (in the parentheses)

We used a sample of 3,071 individuals from the 1984 Survey of Income and Program Participation

(SIPP)8. The sample was divided into 6 different groups according to race (white or non-white) and

their educations levels (lower than HS, HS, or higher than HS), where HS stands for high school

graduation. We then performed our test using the local method for each group. Again, we compute

the maximum in the test statistics over the interval [Q2.5%, Q97.5%].

TABLE 7. Lottery local method (clrtest)

W,<HS W,=HS W,>HS NW,<HS NW,=HS NW,>HS
Subgroup ID. 1 2 3 4 5 6
Obs. 317 865 1478 56 129 171
10% NR NR NR NR R NR
5% NR NR NR NR R NR
1% NR NR NR NR R NR

“R” stands for rejection and “NR” stands for no rejection.

8The data is available from Angrist’s website. 3,071 is the number of individuals after removing all entries with missing
information.
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Testing results for individual groups reported in Table 7. Note that the null hypothesis (H(5)
0 ) is

rejected at subgroup 5 of non-white person with high school education at the 10% and 5% levels,

respectively, but not all three levels. However, as shown in Figure 1, it is likely due to the boundary

issue and/or small subgroup size. Therefore, we do not consider this as strong evidence against H(5)
0 .

Following the similar arguments as in the “same sex” application, we can indirectly verify that we

reject no null hypothesizes with FWER controlled at 10%.9 Kitagawa (2015) obtained the same

result without conditioning on subgroups.

5.3. The “college proximity” instrument. Card (1993) studied the causal effect of schooling on

earnings and employed college proximity as the exogenous source of variation in eduction outcome.

In this application, Z = 1 denotes there is a 4-year college in the local labor market where the

individual was born, and D = 1 denotes the individual has at least 16 years of education. The

outcome variable is the log wage in 1976. The monotonicity under testing is D1 ≥ D0.

The data from the National Longitudinal Survey of Young Men (NLSYM) began in 1966 with

men aged 14-24 and continued with a follow-up survey until 1981. Some summary statistics are

9The testing procedure with parametric regression method, however, rejects the null hypothesis at all three levels (see
Table 5).
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TABLE 8. Summary Statistics of NLSYM Sample

Total D = 1 Z = 1
Observations 3005 2048 816

Lived in metro area in 1966 0.651 (0.476) 0.693 (0.461) 0.801(0.399)
Lived in southern states in 1966 0.414 (0.492) 0.313 (0.464) 0.329 (0.470)
Black 0.232 (0.422) 0.099 (0.299) 0.209 (0.407)
Years of Schooling in 1976 13.26 (2.675) 16.692 (0.849) 13.532 (2.577)
D (eduction ≥ 16) 0.271 (0.444) 1.000 (0.000) 0.293 (0.455)
Z (college proximity) 0.681 (0.465) 0.736 (0.015) 1.000 (0.000)
Y (log wage in 1976) 6.261 (0.444) 6.428 (0.433) 6.311 (0.440)

Average and standard deviation (in the parenthesis)

reported in Table 8.10 We considered three binary control variables: lived in southern states in 1966,

lived in metro area in 1966, and being black. Table 9 reports the corresponding subgroup sizes.

TABLE 9. Subgroup sizes of Card (1993)

Non-Black (NB) Black (B)
Non-Southern (NS) & Non-Metro (NM) 429 5
Non-Southern (NS) & Metro (M) 1191 138
Southern (S) & Non-Metro (NM) 307 314
Southern (S) & Metro (M) 380 246

Southern (south66): lived in southern states in 1966. Metro (smsa66r): lived in urban area in 1966.

TABLE 10. College proximity, local method (clrtest)

NB,NS,NM NB,NS,M NB,S,NM NB,S,M B,S,NM B,S,M All
Subgroup ID 1 2 3 4 5 6
Obs. 429 1191 307 380 314 246 3005
5% NR NR NR R NR NR R
1% NR NR NR R NR NR R
0.5% NR NR NR R NR NR R

“R” stands for rejection and “NR” stands for no rejection.

We conduct the test on six subgroups. We exclude the subgroup NS/NM/B because of small

sample size; we also exclude subgroup NS/M/B because the high frequency of Z = 1 (92%). Note

that the null hypothesis H(4)
0 is rejected in subgroup 4 of Non-black men who lived in the metro

area of the southern states as well as for the whole sample at 0.5% level. No rejection happens with

10We dropped 608 observations with missing wages.
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FIGURE 2. θ̂(·, 0) and θ̂(·, 0)− s(·, 0)× ĉV̂,0.95

other subgroups even at 10% level. The results in Table 10 imply that the multiple testing procedure

of Holm (1979) would conclude that H0 is rejected with the FWER controlled by no more than

0.5%× 6 = 3%. The testing procedure with parametric methods gives the same results.

Now it will be interesting to know on which subsets of Y the null hypothesis is violated. Figure 2

plots the θ̂(·, 0) and θ̂(·, 0)− s(·, 0)× ĉV̂,0.95 for the subgroup 4 and the whole sample, respectively.

It is quite fascinating to note that θ0 is in general increasing in Y, and the rejection takes place on

higher income subpopulations, e.g. for subpopulations whose observed log wage is around 7. Note

the density of log wage is reasonably high at this point, and therefore the rejection is unlikely due to

the boundary issue of the local linear estimation.

To summarize, our result suggests that the Wald estimator in such a case could be “sign reversal”.

Thereby, although the “college proximity” seems to be a good instrument, researchers must be aware

that this instrument would not be a good one to use when the treatment effect is heterogenous.
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6. EXTENSIONS

In this section we discuss three different ways of incorporating covariates X into the testing

procedure. As we will demonstrate below, all three cases can be implemented with the same test

procedure proposed. Let X be the support of X. We then make the following assumptions.

Assumption 7. (Y1, Y0, D0, D1) ⊥ Z|X = x and P(D = 1|Z = 0, X = x) 6= P(D = 1|Z =

1, X = x) for all x ∈ X .

Assumption 7 is common in the literature (see e.g. Abadie, 2003), which requires the independence

assumption holds conditional on X. Sometimes, the independence assumption between potential

outcomes and potential treatments may hold for some observed subgroups and not for others. In

such a case, researchers would be curious in knowing for each observed group that the independence

assumption holds. The following assumption could be used to model this case.

Assumption 8. (Y1, Y0, D0, D1) ⊥ Z|X = x∗ and P(D = 1|Z = 0, X = x∗) 6= P(D = 1|Z =

1, X = x∗).

In some contexts, the instrument can be strongly exogenous in the following sense.

Assumption 9. (Y1, Y0, D0, D1, X) ⊥ Z and P(D = 1|Z = 0) 6= P(D = 1|Z = 1).

Our test can be adapt to address all three cases, as summarized by the following Corollary.

Corollary 1. Suppose that Assumptions 2 and 7 hold, then for all (x, y) ∈ X ×Y , θ(1)(x, y, 1) ≡ E[c1(x)D(1− Z)− c0(x)DZ|X = x, Y = y] ≤ 0

θ(1)(x, y, 0) ≡ E[c0(x)(1− D)Z− c1(x)(1− D)(1− Z)|X = x, Y = y] ≤ 0
, (7)

where cj(x) = P(Z = j|X = x).

If Assumptions 2 and 8 hold, then for all y ∈ Y , θ(2)(y, 1) ≡ E[c1(x∗)D(1− Z)− c0(x∗)DZ|X = x∗, Y = y] ≤ 0

θ(2)(y, 0) ≡ E[c0(x∗)1(1− D)Z− c1(x∗)(1− D)(1− Z)|X = x∗, Y = y] ≤ 0
. (8)
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Lastly, if Assumptions 2 and 9 hold, then for all (x, y) ∈ X ×Y , θ(3)(x, y, 1) ≡ E[c1D(1− Z)− c0DZ|X = x, Y = y] ≤ 0

θ(3)(x, y, 0) ≡ E[c01(1− D)Z− c1(1− D)(1− Z)|X = x, Y = y] ≤ 0
. (9)

Proof. See Appendix A.2.

The key difference between (7) and (9) is whether the pre-estimated parameter cj depends on

covariates X. The null hypothesis H(k)
0 regarding bounding functions θ(k) be defined as

H(k)
0 : θ

(k)
0 ≡ sup

(x,y,j)∈X×Y×{0,1}
θ(k)(x, y, j) ≤ 0.

for k = 1, 3, respectively, and

H(2)
0 : θ

(2)
0 ≡ sup

(y,j)∈Y×{0,1}
θ(3)(y, j) ≤ 0.

In all three cases, our method is applicable because the estimation rate for cj(·) or cj(x∗) is faster

than the rate of the bounding functions.

7. CONCLUSION

In this paper we provide a reformulation of the testable implications of the key identifying

assumptions–LI and LM–of the local average treatment effect, which was first tested by Kitagawa

(2008, 2015), with its characterization tracing back to Balke and Pearl (1997) and Heckman and

Vytlacil (2005). We show that the testable implications can be written as a set of conditional moment

inequality restrictions, which can be tested in the intersection bounds framework of Chernozhukov,

Lee, and Rosen (2013) and implemented using the Stata package provided by Chernozhukov, Kim,

Lee, and Rosen (2015). We apply the reformulated testing procedure to the “same sex” instrument,

the “draft eligibility” instrument, and the “college proximity” instrument, respectively. We found

that the joint assumption of LI and LM is rejected for “college proximity” instrument over some

subgroups.
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APPENDIX A. PROOFS

A.1. Proof of Proposition 1. First, note that ĉ0 does not depend on y and supy∈Y |m̃(y)| < ∞

with probability one, and then it follows that

sup
y∈Y
|m̂(y)− m̃(y)| = Op

(
1√
n

)
,

where c0 = P(Z = 0), m(y) = E[c0DZ|Y = y], m̃(y) be the infeasible local linear estimator,

which takes c0 as known, and m̂(y) be the feasible local linear estimator of m(y) in which c0 is

replaced by its frequency count ĉ0.

Given the above argument, it is sufficient to treat c0 and c1 as if they were known. Recall that θ(y, 1) ≡ E[c1D(1− Z)− c0DZ|Y = y] ≤ 0

θ(y, 0) ≡ E[c0(1− D)Z− c1(1− D)(1− Z)|Y = y] ≤ 0
(10)

Let L1
i = c1Di(1− Zi)− c0DiZi and L0

i = c0(1− Di)Zi − c1(1− Di)(1− Zi). Let U(Wi, 1) =

L1
i − θ(Yi, 1), U(Wi, 0) = L0

i − θ(Yi, 0), Û(Wi, 1) = L1
i − θ̂(Yi, 1) and Û(Wi, 0) = L0

i − θ̂(Yi, 0).

Define function gv(U, Y) as

g(y,k)(U, Y) =
U(W, k)√

h f (y)
K
(

Y− y
h

)
.

ĝv is defined similarly as gv with U and f being replaced by Û and f̂ , respectively.
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We verify the Condition NK of CLR and then apply CLR-Theorem 6. To do so, we first verify

that Conditions (i)-(vi) in CLR Appendix F holds in our context, which implies Condition NK. We

recite these conditions in our notation below.

Condition (i) θ(y, 1) and θ(y, 0) are p + 1 times continuously differentiable with respect to y ∈ Y , where

Y is convex.

Verify: Y being convex is stated in Assumption 4. In our context p = 1, therefore we need to

verify that θ(y, 1) is twice continuously differentiable. Recall that θ(y, 1) = E[L1|Y = y]

and L1 is discrete. Let s be a generic realization of L1, then θ(y, 1) = ∑s sP(L1 = s|Y = y).

So it is sufficient to verify P(L1 = s|Y = y) is twice continuously differentiable with respect

to y.

P(L1 = s|Y = y) = lim
ε→0

P(L1 = s, y− ε ≤ Y ≤ y + ε)

P(y− ε ≤ Y ≤ y + ε)

= lim
ε→0

P(y− ε ≤ Y ≤ y + ε|L1 = s)P(L1 = s)
P(y− ε ≤ Y ≤ y + ε)

=
f (y|L1 = s)P(L1 = s)

f (y)
,

which is twice continuously differentiable by Assumption 4.

Condition (ii) The probability density function f of Yi is bounded above and below from zero with continu-

ous derivative on Y .

Verify: this condition holds by Assumption 4.

Condition (iii) U(Wi, 1) and U(Wi, 0) are bounded random variables.

Verify: U(Wi, k) is bounded because Y, D, and Z are bounded.

Condition (iv) For each k ∈ {0, 1}, the conditional on Yi density of U(Wi, k) exists and is uniformly

bounded from above and below or, more generally, Condition R in Appendix G (of CLR)

holds.

Verify: The (unconditional) density of U(W, k) exists (with respect to Lebesgue measure).

This is because we can write

P(U(W, 1) ≤ u) = P(L1 − θ(Y, 1) ≤ u) = ∑
s

P(θ(Y, 1) ≥ s − u|L1 = s)P(L1 = s).

Since the density of Y given L1 exists and θ(Y, 1) is continuously differentiable, we know

the conditional density fθ(1) of θ(Y, 1) given L1 exists as long as θ(·, 1) is a non-trivial
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measurable function. Take derivative with respect to u yields the marginal density of

U(W, 1)

fU(W,1)(u) = ∑
s

fθ(1)(s− u)P(L1 = s).

Also note that the conditional distribution of U(W, 1) given Y = y is discrete because L1

is discrete and therefore the conditional (iv) trivially holds for the conditional density of

U(W, k) given Y = y (with respect to counting measure). Indeed, our case is analogous to

CLR-Example B in that the random variable to be taken expectation is discrete.

Condition (v) K(·) has support on [−1, 1], is twice continuously differentiable,
∫

uK(u)du = 0, and∫
K(u)du = 1.

Verify: condition (v) is the requirement on the choice of kernel function and is satisfied by

many popular kernels, e.g. Epanechnikov Kernel. It holds by Assumption 5.

Condition (vi) h→ 0, nhd+|J |+1 → ∞, nhd+2(p+2) → 0, and
√

n−1h−2d → 0 at polynomial rates in n.

Verify: note in our case |J | = 2, d = 1 and p = 1, therefore condition (vi) holds by

Assumption 6.

CLR show that CLR-Appendix Condition (i)-(vi) imply Condition NK(i). Condition NK(ii) holds

for the standard nonparametric estimation methods. Then we conclude that Part (1) and (3) of

Proposition 1 hold by CLR-Theorem 6, (a)-(i) and (iii), respectively; part (2) holds by CLR-Theorem

6 (b)-(i,iii) because the contact set V0 = V , therefore, CLR-Condition V and Equation 4.6 hold with

ρn = 1, cn = ∞.

A.2. Proof of Corollary 1. We first verify Equation (7). Under Assumption 7, the first restriction

(1) becomes

P(Y ∈ A, D = 1|Z = 0, X = x) ≤ P(Y ∈ A, D = 1|Z = 1, X = x), ∀x ∈ X ,

which is equivalent to

E[1Y∈A{D(1− Z)c0(x)− DZc1(x)}|X = x] ≤ 0, ∀x ∈ X .

The results hold since the above inequality holds for all A ∈ BY , and consequently for the class of

cubes. To verify Equation (9), simply note that under Assumption 9, we have for all B ∈ BY×X ,
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there is

P((Y, X) ∈ B, D = 1|Z = 0) ≤ P((Y, X) ∈ B, D = 1|Z = 1).

The result follows.

22


	1. Introduction
	2. Analytical Framework
	3. Testable implications of the LATE assumptions
	4. Testing Procedures
	5. Applications 
	5.1. The ``same-sex'' instrument
	5.2. The ``draft eligibility'' instrument
	5.3. The ``college proximity'' instrument

	6. Extensions
	7. Conclusion
	References
	Appendix A. Proofs
	A.1. Proof of CLRlimit
	A.2. Proof of withx


