Two-way Exclusion Restrictions in Models with Heterogeneous Treatment Effects: Supplementary Materials

Shenglong Liu ${ }^{\diamond}$ Ismael Mourifié ${ }^{\dagger}$ Yuanyuan Wan ${ }^{\ddagger}$

This is the supplementary material for Liu, Mourifie, and Wan (2019). In Section 1. we state the assumptions made in the main text for the convenience of readers. In Section 2 , we provide asymptotic results of our estimation when Z is continuous. We discuss in details why "mother's education" is not a valid IV for our data set in Section 3. Additional empirical and simulation results are included in Section 4 and Section 5 respectively.

1. Assumptions in the Main Text

Assumption 1 (Exclusion restrictions). (i) The variable S is excluded from the observed treatment, i.e. $D=\vartheta(X, Z, \varsigma)$ for some unknown measurable functions ϑ and random vector ς. (ii) The variable Z does not enter $f_{d}(S, X)$ for each $d \in \mathscr{D} \equiv\{0,1, \cdots, T\}$.

Assumption 2 (Independence). $(U, \varsigma) \perp S \mid X, Z$, where $U=\left(U_{0}, U_{1}, \cdots, U_{T}\right)^{\prime}$.
Assumption 3 (Differentiability). S is continuous. Let \mathscr{S}_{x} be the support of S conditional on $X=x$. Then for each $x \in \mathscr{X}, f_{d}(\cdot, x)$ for $d=0,1, \cdots, T$ is continuously differentiable in the interior of \mathscr{S}_{x}.

Assumption 4. $\left\{\left(Y_{i}, D_{i}, X_{i}, S_{i}, Z_{i}\right)\right\}_{i=1}^{n}$ are i.i.d. observations.
Assumption 5. The support of the conditional distribution of $Z \mid(S, X)=(s, x)$ does not depend on (s, x). Furthermore, $\mathbb{V}\left[\boldsymbol{\pi}_{0}(x, Z)\right]$ is positive definite.

Assumption 6. The bandwidth h is chosen such that $h \propto n^{-\frac{1}{6+\left(d_{s}+d_{x}\right)-\delta}}$ for some $0<\delta<$ 1.

Assumption 7. (i) The conditional density of (S, X) given $Z=z$ is bounded away from 0 and has bounded first-order derivative over its compact support for each $z \in \mathscr{Z}$. (ii) $\boldsymbol{\pi}(\cdot)$ and $\mathbb{E}[Y \mid W=\cdot]$ are $q+1$ times continuously differentiable for some $q \geq 2$. (iii) There exists some $\nu>2$ such that $\mathbb{E}\|U\|^{\nu}$ is finite.

Assumption 8. The symmetric kernel $K(\cdot)$ has support $[-1,1]$, integrates to one, and is continuously differentiable.

2. Estimation When Z is Continuous

The first stage estimation is similar to the discrete case. Let $d_{m}=d_{x}+d_{z}+d_{s}$ and $d_{\pi}=d_{x}+d_{z}$: hence d_{m} and d_{π} are the dimensions of the arguments in m and π, respectively. Define:

$$
\hat{\boldsymbol{\alpha}}^{m}=\operatorname{argmin}_{\boldsymbol{\alpha}} \frac{1}{2 n} \sum_{i=1}^{n} \boldsymbol{K}_{s}\left(\frac{S_{i}-s}{h}\right) \boldsymbol{K}_{x}\left(\frac{X_{i}-x}{h}\right) \boldsymbol{K}_{z}\left(\frac{Z_{i}-z}{h}\right) \times\left(Y_{i}-\mathcal{P}\left(W_{i}-w, \boldsymbol{\alpha}, p\right)\right)^{2},
$$

and for $d=1,2, \cdots, T$,
$\hat{\boldsymbol{\alpha}}^{\pi_{d}}=\operatorname{argmin}_{\boldsymbol{\alpha}} \frac{1}{2 n} \sum_{i=1}^{n} \boldsymbol{K}_{x}\left(\frac{X_{i}-x}{h}\right) \boldsymbol{K}_{z}\left(\frac{Z_{i}-z}{h}\right) \times\left(1\left\{D_{i}=d\right\}-\mathcal{P}\left(\left(X_{i}-x, Z_{i}-z\right), \boldsymbol{\alpha}, p\right)\right)^{2}$.
Then analogously to the discrete chase, we define our estimator $\hat{m}(s, x, z)$ to be the estimated coefficient corresponding to the linear term $\left(S_{i}-s\right)$ in the first regression and $\hat{\pi}_{d}(x, z)$ to be the coefficient associated with the constant term in the second regression.

We state the assumptions for the continuous case as below. These assumptions strengthen those for the discrete case and are needed to derive the uniform Bahadur representation (Kong, Linton, and Xia, 2010) of the first stage estimators \hat{m} and $\hat{\boldsymbol{\pi}}$. With the Bahadur representation, we can approximate the estimator $\hat{\beta}(s, x)$ by a U-statistics, from which we derive its limiting distribution.
Assumption 9. The bandwidths h satisfies (i) $h \rightarrow 0, n h^{d_{m}+2} \rightarrow \infty$; (ii) $n h^{d_{\pi}+2(p+1)} \rightarrow 0$; (iii) $n h^{d_{\pi}+d_{z}} \rightarrow \infty$ in polynomial rates.

Assumption 10. (i) The joint density g_{w} of W is bounded away from 0 and has bounded first order derivative over its bounded support \mathscr{W}. (ii) The conditional density $g_{w \mid u}$ of W given $U=u$ exists and is bounded for any u in its bounded support \mathscr{U}. (iii) $\mathbb{E}[Y \mid W=\cdot]$ and $\operatorname{Pr}(D=d \mid X=x, Z=z)$, for each $d=0,1, \cdots, T$, are $q+2$ times continuously differentiable for some $q \geq p$.

Assumption 9 (i) and (ii) are the bandwidth conditions to apply the uniform Bahadur representation (Kong, Linton, and Xia, 2010) to the first stage estimators for m and $\boldsymbol{\pi}$, respectively. Assumption 9 (ii) also plays a role of under-smoothing and eliminates the first stage bias. Assumption $9 \ddagger$ (iii) ensures the cross-product remainder terms of the Bahadur representations of \hat{m} and $\hat{\boldsymbol{\pi}}$ are negligible for the second stage estimation. It is implied by Assumption 9 (i) and (ii) when $d_{z} \leq d_{s}+2$. The intuition of Assumption 9.(iii) is as following: the rate of convergence of the cross-product of the remainder terms from the first stage depends on the dimension of Z and X and the rate of the second stage estimator depends on S and X. Therefore, for the cross-product of the remainder terms to be negligible, the dimension of Z can not be too high compared with S. In the case where all variables are univariate, continuous and the degree of polynomial is chosen to be $p=2$, the rate condition is satisfied if we choose $h=n^{-r}$ for some $r \in(1 / 8,1 / 5)$. Note that using $p=2$ to estimate the first-order derivative of a function with three arguments, the optimal rate is $n^{-1 / 9}$. Hence, the required choice of $r \in(1 / 8,1 / 5)$ is effectively under-smoothing. Assumption 10 requires the model admits enough smoothness, depending on the dimension of the arguments of the unknown functions.

Proposition 1. Let (s, x) be an interior point of the joint support of (S, X). Suppose that Assumptions 1 to 5 and 8 to 10 are satisfied, then $\hat{\beta}(s, x) \xrightarrow{p} \beta(s, x)$ and furthermore,

$$
\sqrt{n h^{d_{x}+d_{s}+2}}\{\hat{\beta}(s, x)-\beta(s, x)\} \xrightarrow{d} N\left(0, V^{-1} \Omega_{m} V^{-1}\right),
$$

where $V=\mathbb{E}\left[\boldsymbol{\pi}\left(x, Z_{i}\right) \boldsymbol{\pi}^{\prime}\left(x, Z_{i}\right)\right]$ and Ω_{m} is defined in Equation A.5.

Proof. Let $\boldsymbol{K}_{w}=\boldsymbol{K}_{s} \times \boldsymbol{K}_{x} \times \boldsymbol{K}_{z}$ and also write $\boldsymbol{K}_{t, h}(\cdot)$ for $\boldsymbol{K}_{t}(\cdot / h)$, $t \in\{s, x, z\}$. By Lemma 1 (notation defined therein), we have uniformly in w,

$$
\begin{align*}
& \hat{m}(w)=m(w) \\
& -\underbrace{\frac{1}{n h^{d_{m}+1}} \Sigma_{n, m}^{-(s,)} H_{n}^{-1} \sum_{i=1}^{n} \boldsymbol{K}_{s, h}\left(S_{i}-s\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{z, h}\left(Z_{i}-z\right) \epsilon_{i}^{m} \mu^{m}\left(W_{i}-w\right)}_{\eta_{m, n}(w)} \\
& +\underbrace{O_{p}\left(h^{p}\right)}_{r_{m, 1}}+\underbrace{O_{p}\left(\frac{\log n}{n h^{d_{m}+1}}\right)}_{r_{m, 2}} \tag{1}
\end{align*}
$$

To save notation we suppress the subscript of $\pi_{d}, d=1, \cdots, T$ and use π to denote a generic element in the vector $\boldsymbol{\pi}_{0}=\left[\pi_{1}, \ldots, \pi_{T}\right]^{\prime}$; likewise we use $\hat{\pi}$ to denote a generic element in $\hat{\boldsymbol{\pi}}$. Lemma 2 shows that uniformly in (x, z),

$$
\begin{array}{r}
\hat{\pi}(x, z)=\pi(x, z) \underbrace{-\frac{1}{n h^{d_{\pi}}} \Sigma_{n, \pi}^{-(1, \cdot)} H_{n}^{-1} \sum_{i=1}^{n} \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{z, h}\left(Z_{i}-z\right) \epsilon_{i}^{\pi} \mu^{\pi}\left(\tilde{W}_{i}-\tilde{w}\right)}_{\eta_{\pi, n}(x, z)} \\
+\underbrace{O_{p}\left(h^{p+2}\right)}_{r_{\pi, 1}}+\underbrace{O_{p}\left(\frac{\log n}{n h^{d_{\pi}}}\right)}_{r_{\pi, 2}} \tag{2}
\end{array}
$$

Recall that our estimator is defined as

$$
\hat{\beta}(s, x)=\left(\frac{1}{n} \sum \hat{\boldsymbol{\pi}}\left(x, Z_{i}\right) \hat{\boldsymbol{\pi}}\left(x, Z_{i}\right)^{\prime}\right)^{-1}\left(\frac{1}{n} \sum \hat{\boldsymbol{\pi}}\left(x, Z_{i}\right) \hat{m}\left(s, x, Z_{i}\right)\right) .
$$

First consider the denominator; it is easy to see that under the assumptions of Proposition 1 and the representation in Equation (2),

$$
\frac{1}{n} \sum_{i} \hat{\boldsymbol{\pi}}\left(x, Z_{i}\right) \hat{\boldsymbol{\pi}}^{\prime}\left(x, Z_{i}\right) \xrightarrow{p} \mathbb{E}\left[\boldsymbol{\pi}\left(x, Z_{i}\right) \boldsymbol{\pi}^{\prime}\left(x, Z_{i}\right)\right] \equiv V
$$

For the numerator, it follows from Lemma 5 that $\eta_{n, m}$ and $\eta_{n, \pi}$ are $o_{p}(1)$ and applying the law of large number, we have

$$
\frac{1}{n} \sum \hat{\boldsymbol{\pi}}\left(x, Z_{i}\right) \hat{m}\left(s, x, Z_{i}\right) \xrightarrow{p} \mathbb{E}\left[\boldsymbol{\pi}\left(x, Z_{i}\right) m\left(s, x, Z_{i}\right)\right]
$$

The consistency of the estimator follows.

Regarding the limiting distribution, we consider the following decomposition,

$$
\begin{aligned}
& \frac{1}{n} \sum \hat{\boldsymbol{\pi}}\left(x, Z_{i}\right) \hat{m}\left(s, x, Z_{i}\right)-\mathbb{E}\left[\boldsymbol{\pi}\left(x, Z_{i}\right) m\left(s, x, Z_{i}\right)\right] \\
&=\left(\frac{1}{n} \sum \hat{\boldsymbol{\pi}}\left(x, Z_{i}\right) \hat{m}\left(s, x, Z_{i}\right)-\frac{1}{n} \sum \boldsymbol{\pi}\left(x, Z_{i}\right) m\left(s, x, Z_{i}\right)\right) \\
&+\left(\frac{1}{n} \sum \boldsymbol{\pi}\left(x, Z_{i}\right) m\left(s, x, Z_{i}\right)-\mathbb{E}\left[\boldsymbol{\pi}\left(x, Z_{i}\right) m\left(s, x, Z_{i}\right)\right]\right)
\end{aligned}
$$

The second term is standard and is of order $O_{p}(1 / \sqrt{n})$. It remains to deal with the first term. For notational simplicity, we write $\eta_{m, n}\left(s, x, Z_{i}\right)$ as $\eta_{m, n}\left(Z_{i}\right)$, and write $\eta_{\pi, n}\left(x, Z_{i}\right)$ for $\eta_{\pi, n}\left(Z_{i}\right)$.

$$
\begin{aligned}
& \quad \frac{1}{n} \sum_{i} \hat{\boldsymbol{\pi}}\left(x, Z_{i}\right) \hat{m}\left(s, x, Z_{i}\right)-\frac{1}{n} \sum_{i} \boldsymbol{\pi}\left(x, Z_{i}\right) m\left(s, x, Z_{i}\right)=\frac{1}{n} \sum_{i} \boldsymbol{\pi}\left(x, Z_{i}\right)\left\{\eta_{m, n}\left(Z_{i}\right)+r_{m, 1}+r_{m, 2}\right\} \\
& + \\
& \frac{1}{n} \sum_{i} m\left(s, x, Z_{i}\right)\left\{\eta_{\pi, n}\left(Z_{i}\right)+r_{\pi, 1}+r_{\pi, 2}\right\}+\frac{1}{n} \sum_{i}\left\{\eta_{m, n}\left(Z_{i}\right)+r_{m, 1}+r_{m, 2}\right\}\left\{\eta_{\pi, n}\left(Z_{i}\right)+r_{\pi, 1}+r_{\pi, 2}\right\} \\
& \quad=\frac{1}{n} \sum_{i} \boldsymbol{\pi}\left(x, Z_{i}\right) \eta_{m, n}\left(Z_{i}\right)+\frac{1}{n} \sum_{i} m\left(s, x, Z_{i}\right) \eta_{\pi, n}\left(Z_{i}\right)+\frac{1}{n} \sum_{i} \boldsymbol{\pi}\left(x, Z_{i}\right)\left\{r_{m, 1}+r_{m, 2}\right\} \\
& + \\
& \frac{1}{n} \sum_{i} m\left(s, x, Z_{i}\right)\left\{r_{\pi, 1}+r_{\pi, 2}\right\}+\frac{1}{n} \sum_{i}\left\{\eta_{m, n}\left(Z_{i}\right)+r_{m, 1}+r_{m, 2}\right\}\left\{\eta_{\pi, n}\left(Z_{i}\right)+r_{\pi, 1}+r_{\pi, 2}\right\}
\end{aligned}
$$

The third and fourth RHS terms are of order smaller than $O_{p}\left(1 / \sqrt{n h^{d_{x}+d_{s}+2}}\right)$ by Lemma 4 The last RHS term is of order smaller than $O_{p}\left(1 / \sqrt{n h^{d_{x}+d_{s}+2}}\right)$ by Lemma 7. By Lemma 3.

$$
\sqrt{n h^{d_{x}+d_{s}+2}}\left\{\frac{1}{n} \sum_{i} \boldsymbol{\pi}\left(x, Z_{i}\right) \eta_{m, n}\left(s, x, Z_{i}\right)+\frac{1}{n} \sum_{i} m\left(s, x, Z_{i}\right) \eta_{\pi, n}\left(x, Z_{i}\right)\right\} \xrightarrow{d} N\left(0, \Omega_{m}\right) .
$$

It then follows that

$$
\sqrt{n h^{d_{x}+d_{s}+2}}\left\{\frac{1}{n} \sum \hat{\boldsymbol{\pi}}\left(x, Z_{i}\right) \hat{m}\left(s, x, Z_{i}\right)-\mathbb{E}\left[\boldsymbol{\pi}\left(x, Z_{i}\right) m\left(s, x, Z_{i}\right)\right]\right\} \xrightarrow{d} N\left(0, \Omega_{m}\right),
$$

or alternatively,

$$
\sqrt{n h^{d_{x}+d_{s}+2}}\{\hat{\beta}(s, x)-\beta(s, x)\} \xrightarrow{d} N\left(0, V^{-1} \Omega_{m} V^{-1}\right) .
$$

We can see from Proposition 1 that the convergence rate of \hat{m}, instead of $\hat{\pi}_{d}$, determines the convergence rate of $\hat{\beta}$ because m is the first-order derivative of a conditional expectation. If m has a higher degree of smoothness, then $\hat{\beta}$ will converge faster. Also, under Assumption 5, the dimension of Z does not affect the convergence rate of $\hat{\beta}$ since Z is averaged out in the second stage with respect to its marginal (empirical) distribution. The factor $d_{s}+d_{x}$ reflects the fact that the estimand β is a function evaluated at a $d_{s}+d_{x}$-dimensional vector (s, x); the factor 2 in the power of h reflects that m is the first-order derivative of the function $\mathbb{E}[Y \mid W=w]$ with respect to s.

For inference, we again propose to estimate the asymptotic variance by plugging-in consistent estimator \widehat{V} and $\widehat{\Omega}_{m}$, respectively. As before, we provide the formula for $\widehat{\Omega}_{m}$ (Equation B.2) and an example in Appendix B.

3. Validity of Mother's Education as an IV in our data set

In this section, we test the necessary implications of LATE-validity assumption when using mother's education as an instrument. Following similar derivations in Mourifié and Wan (2017, Equation 1), the LATE assumptions imply the following four testable necessary conditions, that is, for any $A \subseteq \mathscr{Y}$,

$$
\left\{\begin{array}{l}
\mathbb{P}(Y \in A, D=2 \mid Z=0) \leq \mathbb{P}(Y \in A, D=2 \mid Z=1) \leq \mathbb{P}(Y \in A, D=2 \mid Z=2) \tag{3}\\
\mathbb{P}(Y \in A, D=0 \mid Z=2) \leq \mathbb{P}(Y \in A, D=0 \mid Z=1) \leq \mathbb{P}(Y \in A, D=0 \mid Z=0)
\end{array} .\right.
$$

Mourifié and Wan (2017) show that each of the inequality constraints can be rewritten as a conditional moment inequality and the null hypothesis that all inequalities in (3) hold can be written as

$$
\begin{equation*}
H_{0}: \theta_{0} \equiv \sup _{y \in \mathscr{Y}, j=1, \ldots, 4} \theta(y, j) \leq 0, \quad H_{1}: \theta_{0}>0, \tag{4}
\end{equation*}
$$

where $\theta(y, j), j=1, \cdots, 4$, represent a conditional moment inequality. We test the null hypothesis in (4) at the province level. Mourifié and Wan (2017) propose using the intersection bounds framework of Chernozhukov, Lee, and Rosen (2013), which we follow here. We used the "clrtest" Stata command of Chernozhukov, Kim, Lee, and Rosen (2013) to conduct the test and also use the "clrbound" command to calculate the lower bound of the confidence set of θ_{0}. The results are reported in Table 11. We can see that the test rejects the null hypothesis in (3) or (4) for a significant portion of provinces, meaning that the dataset under analysis here shows strong evidences against the use of mother's education as a conventional IV to estimate the LATE Notice that in the rejected cases, the lower boundaries of the confidence interval of θ_{0} are all above zero, as demonstrated in the right panel of the table. In Table 1, the unknown conditional expectations are estimated with the local regression method. As a robustness check, we also conduct the tests using sieve estimation and the results are qualitatively similar and reported in Table 2 .

4. Additional Empirical Results

In this section, we conduct a few robustness checks for our empirical results.

4.1. Adding Covariates.

So far our analysis uses the whole sample. We also estimate the model using subsamples based on gender, ethnic group (Han and minority), and age (below or above the median age of the whole sample) $\sqrt{2}^{2}$ Although insignificant in some subsamples, the above-mentioned

[^0]Table 1: Testing LATE Assumption by Province (Local Regression)

Province	Sample Size	Test (clrtest)			Lower Bound of CI (clrbound)		
		90\%	95\%	99\%	90\%	95\%	99\%
Beijing	2,476	$\mathrm{NR}^{\text {a }}$	NR	NR	-0.0000049	-0.0000054	-0.0000061
Tianjin	4,762	NR	NR	NR	-0.0021587	-0.0022713	-0.0024809
Hebei	7,108	NR	NR	NR	-0.0003199	-0.0004228	-0.0006254
Shanxi	7,872	NR	NR	NR	-0.0003136	-0.0004318	-0.0006733
Neimeng	2,807	NR	NR	NR	-0.0002477	-0.0002662	-0.0003040
Liaoning	4,286	R	NR	NR	0.0000625	-0.0000813	-0.0003704
Jilin	5,018	NR	NR	NR	-0.0005115	-0.0005857	-0.0006417
Heilongjiang	3,901	NR	NR	NR	-0.0008943	-0.0009552	-0.0010810
Shanghai	4,401	R	R	R	0.0028629	0.0020509	0.0002967
Jiangsu	5,284	NR	NR	NR	-0.0000001	-0.0000060	-0.0000131
Zhejiang	3,894	NR	NR	NR	-0.0000880	-0.0000932	-0.0001027
Anhui	4,902	NR	NR	NR	-0.0000531	-0.0000604	-0.0000733
Fujian	3,278	NR	NR	NR	-0.0001924	-0.0002106	-0.0002422
Jiangxi	3,777	NR	NR	NR	-0.0001948	-0.0002129	-0.0002543
Shandong	7,737	NR	NR	NR	-0.0001029	-0.0001114	-0.0001313
Henan	6,666	NR	NR	NR	-0.0003481	-0.0003628	-0.0003927
Hubei	5,467	R	R	R	0.0039942	0.0033046	0.0019484
Hunan	6,769	NR	NR	NR	-0.0000923	-0.0000973	-0.0001074
Guangdong	$25,652^{\text {b }}$	R	R	R	0.0006007	0.0005268	0.0003795
Guangxi	4,846	R	R	NR	0.0001403	0.0000723	-0.0000673
Hainan	2,902	NR	NR	NR	-0.0002162	-0.0002688	-0.0003758
Chongqing	3631	R	R	R	0.0003058	0.0002450	0.0001268
Sichuan	6,347	R	NR	NR	0.0000219	-0.0000136	-0.0000824
Guizhou	3,797	NR	NR	NR	-0.0000029	-0.0000031	-0.0000036
Yunnan	13,696	NR	NR	NR	-0.0000022	-0.0000024	-0.0000028
Xizang	2,510	R	R	R	0.0000000	0.0000000	0.0000000
Shanxi	8,124	NR	NR	NR	-0.0003338	-0.0004210	-0.0005974
Gansu	7,196	NR	NR	NR	-0.0000273	-0.0000458	-0.0000836
Qinghai	2,451	R	R	R	0.0006214	0.0004856	0.0002012
Ningxia	1,521	NR	NR	NR	-0.0000216	-0.0000288	-0.0000418
Xinjiang	3,380	NR	NR	NR	-0.0000946	-0.0001081	-0.0001312

a. "R" stands for rejection of LATE assumptions and "NR" stands for no rejection.
b. For provinces with more than 8000 observations, we choose a random subsample of 8,000

Table 2: Testing LATE Assumption by Province (series estimation)

Province	Sample Size	Test (clrtest)			Lower Bound of CI (clrbound)		
		90\%	95\%	99\%	90\%	95\%	99\%
Beijing	2,476	R	NR	NR	0.0004902	-0.0000099	-0.0000124
Tianjin	4,762	NR	NR	NR	-0.0027308	-0.0029010	-0.0032281
Hebei	7,108	NR	NR	NR	-0.0006457	-0.0006887	-0.0007800
Shanxi	7,872	NR	NR	NR	-0.0007102	-0.0007668	-0.0008840
Neimeng	2,807	NR	NR	NR	-0.0004630	-0.0004917	-0.0005436
Liaoning	4,286	NR	NR	NR	-0.0002511	-0.0004393	-0.0008444
Jilin	5,018	NR	NR	NR	-0.0006048	-0.0006349	-0.0006952
Heilongjiang	3,901	NR	NR	NR	-0.0009264	-0.0009834	-0.0011067
Shanghai	4,401	R	R	NR	0.0021831	0.0012057	-0.0000013
Jiangsu	5,284	NR	NR	NR	-0.0002047	-0.0002246	-0.0002701
Zhejiang	3,894	NR	NR	NR	-0.0000119	-0.0000134	-0.0000163
Anhui	4,902	NR	NR	NR	-0.0000662	-0.0000711	-0.0000814
Fujian	3,278	R	R	NR	0.0046661	0.0021814	-0.0002473
Jiangxi	3,777	NR	NR	NR	-0.0004043	-0.0004401	-0.0005066
Shandong	7,737	NR	NR	NR	-0.0001303	-0.0001394	-0.0001574
Henan	6,666	NR	NR	NR	-0.0002255	-0.0002392	-0.0002703
Hubei	5,467	R	R	R	0.0001907	0.0001295	0.0000017
Hunan	6,769	NR	NR	NR	-0.0002038	-0.0002231	-0.0002601
Guangdong	25,652	R	NR	NR	0.0000374	-0.0000117	-0.0000192
Guangxi	4,846	R	R	R	0.0008004	0.0006593	0.0003694
Hainan	2,906	R	R	R	0.0050706	0.0041392	0.0021845
Chongqing	3,631	R	R	R	0.0002169	0.0001490	0.0000044
Sichuan	6,347	NR	NR	NR	-0.0001346	-0.0001783	-0.0002720
Guizhou	3,797	R	NR	NR	0.0000127	-0.0000054	-0.0000064
Yunnan	13,696	NR	NR	NR	-0.0000175	-0.0000280	-0.0000451
Xizang	2,510	NR	NR	NR	-0.0000003	-0.0000003	-0.0000004
Shanxi	8,124	NR	NR	NR	-0.0002387	-0.0003214	-0.0004953
Gansu	7,196	R	NR	NR	0.0000574	-0.0000181	-0.0000215
Qinghai	2,451	R	R	NR	0.0004750	0.0003183	-0.0000097
Ningxia	1,521	NR	NR	NR	-0.0000366	-0.0000438	-0.0000564
Xinjiang	3,380	NR	NR	NR	-0.0004457	-0.0005053	-0.0006315

"R" stands for rejection and "NR" stands for no rejection.
pattern exists overall. For instance, the same result holds and is significant for both males and females. It holds and is significant for populations below the median age of the sample (27 years old), and holds but is less significant for populations older than 27. It also holds for both Han but is not significant for minority groups 3^{3} Please see Figures 1 to 3 for details.

Figure 1: Estimates and 95% CI by gender, $c=-0.01$

4.2. Re-categorizing to Binary Treatment

To further examine if our result is robust, we estimate the model by re-categorizing the education levels into a binary treatment and a binary outcome exclusion variable, that is, $\tilde{D}=0($ or $\tilde{Z}=0)$ for elementary school and below, and $\tilde{D}=0($ or $\tilde{Z}=1)$ for middle school and above. The results for the whole sample are reported in Section 4.2 and we can see that the same pattern exists and is significant. Estimation results based on subsamples are collected in Figure 5 of Section 4 Except that the result is not significant for subsample of minorities (which is the case in triple-valued D and Z as well), we see the same pattern over other subsamples.

4.3. Smoothing Constants.

We also use under-smoothing constant $c=0$ and $c=-0.03$ and the results are plotted in Figure 6. They are qualitatively similar to those report in the main text.

[^1]Figure 2: Estimates and 95% CI by ethnic group, $c=-0.01$

Table 3: Education ($\tilde{D})$ and Mother's Education (\tilde{Z}): Re-categorizing

	\tilde{Z}		
\tilde{D}	0	1	Total
0	36,153	1,496	37,649
1	96,495	42,314	138,809
Total	132,648	42,810	176,458

Figure 3: Estimates and 95% CI by age, $c=-0.01$

Figure 4: Binary Case, Whole Sample, $c=-0.01$

Figure 5: Estimates and 95\% CI,, Binary Case, Subsamples, $c=-0.01$

Figure 6: Estimates and 95\% CI, by smoothing level

4.4. Internal Migration

. The internal labor migration has always been an important factor to consider in research on China's development and inequality, see e.g. Ha, Yi, Yuan, and Zhang (2016) and references therein. In our sample 4.58% individuals have not lived in their Hukou address for the past six months from the survey date, so we consider these individuals as a subsample of internal migrants (across different prefectures). Although internal migration is not the primary focus our analysis, as a robustness check, we conduct our analysis again by excluding this subsample and the result is the same qualitatively and very similar quantitatively (hence omitted here).

5. Simulation Results

In this section we provide some numerical examples to investigate the finite sample performance of our estimator. We consider a binary D and triple-valued Z. Let $\boldsymbol{e}=$ $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)^{\prime} \in \mathbb{R}^{4}$ follow a multivariate normal distribution with zero mean and covariance matrix given by

$$
\left(\begin{array}{llll}
1.0 & 0.5 & 0.3 & 0 \\
0.5 & 1.0 & 0.3 & 0 \\
0.3 & 0.3 & 1.0 & 0.3 \\
0 & 0 & 0.3 & 1.0
\end{array}\right) .
$$

Let $\varsigma \sim N(0,1)$. Let $U_{0}=0.1\left(e_{1}-\varsigma\right), U_{1}=0.1\left(e_{2}+\varsigma\right), Z=\mathbf{1}\left\{0.3 \leq \Phi\left(e_{3}\right) \leq 0.7\right\}+$ $21\left\{\Phi\left(e_{3}\right)>0.7\right\}$ and $S=0.02 \times \operatorname{Ceil}\left[200 \Phi\left(e_{4}\right)-100\right]$, where $\Phi(\cdot)$ is the standard normal CDF and Ceil[•] is the ceiling function which returns the smallest integer that is no less than its argument. Finally, let $D=\mathbf{1}\{Z+\varsigma-0.5>0\}$. As constructed, $\left(U_{0}, U_{1}\right)$ is correlated with ς and Z, which implies the endogeneity of treatment D and invalidity of Z as a conventional instrumental variable. In the meantime, S is independent with $\left(U_{0}, U_{1}, \varsigma\right)$ but correlated with $Z 4$

We normalize $f_{0}(s)=0$ and hence $Y_{0}=U_{0}$. We specify

$$
f_{1}(s)=0.3 e^{-4(s+1)^{2}}+0.7 e^{-16(s-1)^{2}}, \quad Y_{1}=f_{1}(S)+U_{1}
$$

In this DGP, the conditional average treatment effect (for $S=s$) is given by $\Delta(s)=$ $f_{1}(s)-f_{0}(s)$ (as a function of $\left.s\right)$. Its derivative $\beta_{1}(s)$ is the parameter of interest:

$$
\beta_{1}(s)=-2.4(s+1) e^{-4(s+1)^{2}}-22.4(s-1) e^{-16(s-1)^{2}}
$$

Figure 7 plots $\Delta(s)$ and $\beta_{1}(s)$, respectively.
We consider five sample sizes: $n=1000 \times 2^{k}$, for $k \in\{0,1,2,3,4\}$. We use the Epanechnikov kernel. Since we estimate first-order derivative in the first stage, we use the secondorder polynomial $(p=2)$, as recommended by Fan and Gijbels (1996). To the best of our knowledge, there are few results available for choosing the bandwidth optimally in the two-stage nonparametric estimation context that we consider here. Hence, we follow the "Rule of Thumb" bandwidth $h^{R O T}$ proposed in Fan and Gijbels 1996, Section 4.1). In our

[^2]

Figure 7: True functions
simulation, $h^{R O T} \propto n^{-\frac{1}{2 p+3}}=n^{-\frac{1}{7}}$. We also consider different levels of under-smoothing: $h=h^{R O T} n^{c}$, where $c \in\{0,-0.01,-0.03\}$. Here $c=0$ corresponds to no under-smoothing. For each given sample size and under-smoothing level, we consider 1, 000 replications. For each replication, we estimate $\beta_{1}(s)$ over 200 uniformly spread grids on the support of S. We report the mean squared error (MSE) for $\hat{\beta}_{1}(s)$ with $s \in\{-1.8,-1,0,1,1.8\}$, which corresponds to the $5 \%, 25 \%, 50 \%, 75 \%$ and 95% quantiles of S, respectively.

Performance of our estimator when choosing $c=-0.01$ is reported in Tables 4 to 6 Figure 8 plots estimates and pointwise confidence band for two random samples of size 2000 and 16000, respectively. First, for each s and c, we can see that the MSE decreases as sample size increases, as expected. The MSEs are relatively larger when s is close to the boundary of the support ($s= \pm 1.9$) or the second-order derivative is larger in absolute values $(s=1)$, which is also not surprising. As we increase the level of under-smoothing, we observe the overall pattern that the variance increases and bias decreases. It appears that the tradeoff between the bias and variance carries through from the first-stage estimation to the second stage, although the average magnitude of the variance is much larger than the bias. When comparing MSEs across difference sample sizes, we can see that when the sample size increases from 1000 to 2000 , the MSEs overall decrease by a greater factor than what our theory predicts $\left(\propto 2^{4 / 7} \approx 1.5\right)$. This is possibly because sample sizes are not large enough to fully show asymptotic behavior. If we look at larger sample sizes, we would observe that the factor by which the MSEs decrease is roughly in line with the $n^{2 / 7}$ convergence rate.

To investigate the performance of the confidence intervals, we calculate the confidence intervals for $\beta_{1}(s), s \in\{-1.8,-1,0,1,1.8\}$ and their coverage frequencies for the true values at three nominal level $90 \%, 95 \%$ and 99%. As we can see from Table 9 , the finite sample coverage frequencies are quite close to nominal levels, especially in larger sample sizes. Similar to the estimation, the performance of confidence intervals are better when s is away from the boundaries of its support. To investigate the precision of the confidence intervals, we test $H_{0}: \beta_{1}(-0.5)$ against $H_{1}: \beta_{1}(-0.5) \neq 0$ by checking if 0 is contained in the confidence interval of $\beta_{1}(-0.5)$. The rejection frequencies are reported in Table 10 which shows that our test has stronger power against the false null hypothesis since the true value is $\beta_{1}(-0.5) \approx-0.44$. We also examined other s values and obtained the same qualitative

Figure 8: Estimates and Confidence Bands
results.
We also investigate the performance of the pointwise confidence intervals. For this, we calculate the confidence intervals for $\beta_{1}(s), s \in\{-1.8,-1,0,1,1.8\}$ and their coverage frequencies for the true values at three nominal level $90 \%, 95 \%$ and 99%. As we can see from Table 9 , the finite sample coverage frequencies are quite close to nominal levels, especially in larger sample sizes. Similar to the estimation, the performance of confidence intervals are better when s is away from the boundaries of its support. To investigate the precision of the confidence intervals, we test $H_{0}: \beta_{1}(-0.5)$ against $H_{1}: \beta_{1}(-0.5) \neq 0$ by checking if 0 is contained in the confidence interval of $\beta_{1}(-0.5)$. The rejection frequencies are reported in Table 10, which shows that our test has stronger power against the false null hypothesis since the true value is $\beta_{1}(-0.5) \approx-0.44$. We also examined other s values and obtained the same qualitative results.

Appendix A. Auxiliary Lemmas for Proving Proposition 1

This appendix collects auxiliary lemmas for proving Proposition 1 We define some notation first. For the purpose of exposition, we define notation for estimation of m. The notation for estimation of π_{d} is similar. For $j=0,1, \cdots, p$, let N_{j} be the number of d_{m} dimensional vectors \underline{r} such that $|\underline{r}|=j$. Arrange all such vectors in the lexicographical order with the first one is $(0,0, \cdots, j)$ and last one is $(j, \cdots, 0,0)$. Let τ_{j} be the one to one mapping from an order to the associated vector. For example, $\tau_{j}(1)=(0,0, \cdots, j)$, $\tau_{j}(2)=(0,1, \cdots, j-1) \cdots$, and $\tau_{j}\left(N_{j}\right)=(j, 0, \cdots, 0)$. For $j=0, \cdots, p$, let $\nu_{n, m, j}(w)=$ $\int u^{j} \boldsymbol{K}_{w}(u) g_{w}(w+h u) d u{ }^{5}$ where here u is a $d_{m} \times 1$ vector and u^{j} stands for the product of powers of elements of u such that the sum of power index equals to j. Let $\Sigma_{n, m}$ be a

[^3]Table 4: Performance of $\hat{\beta}_{1}(s), c=-0.01$

		n				
	s	1000	2000	4000	8000	16000
	-1.8	0.3355	0.151	0.0689	0.0408	0.019
MSE	-1	0.0162	0.0091	0.0063	0.0044	0.003
	0	0.0121	0.009	0.0051	0.0033	0.0025
	1	0.0775	0.0134	0.008	0.0054	0.0047
	1.8	0.2902	0.1074	0.0547	0.0277	0.0125
Bias	-1.8	0.0058	-0.013	-0.0114	0.0004	-0.0067
	-1	-0.0085	0.0037	-0.0016	-0.0019	-0.0027
	0	-0.0222	-0.0221	-0.0139	-0.0128	-0.0109
	1	-0.1333	-0.0006	-0.001	-0.0039	-0.0019
	1.8	-0.057	-0.0673	-0.0446	-0.0134	-0.0068
	-1.8	0.3355	0.1509	0.0687	0.0408	0.0189
	-1	0.0161	0.0091	0.0063	0.0044	0.003
Variance	0	0.0116	0.0085	0.005	0.0031	0.0024
	1	0.0597	0.0134	0.008	0.0054	0.0047
	1.8	0.287	0.1028	0.0528	0.0275	0.0124

symmetric matrix

$$
\Sigma_{n, m}=\left(\begin{array}{cccc}
\Sigma_{n, m, 0,0} & \Sigma_{n, m, 0,1} & \cdots & \Sigma_{n, m, 0, p} \\
\cdots & \cdots & \cdots & \cdots \\
\Sigma_{n, m, p, 0} & \Sigma_{n, m, p, 1} & \cdots & \Sigma_{n, m, p, p}
\end{array}\right)
$$

where $\Sigma_{n, m, i, j}$ is an N_{i} by N_{j} matrix whose (ℓ, k) element is $\nu_{n, m, \tau_{i}(\ell)+\tau_{j}(k)}$. So $\Sigma_{n, m, 0,0}$ is the $(1,1)_{t h}$ element of the matrix $\Sigma_{n, m}$ and equals to $\nu_{n, m, 0}(w) ; \Sigma_{n, m, 0,1}$ is a $1 \times d_{m}$ vector contains terms of $\nu_{n, m, \underline{1}}$ corresponding to each variable in vector $u ; \Sigma_{n, m, 1,1}$ is a $d_{m} \times d_{m}$ matrix which contains elements constructed from $\nu_{n, m, 2}$ where each elements contains interaction terms from two variables from the vector u etc.. Let Σ_{m} be defined as similar to $\Sigma_{n, m}$ with $\nu_{m, \underline{j}}=g_{w}(w) \int \boldsymbol{K}_{w}(u) u \underline{j} d u$ replacing $\nu_{n, m, \underline{j}}$. Clearly $\Sigma_{m}=\Sigma_{n, m}+o(1)$ given $h \downarrow 0$, as shown in KLX Lemma 8 .

Let $M(w)=\mathbb{E}[Y \mid W=w]$. Let $\alpha_{\underline{r}}^{m}(w)$ be a vector of $|\underline{r}|$-th order partial derivative of M evaluated at w with the position of each term in the vector being arranged in the same lexicographical order as described above. For example, for $w=(s, x, z)$,

$$
\alpha_{\underline{1}}^{m}(w)=\left(\frac{\partial M(w)}{\partial z}, \frac{\partial M(w)}{\partial x}, \frac{\partial M(w)}{\partial s}\right)_{3 \times 1}^{\prime}
$$

and

$$
\alpha_{\underline{2}}^{m}(w)=\left(\frac{\partial^{2} M(w)}{\partial z^{2}}, \frac{\partial^{2} M(w)}{\partial z \partial x}, \cdots, \frac{\partial^{2} M(w)}{\partial s \partial x}, \frac{\partial^{2} M(w)}{\partial s^{2}}\right)_{6 \times 1}^{\prime}
$$

Let $\boldsymbol{\alpha}^{m}(w)$ be the stacked vector of $\alpha_{\underline{r}}^{m}(w)$ of which $0 \leq|\underline{r}| \leq p$ for some $p \geq 1$ based on the order that is increasing in $|\underline{r}|$. Wherever it causes no confusion, we will simply write $\alpha_{\underline{r}}$ for

Table 5: Performance of $\hat{\beta}_{1}(s), c=0$

		n				
	s	1000	2000	4000	8000	16000
MSE	-1.8	0.2623	0.1189	0.0703	0.0354	0.0196
	-1	0.0131	0.0078	0.0057	0.0038	0.0025
	1	0.012	0.0068	0.0043	0.0031	0.0019
	1.8	0.0697	0.0108	0.0062	0.0044	0.0032
	-1.8	-0.0297	-0.1003	0.0583	0.0283	0.0132
	-1	-0.0154	-0.0007	-0.0069	-0.0034	-0.001
	0	-0.0301	-0.0295	-0.0203	-0.0017	-0.0011
	1	-0.116	-0.0015	0.0002	0.003	-0.0121
	1.8	-0.0977	-0.0809	-0.0678	-0.0387	-0.0289
	-1.8	0.2614	0.1189	0.0702	0.0353	0.0196
	-1	0.0129	0.0078	0.0057	0.0038	0.0025
Variance	0	0.0111	0.006	0.0039	0.0028	0.0017
	1	0.0563	0.0108	0.0062	0.0044	0.0032
	1.8	0.2829	0.0937	0.0537	0.0268	0.0124

$\alpha_{\underline{r}}(w)$ and write $\boldsymbol{\alpha}^{m}$ for $\boldsymbol{\alpha}^{m}(w)$. Let $\mu_{\underline{r}}^{m}(w)$ be a vector of polynomials of w with a typically element equals to $w^{\underline{r}}$ for some $0 \leq|\underline{r}| \leq p$ and all the terms in $\mu_{\underline{r}}^{m}(w)$ are arranged in the same lexicographical order as above. Let $\mu^{m}(w)$ be the stacked vector of $\mu_{\underline{r}}^{m}$ increasing in $|\underline{r}|$. Note that Taylor expansion leads to the approximation that $M(w) \approx \sum_{0 \leq|\underline{r}| \leq p} \frac{1}{\underline{r}!} \alpha_{\underline{r}}^{m} \cdot \mu_{\underline{r}}^{m}(w)$, where "." represents the inner product of two vectors.

Let H_{n} be a diagonal with the same number of rows as the dimension of μ^{m}, with diagonal entries being $h^{|\underline{r}|}$ for $0 \leq|\underline{r}| \leq p$ and arranged in the same lexicographical order. Let W_{p} be another diagonal matrix with diagonal entries be \underline{r} ! for $0 \leq|\underline{r}| \leq p$ and arranged in the same lexicographical order.

Lemmas 1 and 2 adopt the results from Kong, Linton, and Xia (2010, KLX).
Lemma 1. Under Assumptions 1 to 5 and 8 to 10, we have

$$
\sup _{w \in \mathscr{W}}\left|h\{\hat{m}(w)-m(w)\}-m_{n}^{*}(w)\right|=O_{p}\left(\frac{\log n}{n h^{d_{m}}}\right),
$$

where $m_{n}^{*}(w)$ is the Bahadur representation of $\hat{m}-m$:

$$
\begin{align*}
m_{n}^{*}(w)=-\frac{1}{n h^{d_{m}}} \Sigma_{n, m}^{-(s, \cdot)} H_{n}^{-1} \sum_{i=1}^{n} & \boldsymbol{K}_{s, h}\left(S_{i}-s\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{z, h}\left(Z_{i}-z\right) \\
& \times\left[Y_{i}-\sum_{0 \leq|\underline{r}| \leq p} \frac{1}{|\underline{r}|!} \alpha_{\underline{r}} \cdot \mu_{\underline{r}}^{m}\left(W_{i}-w\right)\right] \mu^{m}\left(W_{i}-w\right) \tag{A.1}
\end{align*}
$$

Table 6: Performance of $\hat{\beta}_{1}(s), c=-0.03$

		n				
	s	1000	2000	4000	8000	16000
MSE	-1.8	0.2835	0.1459	0.0719	0.038	0.0194
	-1	0.0238	0.0144	0.0107	0.0071	0.0051
	1	0.0171	0.0108	0.008	0.0057	0.0038
	1.8	0.0989	0.0197	0.0135	0.0103	0.0078
	-1.8	0.0043	-0.1102	0.055	0.0284	0.0145
	-1	-0.0109	-0.0029	-0.0107	0.0065	-0.0019
	0	-0.0142	-0.0139	-0.0116	0.0003	-0.0021
	1	-0.158	-0.0027	-0.003	-0.0027	-0.0056
	1.8	-0.0405	-0.0429	-0.0194	-0.0091	-0.004
	-1.8	0.2835	0.1455	0.0718	0.038	0.0194
	-1	0.0236	0.0144	0.0107	0.0071	0.0051
Variance	0	0.0169	0.0106	0.0078	0.0056	0.0038
	1	0.074	0.0197	0.0135	0.0103	0.0078
	1.8	0.308	0.1083	0.0546	0.0284	0.0145

where $\Sigma_{n, m}^{-(s, \cdot)}$ is a row from $\Sigma_{n, m}^{-1}$ which corresponds to the linear term of $\left.S\right|^{6}$ Furthermore, Let $\epsilon_{i}^{m}=Y_{i}-\mathbb{E}\left[Y_{i} \mid W_{i}\right]$ and
$\eta_{m, n}(w)=-\frac{1}{n h^{d_{m}+1}} \Sigma_{n, m}^{-(s,)} H_{n}^{-1} \sum_{i=1}^{n} \boldsymbol{K}_{s, h}\left(S_{i}-s\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{z, h}\left(Z_{i}-z\right) \epsilon_{i}^{m} \mu^{m}\left(W_{i}-w\right)$,
then

$$
\begin{equation*}
\sup _{w \in \mathscr{W}}\left|\hat{m}(w)-m(w)-\eta_{m, n}(w)\right| \leq O_{p}\left(\frac{\log n}{n h^{d_{m}+1}}\right)+O_{p}\left(h^{p}\right) \tag{A.2}
\end{equation*}
$$

Proof. Since the loss function is quadratic, to show the first displayed equation, we apply the results stated in KLX (Equation 13, pp1536). We take $\lambda_{1}=1, \lambda_{2}=1 / 2$ and verify $K L X$ conditions A1-A7. Then Equation A.1 holds by noticing that the partial derivative m that we are estimating corresponds to the fourth element of $\boldsymbol{\alpha}^{m}$, the fourth diagonal element of H_{n} is $1 / h$ and the fourth diagonal element of W_{p} is 1 .

KLX-A1 part 1 holds since we consider the quadratic loss function. KLX-A1 part 2 holds by Assumption 10 -(i). KLX-A2 holds again because we consider quadratic loss function, hence the first order derivative is linear. KLX-A3 is the assumption on kernels and it is satisfied by Assumption 8. KLX-A4 is the smoothness assumption on the joint distribution of (S, X, Z), it holds by Assumption 10-(i). KLX-A5 is the smoothness assumption on m and is satisfied by Assumption 10.(ii). KLX-A7 part 1 is ensured by Assumption 10 (ii) and part 2 holds since we have i.i.d. observations.

It remains to verify KLX-A6. For two sequences a_{b} and b_{n}, we use $a_{n} \succ b_{n}$ to denote $b_{n} / a_{n} \xrightarrow{p} 0$. Analogously define " \prec ". First, since $n h^{d_{m}} \succ n h^{d_{m}+2}$ and $n h^{d_{m}+2} \rightarrow \infty$

[^4]Table 7: Coverage frequency for $\beta_{1}(s)$, Size

		$c=0$				$c=-0.01$			$c=-0.03$		
s	n	90%	95%	99%	90%	95%	99%	90%	95%	99%	
$s=-1.8$	1000	0.84	0.901	0.958	0.812	0.894	0.964	0.818	0.889	0.961	
	2000	0.863	0.931	0.979	0.853	0.921	0.976	0.843	0.916	0.98	
	4000	0.883	0.945	0.99	0.878	0.935	0.981	0.87	0.928	0.986	
	8000	0.891	0.942	0.984	0.885	0.942	0.995	0.889	0.932	0.987	
	16000	0.884	0.945	0.984	0.891	0.953	0.987	0.915	0.946	0.985	
	1000	0.885	0.942	0.98	0.884	0.934	0.983	0.896	0.934	0.981	
	2000	0.898	0.938	0.988	0.895	0.952	0.986	0.897	0.947	0.981	
$s=-1$	4000	0.91	0.947	0.992	0.896	0.948	0.985	0.909	0.945	0.988	
	8000	0.899	0.942	0.988	0.898	0.94	0.99	0.913	0.951	0.994	
	16000	0.889	0.957	0.997	0.902	0.952	0.998	0.916	0.96	0.992	
	1000	0.864	0.929	0.988	0.87	0.943	0.986	0.883	0.921	0.978	
	2000	0.865	0.925	0.983	0.898	0.927	0.984	0.881	0.94	0.99	
$s=0$	4000	0.892	0.949	0.986	0.875	0.937	0.987	0.898	0.947	0.992	
	8000	0.863	0.932	0.988	0.896	0.943	0.982	0.909	0.938	0.988	
	16000	0.882	0.935	0.99	0.9	0.942	0.991	0.917	0.948	0.987	
	1000	0.899	0.947	0.99	0.883	0.948	0.988	0.901	0.931	0.991	
	2000	0.886	0.957	0.993	0.894	0.95	0.985	0.889	0.945	0.994	
$s=1$	4000	0.914	0.945	0.992	0.902	0.947	0.991	0.902	0.95	0.99	
	8000	0.902	0.934	0.989	0.897	0.954	0.985	0.911	0.945	0.99	
	16000	0.909	0.951	0.989	0.9	0.944	0.989	0.893	0.959	0.99	
	1000	0.828	0.897	0.973	0.854	0.916	0.976	0.842	0.895	0.964	
	2000	0.847	0.911	0.962	0.851	0.923	0.97	0.854	0.908	0.981	
	4000	0.876	0.922	0.983	0.881	0.926	0.982	0.88	0.932	0.983	
	8000	0.877	0.937	0.983	0.899	0.944	0.987	0.886	0.95	0.988	
	16000	0.864	0.956	0.993	0.886	0.949	0.983	0.895	0.952	0.985	

by Assumption 9 (i), the first condition in the Equation A. 2 of KLX-A6 is satisfied. The second condition in the Equation A.2 holds because we take $\lambda_{2}=1 / 2$ and the assumption that $n h^{d_{m}+2(p+1)} \prec n h^{d_{\pi}+2(p+1)}$ and $n h^{d_{\pi}+2(p+1)} \rightarrow 0$ by Assumption 9 (ii). To verify the third condition in Equation A.2, let $\gamma_{n}=n h^{d_{m}} / \log n$, then using KLX's notation in their Equation A.1, we have for some $M>2$,

$$
\begin{gathered}
d_{n}=\gamma_{n}^{-1-\frac{1}{4}+\frac{1}{2}} \log n=\gamma_{n}^{-\frac{3}{4}} \log n, \quad r(n)=\gamma_{n}^{\frac{1}{4}} \\
M_{n}^{(1)}=M \gamma_{n}^{-1}, \quad M_{n}^{(2)}=M^{\frac{1}{4}} \gamma_{n}^{-\frac{1}{2}}
\end{gathered}
$$

Hence we have

$$
\begin{gathered}
n^{-1}\{r(n)\}^{\nu_{2} / 2} d_{n} \log n\left\{M_{n}^{(2)}\right\}^{-1}=M^{-1 / 4}\{\log n\}^{2} n^{-1} \gamma_{n}^{\frac{\nu_{2}}{8}-\frac{3}{4}+\frac{1}{2}}=M^{-1 / 4}\{\log n\}^{2} n^{-1} \gamma_{n}^{\frac{\nu_{2}-2}{8}} \\
=M^{-1 / 4}\{\log n\}^{2-\frac{\nu_{2}-2}{8}} n^{-1}\left(n h^{d_{m}}\right)^{\frac{\nu_{2}-2}{8}},
\end{gathered}
$$

where we can take $\nu_{2} \leq \nu_{1}$ and ν_{1} be large enough, then the above quantity diverges to infinity. This is ensured by Assumption 10.(ii). Equation A.3 and A. 4 of KLX-A6 are

Table 8: Testing $H_{0}: \beta_{1}(-0.5)=0$ vs $H_{0}: \beta_{1}(-0.5) \neq 0$, Power

	Rejection Frequencies								
n	10%	5%	1%	10%	5%	1%	10%	5%	1%
1000	0.878	0.923	0.806	0.850	0.915	0.775	0.739	0.827	0.630
2000	0.972	0.990	0.971	0.961	0.986	0.944	0.904	0.941	0.848
4000	1.000	1.000	0.998	0.996	1.000	0.997	0.983	0.991	0.971
8000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.997
16000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

satisfied since by the i.i.d. observation Assumption 4, the mixing coefficient $\gamma[k]=0$ for all $k \geq 1$.

Next we verify Equation A.2 in the statement of this Lemma. By definition of $\eta_{m, n}$, we can write $m_{n}^{*}(w)$ as

$$
\begin{aligned}
& m_{n}^{*}(w)=h \eta_{m, n}(w)+\frac{1}{n h^{d_{m}}} \Sigma_{n, m}^{-(s, \cdot)} H_{n}^{-1} \sum_{i=1}^{n} \boldsymbol{K}_{s, h}\left(S_{i}-s\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{z, h}\left(Z_{i}-z\right) \\
& \times\left[\mathbb{E}\left[Y_{i} \mid W_{i}\right]-\sum_{0 \leq|\underline{r}| \leq p} \frac{1}{|\underline{r}|!} \alpha_{\underline{r}} \cdot \mu_{\underline{r}}^{m}\left(W_{i}-w\right)\right] \mu^{m}\left(W_{i}-w\right) .
\end{aligned}
$$

To show the second RHS term is of order $O_{p}\left(h^{p+1}\right)$, it is sufficient to show that the following term is of order $O\left(h^{p+1}\right)$ uniformly in w :
$e_{n} \equiv \frac{1}{h^{d_{m}}} \mathbb{E}\left|\boldsymbol{K}_{s, h}\left(S_{i}-s\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{z, h}\left(Z_{i}-z\right) \tilde{\mu}^{m}\left(W_{i}-w\right)\left[\mathbb{E}\left[Y_{i} \mid W_{i}\right]-\sum_{0 \leq|\underline{r}| \leq p} \frac{1}{|\underline{r}|!} \alpha_{\underline{r}} \cdot \mu_{\underline{r}}^{m}\left(W_{i}-w\right)\right]\right|$,
where $\tilde{\mu}^{m}\left(W_{i}-w\right)=\Sigma_{n, m}^{-(4, \cdot)}(w) H_{n}^{-1} \mu^{m}\left(W_{i}-w\right)$. For a generic vector C_{i}, let $u_{c}=\frac{C_{i}-c}{h}$.
Conducting changing variable we have

$$
e_{n}=\int\left|\boldsymbol{K}_{s}\left(u_{s}\right) \boldsymbol{K}_{x}\left(u_{x}\right) \boldsymbol{K}_{z}\left(u_{z}\right) \tilde{\mu}^{m}\left(h u_{w}\right)\right| \times\left|M\left(w+h u_{w}\right)-\sum_{0 \leq|\underline{r}| \leq p} \frac{1}{|\underline{r}|!} \alpha_{\underline{r}} \cdot \mu_{\underline{r}}^{m}\left(h u_{w}\right)\right| g_{w}\left(h u_{w}+w\right) d u_{w}
$$

where $M(\cdot)=\mathbb{E}[Y \mid W=\cdot]$ and g_{w} is the density of $W . e_{n}$ is of order $O\left(h^{p+1}\right)$ since M is $p+1$ times continuously differentiable, g_{w} is uniformly bounded and the kernel function is bounded with finite support. Hence we have uniformly over w

$$
\left|h^{-1} m_{n}^{*}(w)-\eta_{m, n}(w)\right|=O_{p}\left(h^{p}\right)
$$

Table 9: Coverage frequency for $\beta_{1}(s)$, Size

s	n	$c=0$			$c=-0.01$			$c=-0.03$		
		90\%	95\%	99\%	90\%	95\%	99\%	90\%	95\%	99\%
$s=-1.8$	1000	0.84	0.901	0.958	0.812	0.894	0.964	0.818	0.889	0.961
	2000	0.863	0.931	0.979	0.853	0.921	0.976	0.843	0.916	0.98
	4000	0.883	0.945	0.99	0.878	0.935	0.981	0.87	0.928	0.986
	8000	0.891	0.942	0.984	0.885	0.942	0.995	0.889	0.932	0.987
	16000	0.884	0.945	0.984	0.891	0.953	0.987	0.915	0.946	0.985
$s=-1$	1000	0.885	0.942	0.98	0.884	0.934	0.983	0.896	0.934	0.981
	2000	0.898	0.938	0.988	0.895	0.952	0.986	0.897	0.947	0.981
	4000	0.91	0.947	0.992	0.896	0.948	0.985	0.909	0.945	0.988
	8000	0.899	0.942	0.988	0.898	0.94	0.99	0.913	0.951	0.994
	16000	0.889	0.957	0.997	0.902	0.952	0.998	0.916	0.96	0.992
$s=0$	1000	0.864	0.929	0.988	0.87	0.943	0.986	0.883	0.921	0.978
	2000	0.865	0.925	0.983	0.898	0.927	0.984	0.881	0.94	0.99
	4000	0.892	0.949	0.986	0.875	0.937	0.987	0.898	0.947	0.992
	8000	0.863	0.932	0.988	0.896	0.943	0.982	0.909	0.938	0.988
	16000	0.882	0.935	0.99	0.9	0.942	0.991	0.917	0.948	0.987
$s=1$	1000	0.899	0.947	0.99	0.883	0.948	0.988	0.901	0.931	0.991
	2000	0.886	0.957	0.993	0.894	0.95	0.985	0.889	0.945	0.994
	4000	0.914	0.945	0.992	0.902	0.947	0.991	0.902	0.95	0.99
	8000	0.902	0.934	0.989	0.897	0.954	0.985	0.911	0.945	0.99
	16000	0.909	0.951	0.989	0.9	0.944	0.989	0.893	0.959	0.99
$s=1.8$	1000	0.828	0.897	0.973	0.854	0.916	0.976	0.842	0.895	0.964
	2000	0.847	0.911	0.962	0.851	0.923	0.97	0.854	0.908	0.981
	4000	0.876	0.922	0.983	0.881	0.926	0.982	0.88	0.932	0.983
	8000	0.877	0.937	0.983	0.899	0.944	0.987	0.886	0.95	0.988
	16000	0.864	0.956	0.993	0.886	0.949	0.983	0.895	0.952	0.985

Therefore, by triangular inequality,

$$
\begin{aligned}
& \sup _{w \in \mathscr{W}}\left|\{\hat{m}(w)-m(w)\}-\eta_{m, n}(w)\right| \leq \sup _{w \in \mathscr{W}}\left|\hat{m}(w)-m(w)-h^{-1} m_{n}^{*}(w)\right| \\
&+\sup _{w \in \mathscr{W}}\left|h^{-1} m_{n}^{*}(w)-\eta_{m, n}(w)\right|=O_{p}\left(\frac{\log n}{n h^{d_{m}+1}}\right)+O_{p}\left(h^{p}\right)
\end{aligned}
$$

which establishes Equation A.2.
Let $\tilde{W}=(X, Z)$ and $\tilde{\mathscr{W}}$ be its support. Again, to simplify notation, we use π to denote a generic element from the vector $\boldsymbol{\pi}_{0}=\left[\pi_{1}, \ldots, \pi_{T}\right]^{\prime}$. We define other notation in a similar way as we define them for estimation m, with π replacing m. For example, $\Sigma_{n, \pi}$ and Σ_{π} are two matrices defined analogously to $\Sigma_{n, m}$ and Σ_{m}, with matrix dimension adjusted accordingly.

Lemma 2. Suppose that Assumptions 1 to 5 and 8 to 10 hold, then uniformly over $\tilde{\mathscr{W}}$,

$$
\hat{\pi}(x, z)-\pi(x, z)-\pi_{n}^{*}(x, z)=O_{p}\left(\frac{\log n}{n h^{d_{\pi}}}\right)
$$

Table 10: Testing $H_{0}: \beta_{1}(-0.5)=0$ vs $H_{0}: \beta_{1}(-0.5) \neq 0$, Power

	Rejection Frequencies									
	$c=0$			$c=-0.01$				$c=-0.03$		
n	10%	5%	1%	10%	5%	1%	10%	5%	1%	
1000	0.878	0.923	0.806	0.850	0.915	0.775	0.739	0.827	0.630	
2000	0.972	0.990	0.971	0.961	0.986	0.944	0.904	0.941	0.848	
4000	1.000	1.000	0.998	0.996	1.000	0.997	0.983	0.991	0.971	
8000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.997	
16000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

where π_{n}^{*} is the Bahadur representation of $\hat{\pi}-\pi$:

$$
\begin{align*}
\pi_{n}^{*}(x, z)=-\frac{1}{n h^{d_{\pi}}} \Sigma_{n, \pi}^{-(1, \cdot)} & H_{n}^{-1} \sum_{i=1}^{n} \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{z, h}\left(Z_{i}-z\right) \\
& \times\left[1\left\{D_{i}=d\right\}-\sum_{0 \leq|\underline{r}| \leq p} \frac{1}{|\underline{r}|!} \alpha_{\underline{r}} \cdot \mu^{\pi}\left(\widetilde{W}_{i}-\widetilde{w}\right)\right] \mu^{\pi}\left(\tilde{W}_{i}-\tilde{w}\right) \tag{A.3}
\end{align*}
$$

where $\Sigma_{n, \pi}^{-(1, \cdot)}$ is the first row $\Sigma_{n, \pi}^{-1}$. Furthermore, let $\epsilon_{i}^{\pi}=1\left\{D_{i}=d\right\}-\operatorname{Pr}\left(D_{i}=d \mid X_{i}, Z_{i}\right)$ and let

$$
\eta_{\pi, n}(x, z)=-\frac{1}{n h^{d_{\pi}}} \Sigma_{n, \pi}^{-(1, \cdot)} H_{n}^{-1} \sum_{i=1}^{n} \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{z, h}\left(Z_{i}-z\right) \epsilon_{i}^{\pi} \mu^{\pi}\left(\tilde{W}_{i}-\tilde{w}\right)
$$

then

$$
\begin{equation*}
\left.\sup _{(x, z) \in \tilde{\mathscr{W}}}\left|\hat{\pi}(x, z)-\pi(x, z)-\eta_{n, \pi}(x, z)\right| \leq O_{p}\left(\frac{\log n}{n h^{d_{\pi}}}\right)+O_{p}\left(h^{p+2}\right)\right) \tag{A.4}
\end{equation*}
$$

Proof. We verify $K L X-A 6$; the other assumptions (A1-A5 and A7) and the rest of the proof can be verified analogously to Lemma 1. Since $n h^{d_{\pi}} \succ n h^{d_{m}+2} \rightarrow \infty$ at polynomial rate, the first condition in the Equation A. 2 of KLX-A6 is satisfied. The second condition in the Equation A.2 holds because we take $\lambda_{2}=1 / 2$ and the assumption that $n h^{d_{\pi}+2(p+1)} \rightarrow 0$ by Assumption g-ii. To verify the third condition in the Equation A.2, let $\gamma_{n}=n h^{d_{\pi}} / \log n$, as before, we have for some $M>2$,

$$
\begin{gathered}
d_{n}=\gamma_{n}^{-1-\frac{1}{4}+\frac{1}{2}} \log n=\gamma_{n}^{-\frac{3}{4}} \log n, \quad r(n)=\gamma_{n}^{\frac{1}{4}} \\
M_{n}^{(1)}=M \gamma_{n}^{-1}, \quad M_{n}^{(2)}=M^{\frac{1}{4}} \gamma_{n}^{-\frac{1}{2}}
\end{gathered}
$$

Hence we have

$$
\begin{gathered}
n^{-1}\{r(n)\}^{\nu_{2} / 2} d_{n} \log n\left\{M_{n}^{(2)}\right\}^{-1}=M^{-1 / 4}\{\log n\}^{2} n^{-1} \gamma_{n}^{\frac{\nu_{2}}{8}-\frac{3}{4}+\frac{1}{2}}=M^{-1 / 4}\{\log n\}^{2} n^{-1} \gamma_{n}^{\frac{\nu_{2}-2}{8}} \\
=M^{-1 / 4}\{\log n\}^{2-\frac{\nu_{2}-2}{8}} n^{-1}\left(n h^{d_{\pi}}\right)^{\frac{\nu_{2}-2}{8}}
\end{gathered}
$$

Note that $\mathbb{E}\left|\epsilon_{i}^{\pi}\right|^{\nu_{1}}<\infty$ for any ν_{1} since ϵ_{i}^{π} is bounded; then the above quantity diverges to
infinity by letting ν_{2} arbitrarily large. Finally, note that the bias is of order h^{p+2} by $K L X$ Proposition 2.

Lemma 3. Let g_{z} be the density of Z and g_{w} be the density of W. Let $\eta_{m, n}$ and $\eta_{\pi, n}$ be as defined in Equations (1) and (2), respectively. Suppose that the assumptions of Proposition 1 are satisfied, then

$$
\frac{\sqrt{n h^{d_{m}+2-d_{z}}}}{n} \sum_{i} \boldsymbol{\pi}\left(x, Z_{i}\right) \eta_{m, n}\left(s, x, Z_{i}\right) \xrightarrow{d} N\left(0, \Omega_{m}\right) .
$$

where Ω_{m} is a $T \times T$ positive definite matrix

$$
\begin{align*}
\Omega_{m}(s, x)=\int & \left\{\sigma_{m}^{2}\left(x, s, Z_{1}\right)\left(\int \Gamma\left(Z_{1} ; u_{s}, u_{x},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z}\right)^{2}\right. \\
& \left.\times \boldsymbol{K}_{x}^{2}\left(u_{x}\right) \boldsymbol{K}_{s}^{2}\left(u_{s}\right) g_{z}^{2}\left(Z_{1}\right) \boldsymbol{\pi}\left(x, Z_{1}\right) \boldsymbol{\pi}^{\prime}\left(x, Z_{1}\right)\right\} g_{w}\left(s, x, Z_{1}\right) d u_{x} d u_{s} d Z_{1} \tag{A.5}
\end{align*}
$$

$\sigma_{m}^{2}(w)=\mathbb{V}\left[\epsilon^{m} \mid W=w\right]$ and $\Gamma(\cdot)$ is defined in Equation A.6).
For a generic element π in $\boldsymbol{\pi}_{0}=\left[\pi_{1}, \ldots, \pi_{T}\right]^{\prime}$, there is

$$
\frac{\sqrt{n h^{d_{\pi}-d_{z}}}}{n} \sum_{i} m\left(s, x, Z_{i}\right) \eta_{\pi, n}\left(x, Z_{i}\right) \xrightarrow{d} N\left(0, \Omega_{\pi}\right),
$$

Ω_{π} is a positive scalar such that

$$
\Omega_{\pi} \equiv \int\left\{\sigma_{\pi}^{2}\left(x, Z_{1}\right)\left(\int \Psi\left(Z_{1} ; u_{x},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z}\right)^{2} K^{2}\left(u_{x}\right) g_{z}^{2}\left(Z_{1}\right) m^{2}\left(s, x, Z_{1}\right)\right\} g_{w}\left(s, x, Z_{1}\right) d u_{x} d Z_{1}
$$

and $\sigma_{\pi}^{2}(x, z)=\mathbb{V}\left[\epsilon^{\pi} \mid(X, Z)=(x, z)\right]$ and $\Psi(\cdot)$ is defined in Equation A.9.
Proof. Recall that

$$
\eta_{m, n}(w)=-\frac{1}{n h^{d_{m}+1}} \Sigma_{n, m}^{-(s,)} H_{n}^{-1} \sum_{i=1}^{n} \boldsymbol{K}_{s, h}\left(S_{i}-s\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{z, h}\left(Z_{i}-z\right) \epsilon_{i}^{m} \mu^{m}\left(W_{i}-w\right)
$$

$$
\text { where } \epsilon_{i}^{m}=Y_{i}-\mathbb{E}\left[Y_{i} \mid W_{i}\right] . \text { Let } d_{z} \text { be the dimension of } Z \text {, then }
$$

$$
\begin{aligned}
& \frac{\sqrt{n h^{d_{m}+2-d_{z}}}}{n} \sum_{i} \boldsymbol{\pi}\left(x, Z_{i}\right) \eta_{m, n}\left(s, x, Z_{i}\right) \\
= & -\frac{1}{n \sqrt{h^{d_{z}}} \sqrt{n h^{d_{m}}}} \sum_{i} \sum_{j \neq i} \boldsymbol{\pi}\left(x, Z_{i}\right) \Sigma_{n, m}^{-(s, \cdot)}\left(Z_{i}\right) \boldsymbol{K}_{z, h}\left(Z_{j}-Z_{i}\right) \boldsymbol{K}_{x, h}\left(X_{j}-x\right) \boldsymbol{K}_{s, h}\left(S_{j}-s\right) \epsilon_{j}^{m} H_{n}^{-1} \mu^{m}\left(W_{j}-\left(s, x, Z_{i}\right)^{\prime}\right) \\
- & \underbrace{\frac{\boldsymbol{K}_{z}(0)}{n \sqrt{h^{d_{z}}} \sqrt{n h^{d_{m}}}} \sum_{i} \boldsymbol{\pi}\left(x, Z_{i}\right) \Sigma_{n, m}^{-(s, \cdot)}\left(Z_{i}\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{s, h}\left(S_{i}-s\right) \epsilon_{i}^{m} H_{n}^{-1} \mu^{m}\left(W_{i}-\left(s, x, Z_{i}\right)^{\prime}\right) .}_{B 1}
\end{aligned}
$$

where we abbreviate $\Sigma_{n, m}^{-(s, \cdot)}\left(s, x, Z_{i}\right)$ as $\Sigma_{n, m}^{-(s, \cdot)}\left(Z_{i}\right)$. Since the second term $B 1$ is asymptoti-
cally negligible, we only focus on the first term. Note that the vector

$$
H_{n}^{-1} \mu^{m}\left(W_{j}-\left(s, x, Z_{i}\right)^{\prime}\right)=\left(1, \frac{Z_{j}-Z_{i}}{h}, \frac{X_{j}-x}{h}, \frac{S_{j}-s}{h},\left(\frac{Z_{j}-Z_{i}}{h}\right)^{2}, \cdots,\left(\frac{S_{j}-s}{h}\right)^{p}\right)^{\prime}
$$

then we can write in short hand

$$
\Sigma_{n, m}^{-(s, \cdot)}\left(Z_{i}\right) H_{n}^{-1} \mu^{m}\left(W_{j}-\left(s, x, Z_{i}\right)^{\prime}\right)=\Gamma_{n}\left(Z_{i} ; \frac{S_{j}-s}{h}, \frac{X_{j}-x}{h}, \frac{Z_{j}-Z_{i}}{h}\right)
$$

Since $\Sigma_{n, m}^{-(s, \cdot)}(w)$ converges uniformly to $\Sigma_{m}^{-(s, \cdot)}(w)$, it follows that

$$
\begin{align*}
\Sigma_{m}^{-(s, \cdot)}\left(Z_{i}\right) H_{n}^{-1} \mu^{m}\left(W_{j}-\left(s, x, Z_{i}\right)^{\prime}\right) & \equiv \Gamma\left(Z_{i} ; \frac{S_{j}-s}{h}, \frac{X_{j}-x}{h}, \frac{Z_{j}-Z_{i}}{h}\right) \\
& =\Gamma_{n}\left(Z_{i} ; \frac{S_{j}-s}{h}, \frac{X_{j}-x}{h}, \frac{Z_{j}-Z_{i}}{h}\right)+o(1) \tag{A.6}
\end{align*}
$$

By defining
$\psi_{i j}^{*}=\boldsymbol{\pi}\left(x, Z_{i}\right) \boldsymbol{K}_{z, h}\left(Z_{j}-Z_{i}\right) \boldsymbol{K}_{x, h}\left(X_{j}-x\right) \boldsymbol{K}_{s, h}\left(S_{j}-s\right) \epsilon_{j}^{m} \Gamma\left(Z_{i} ; \frac{S_{j}-s}{h}, \frac{X_{j}-x}{h}, \frac{Z_{j}-Z_{i}}{h}\right)$,
and $\psi_{i j}=\frac{1}{2}\left(\psi_{i j}^{*}+\psi_{j i}^{*}\right)$, we can write

$$
\frac{\sqrt{n h^{d_{m}+2-d_{z}}}}{n} \sum_{i} \pi\left(x, Z_{i}\right) \eta_{m, n}\left(Z_{i}\right) \stackrel{d}{\approx}-\frac{\sqrt{n}}{n^{2}} \sum_{i} \sum_{j \neq i} \frac{\psi_{i j}}{\sqrt{h^{d_{z}}} \sqrt{h^{d_{m}}}}
$$

So we can approximate the objective of analysis by a U-statistics.
It is easy to verify that $\mathbb{E}\left[\psi_{i j}\right]=0$ since $\mathbb{E}\left[\epsilon_{j}^{m} \mid W_{i}\right]=\mathbb{E}\left[\epsilon_{j}^{m} \mid W_{j}\right]=0$. To derive the limiting distribution, it remains to find the variance. Let $\bar{\psi}_{1}=\mathbb{E}\left[\psi_{12} \mid W_{1}, Y_{1}\right]=\frac{1}{2}\left\{\mathbb{E}\left[\psi_{12}^{*} \mid W_{1}, Y_{1}\right]+\right.$ $\left.\mathbb{E}\left[\psi_{21}^{*} \mid W_{1}, Y_{1}\right]\right\}$; based on the standard U-statistics asymptotic result, the limiting variance is $4 \mathbb{V}\left(\bar{\psi}_{1}\right) /\left(h^{\left.d_{z}+d_{m}\right)}\right.$.

By law of iterated expectation, i.i.d. observation assumption and $\mathbb{E}\left[\epsilon_{2}^{m} \mid W_{2}\right]=0$, we have

$$
\mathbb{E}\left[\psi_{12}^{*} \mid W_{1}, Y_{1}\right]=\mathbb{E}\left[\mathbb{E}\left[\psi_{12}^{*} \mid W_{2}, W_{1}, Y_{1}\right] \mid W_{1}, Y_{1}\right]=0
$$

Therefore,

$$
\begin{aligned}
& 2 \bar{\psi}_{1}=\mathbb{E}\left[\psi_{21}^{*} \mid W_{1}, Y_{1}\right] \\
&= \mathbb{E}\left[\left.\boldsymbol{\pi}\left(x, Z_{2}\right) \boldsymbol{K}_{z, h}\left(Z_{2}-Z_{1}\right) \boldsymbol{K}_{x, h}\left(X_{1}-x\right) \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \epsilon_{1}^{m} \Gamma\left(Z_{2} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h}, \frac{Z_{1}-Z_{2}}{h}\right) \right\rvert\, W_{1}, Y_{1}\right] \\
&= \epsilon_{1}^{m} \boldsymbol{K}_{x, h}\left(X_{1}-x\right) \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \mathbb{E}\left[\left.\boldsymbol{\pi}\left(x, Z_{2}\right) \Gamma\left(Z_{2} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h}, \frac{Z_{1}-Z_{2}}{h}\right) \boldsymbol{K}_{z, h}\left(Z_{2}-Z_{1}\right) \right\rvert\, W_{1}, Y_{1}\right] \\
& \stackrel{(i)}{=} \epsilon_{1}^{m} \boldsymbol{K}_{x, h}\left(X_{1}-x\right) \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \int \boldsymbol{\pi}\left(x, Z_{2}\right) \Gamma\left(Z_{2} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h}, \frac{Z_{1}-Z_{2}}{h}\right) \boldsymbol{K}_{z, h}\left(Z_{2}-Z_{1}\right) g_{z}\left(Z_{2}\right) d Z_{2} \\
& \stackrel{(i i)}{=} h^{d_{z}} \epsilon_{1}^{m} \boldsymbol{K}_{x, h}\left(X_{1}-x\right) \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \int \boldsymbol{\pi}\left(x, Z_{1}+h u_{z}\right) \Gamma\left(Z_{1}+h u_{z} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) g_{z}\left(Z_{1}+h u_{z}\right) d u_{z} \\
& \stackrel{(i i i)}{=} h^{d_{z}} \epsilon_{1}^{m} \boldsymbol{K}_{x, h}\left(X_{1}-x\right) \boldsymbol{K}_{s, h}\left(S_{1}-s\right)\left\{\boldsymbol{\pi}\left(x, Z_{1}\right) g_{z}\left(Z_{1}\right) \int \Gamma\left(Z_{1} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z}+o(h)\right\},
\end{aligned}
$$

where (i) holds because i.i.d. observations; (ii) holds by changing variable $u_{z}=\left(Z_{2}-Z_{1}\right) / h$, and (iii) holds by the continuous differentiability of the integrand (implied by Assumption 10) and the assumption that the support of the kernel is bounded. So the dominant term of $2 \psi_{1}$ is

$$
h^{d_{z}} \epsilon_{1}^{m} \boldsymbol{K}_{x, h}\left(X_{1}-x\right) \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \boldsymbol{\pi}\left(x, Z_{1}\right) g_{z}\left(Z_{1}\right) \int \Gamma\left(Z_{1} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z} .
$$

Since $\mathbb{E}\left[\bar{\psi}_{1}\right]=0$, then up to the negligible terms, we have

$$
\begin{align*}
& \quad 4 \mathbb{V}\left(\bar{\psi}_{1}\right)=4 \mathbb{E}\left[\bar{\psi}_{1} \bar{\psi}_{1}^{\prime}\right]=h^{2 d d_{z_{\mathbb{E}}}}\left[\left(\epsilon_{1}^{m} \boldsymbol{K}_{x, h}\left(X_{1}-x\right) \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \boldsymbol{g}_{z}\left(Z_{1}\right) \int \Gamma\left(Z_{1} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z}\right)^{2} \boldsymbol{\pi}\left(x, Z_{1}\right) \boldsymbol{\pi}^{\prime}\left(x, Z_{1}\right)\right]+o(1) \\
& \stackrel{(i)}{=} h^{2 d_{\boldsymbol{z}_{\mathbb{E}}}\left[\sigma_{m}^{2}\left(W_{1}\right)\left(\boldsymbol{K}_{x, h}\left(X_{1}-x\right) \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \boldsymbol{g}_{z}\left(Z_{1}\right) \int \Gamma\left(Z_{1} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z}\right)^{2} \boldsymbol{\pi}\left(x, Z_{1}\right) \boldsymbol{\pi}^{\prime}\left(x, Z_{1}\right)\right]+o(1)} \\
& \stackrel{(i i)}{=}\left(h^{2 d_{z}+d_{x}+d_{s}}\right) \int\left\{\sigma_{m}^{2}\left(x, s, Z_{1}\right) \boldsymbol{K}_{x}^{2}\left(u_{x}\right) \boldsymbol{K}_{s}^{2}\left(u_{s}\right) g_{z}^{2}\left(Z_{1}\right)\left(\int \Gamma\left(Z_{1} ; u_{s}, u_{x},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z}\right)^{2} \boldsymbol{\pi}\left(x, Z_{1}\right) \boldsymbol{\pi}^{\prime}\left(x, Z_{1}\right)\right\} g_{w}\left(s, x, Z_{1}\right) d u_{x} d u_{s} d Z_{1}+o(1) \\
& \stackrel{(i i i)}{=}\left(h^{d_{z}+d_{m}}\right) \int\left\{\sigma_{m}^{2}\left(x, s, Z_{1}\right) \boldsymbol{K}_{x}^{2}\left(u_{x}\right) \boldsymbol{K}_{s}^{2}\left(u_{s}\right) g_{z}^{2}\left(Z_{1}\right)\left(\int \Gamma\left(Z_{1} ; u_{s}, u_{x},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z}\right)^{2} \boldsymbol{\pi}\left(x, Z_{1}\right) \boldsymbol{\pi}^{\prime}\left(x, Z_{1}\right)\right\} g_{w}\left(s, x, Z_{1}\right) d u_{x} d u_{s} d Z_{1}+o(1) \tag{A.7}
\end{align*}
$$

where (i) holds by taking the conditional expectation of $\left(\epsilon_{1}^{m}\right)^{2}$ given W_{1}; (ii) holds by changing variable $u_{x}=\left(X_{1}-x\right) / h, u_{s}=\left(S_{1}-s\right) / h$ and ingoing higher order terms, and (iii) holds because $d_{m}=d_{s}+d_{z}+d_{x}$.

Then we know that

$$
\begin{equation*}
4 \mathbb{V}\left(\frac{\bar{\psi}_{1}}{\sqrt{h^{d_{m}+d_{z}}}}\right)=\Omega_{m}(s, x), \tag{A.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega_{m}(s, x)=\int\left\{\sigma_{m}^{2}\left(s, x, Z_{1}\right)\left(\int \Gamma\left(Z_{1} ; u_{s}, u_{x},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z}\right)^{2}\right. \\
&\left.\times \boldsymbol{K}_{x}^{2}\left(u_{x}\right) \boldsymbol{K}_{s}^{2}\left(u_{s}\right) g_{z}^{2}\left(Z_{1}\right) \boldsymbol{\pi}\left(x, Z_{1}\right) \boldsymbol{\pi}^{\prime}\left(x, Z_{1}\right)\right\} g_{w}\left(s, x, Z_{1}\right) d u_{x} d u_{s} d Z_{1},
\end{aligned}
$$

where the Γ term is defined in Equation A.6). By the standard U statistics theory, we have
(by abbreviating $\Omega_{m}(s, x)$ as Ω_{m})

$$
\frac{\sqrt{n h^{d_{m}+2-d_{z}}}}{n} \sum_{i} \pi\left(x, Z_{i}\right) \eta_{m, n}\left(Z_{i}\right) \xrightarrow{d} N\left(0, \Omega_{m}\right) .
$$

Following similar argument, we can show that

$$
\frac{\sqrt{n h^{d_{\pi}-d_{z}}}}{n} \sum_{i} m\left(x, s, Z_{i}\right) \eta_{\pi, n}\left(Z_{i}\right) \xrightarrow{d} N\left(0, \Omega_{\pi}\right)
$$

where

$$
\Omega_{\pi} \equiv \int\left\{\sigma_{\pi}^{2}\left(x, Z_{1}\right) \Psi^{2}\left(Z_{1} ; u_{x},-u_{z}\right) \boldsymbol{K}_{x}^{2}\left(u_{x}\right) g_{z}^{2}\left(Z_{1}\right) m^{2}\left(s, x, Z_{1}\right)\right\} g_{w}\left(s, x, Z_{1}\right) d u_{x} d Z_{1}
$$

where the shorthand term Ψ is defined such that

$$
\begin{align*}
& \Sigma_{\pi}^{-(\cdot)}\left(Z_{i}\right) H_{n}^{-1} \mu^{\pi}\left(\left(X_{j}, Z_{j}\right)-\left(x, Z_{i}\right)^{\prime}\right) \equiv \Psi\left(Z_{i} ; \frac{X_{j}-x}{h}, \frac{Z_{j}-Z_{i}}{h}\right) \\
= & \Psi_{n}\left(Z_{i} ; \frac{X_{j}-x}{h}, \frac{Z_{j}-Z_{i}}{h}\right)+o(1)=\Sigma_{n, \pi}^{-(\cdot)}\left(Z_{i}\right) H_{n}^{-1} \mu^{\pi}\left(\left(X_{j}, Z_{j}\right)-\left(x, Z_{i}\right)^{\prime}\right)+o(1) \tag{A.9}
\end{align*}
$$

Since $d_{m}+2>d_{\pi}$, it follows that $\frac{\sqrt{n h^{d_{m}+2-d_{z}}}}{n} \sum_{i} m\left(x, s, Z_{i}\right) \eta_{\pi, n} \xrightarrow{p} 0$. For the same reason, the asymptotic covariance between $\frac{\sqrt{n h^{d_{m}+2-d_{z}}}}{n} \sum_{i} \boldsymbol{\pi}\left(x, Z_{i}\right)$ and $\frac{\sqrt{n h^{d_{m}+2-d_{z}}}}{n} \sum_{i} m\left(x, s, Z_{i}\right) \eta_{\pi, n}$ converges in probability to zero as well. This establishes the result.
Lemma 4. Let $\kappa_{n}=\sqrt{n h^{d_{m}+2-d_{z}}}$. Suppose that the assumptions of Proposition 1 are satisfied, then

$$
\frac{1}{n} \sum_{i} m\left(s, x, Z_{i}\right)\left\{r_{\pi, 1}+r_{\pi, 2}\right\}=o_{p}\left(\kappa_{n}^{-1}\right), \quad \frac{1}{n} \sum_{i} \boldsymbol{\pi}\left(x, Z_{i}\right)\left\{r_{m, 1}+r_{m, 2}\right\}=o_{p}\left(\kappa_{n}^{-1}\right)
$$

Proof. The first equality holds because $\frac{1}{n} \sum_{i} m\left(s, x, Z_{i}\right)=O_{p}(1 / \sqrt{n})=o\left(\kappa_{n}^{-1}\right)$, and the fact that $r_{\pi, 1}+r_{\pi, 2}=o_{p}(1)$ and does not depend on i. The second equality holds analogously.

Lemma 5. Suppose that the assumptions of Proposition 1 are satisfied and let $\eta_{m, n}(w)$ and $\eta_{\pi, n}(x, z)$ be as defined in Equations (1) and (2), then for a generic element $\pi \in \boldsymbol{\pi}_{0}$, then there exists λ_{m} and λ_{π} such that

$$
\frac{\sqrt{n h^{d_{m}+2-d_{z}}}}{n} \sum_{i} \eta_{m, n}\left(s, x, Z_{i}\right) \xrightarrow{d} N\left(0, \lambda_{m}\right) . ; \quad \frac{\sqrt{n h^{d_{\pi}-d_{z}}}}{n} \sum_{i} \eta_{\pi, n}\left(x, Z_{i}\right) \xrightarrow{d} N\left(0, \lambda_{\pi}\right) .
$$

Proof. It follows from the same argument as in Lemma 3 by replacing $\boldsymbol{\pi}\left(x, Z_{i}\right)$ and $m\left(x, s, Z_{i}\right)$ with 1 , respectively.

Lemma 6. Let $\kappa_{n}=\sqrt{n h^{d_{m}+2-d_{z}}}$. Suppose that the assumptions of Proposition 1 are satisfied, then $\left(r_{\pi, 1}+r_{\pi, 2}\right)\left(r_{m, 1}+r_{m, 2}\right)=o\left(\kappa_{n}^{-1}\right)$.

Proof. Note that

$$
\begin{gathered}
\kappa_{n}\left(r_{\pi, 1}+r_{\pi, 2}\right)\left(r_{m, 1}+r_{m, 2}\right)=\kappa_{n}\left(O_{p}\left(h^{p}\right)+O_{p}\left(\frac{\log n}{n h^{d_{m}+1}}\right)\right) \times\left(O_{p}\left(h^{p+2}\right)+O_{p}\left(\frac{\log n}{n h^{d_{\pi}}}\right)\right) \\
=\kappa_{n} O_{p}\left(h^{2 p+2}\right)+\kappa_{n} O_{p}\left(\frac{h^{p+2} \log n}{n h^{d_{m}+1}}\right)+\kappa_{n} O_{p}\left(\frac{h^{p} \log n}{n h^{d_{\pi}}}\right)+\kappa_{n} O_{p}\left(\frac{\log n}{n^{2} h^{d_{m}+1+d_{\pi}}}\right)
\end{gathered}
$$

The first right hand side term is $\sqrt{n h^{d_{m}+6-d_{z}+4 p}}=\sqrt{n h^{d_{\pi}+2+2 p}} \sqrt{h^{2 p+d_{s}-d_{z}}} \xrightarrow{p} 0$ by Assumption وf (ii) and Assumption 10 -(iii). The second RHS term is of order $\log n \sqrt{\frac{h^{2 p+4} n h^{d_{m}+2-d_{z}}}{n^{2} h^{2} d_{m}+2}}=$ $\log n \sqrt{\frac{h^{2 p+4}}{n h^{d_{m}+d_{z}}}} \prec \log n \sqrt{\frac{h^{d_{z}-d_{s}}}{n h^{d_{m}+d_{z}}}}=\log n \sqrt{\frac{1}{n h^{d_{m}+d_{s}}}} \xrightarrow{p} 0$, where $x \prec y$ denote $x / y \xrightarrow{p} 0$. The third RHS term is of order $\log n \sqrt{\frac{h^{2 p} n h^{d_{m}+2-d_{z}}}{n^{2} h^{2 d_{\pi}}}}=\log n \sqrt{\frac{h^{2 p} h_{s} d_{s}+2}{n h^{d} \pi+d_{z}}} \xrightarrow{p} 0$ by Assumption g. (iii). For the fourth RHS term, it is of order $(\log n)^{2} \sqrt{\frac{n h^{d_{m}+2-d_{z}}}{n^{4} h^{2 d_{m}+2+2 d_{\pi}}}}=(\log n)^{2} \sqrt{\frac{1}{n^{3} h^{d_{m}+2 d_{\pi}+d_{z}}}}=$ $(\log n)^{2} \sqrt{\frac{1}{n h^{d \pi+d_{z}} n h^{d_{\pi}} n h^{d_{m}}}} \xrightarrow{p} 0$ by Assumption g-(i) and (ii).

Lemma 7. Let $\kappa_{n}=\sqrt{n h^{d_{m}+2-d_{z}}}$. Suppose that the assumptions of Proposition 1 are satisfied, then

$$
T_{n} \equiv \frac{1}{n} \sum_{i}\left\{\eta_{m, n}\left(s, x, Z_{i}\right)+r_{m, 1}+r_{m, 2}\right\}\left\{\eta_{\pi, n}\left(x, Z_{i}\right)+r_{\pi, 1}+r_{\pi, 2}\right\}=o_{p}\left(\kappa_{n}^{-1}\right)
$$

Proof. T_{n} can be decomposed as the following four terms,

$$
\begin{align*}
& T_{n}=\frac{1}{n} \sum_{i} \eta_{m, n}\left(s, x, Z_{i}\right) \eta_{\pi, n}\left(x, Z_{i}\right)+\left(r_{\pi, 1}+r_{\pi, 2}\right) \frac{1}{n} \sum_{i} \eta_{m, n}\left(s, x, Z_{i}\right) \\
&+\left(r_{m, 1}+r_{m, 2}\right) \frac{1}{n} \sum_{i} \eta_{\pi, n}\left(x, Z_{i}\right)+\left(r_{\pi, 1}+r_{\pi, 2}\right)\left(r_{m, 1}+r_{m, 2}\right) \tag{A.10}
\end{align*}
$$

The RHS4 is dealt with by Lemma 6. The RHS2 and RHS3 are of order $o_{p}\left(\kappa_{n}^{-1}\right)$ by Lemma 5 and the fact that the r terms converge to zero (in probability). It remains to verify RHS1 of Equation A.10 is also of order $o_{p}\left(\kappa_{n}^{-1}\right)$. Let

$$
\begin{align*}
& U_{n} \equiv \frac{1}{n} \sum_{i} \eta_{m, n}\left(s, x, Z_{i}\right) \eta_{\pi, n}\left(x, Z_{i}\right) \\
& =\frac{1}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \sum_{i}\left(\sum_{j} \boldsymbol{K}_{z, h}\left(Z_{j}-Z_{i}\right) \boldsymbol{K}_{x, h}\left(X_{j}-x\right) \boldsymbol{K}_{s, h}\left(S_{j}-s\right) \epsilon_{j}^{m} \Gamma\left(Z_{i} ; \frac{S_{j}-s}{h}, \frac{X_{j}-x}{h}, \frac{Z_{j}-Z_{i}}{h}\right)\right) \\
& \quad \times\left(\sum_{t} \boldsymbol{K}_{z, h}\left(Z_{t}-Z_{i}\right) \boldsymbol{K}_{x, h}\left(X_{t}-x\right) \epsilon_{t}^{\pi} \Psi\left(Z_{i} ; \frac{X_{t}-x}{h}, \frac{Z_{t}-Z_{i}}{h}\right)\right) \\
& \tag{A.11}\\
& =\frac{1}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{t=1}^{n} \xi_{i j t}^{*},
\end{align*}
$$

where

$$
\begin{aligned}
\xi_{i j t}^{*}=\Gamma & \left(Z_{i} ; \frac{S_{j}-s}{h}, \frac{X_{j}-x}{h}, \frac{Z_{j}-Z_{i}}{h}\right) \Psi\left(Z_{i} ; \frac{X_{t}-x}{h}, \frac{Z_{t}-Z_{i}}{h}\right) \\
& \times \boldsymbol{K}_{s, h}\left(S_{j}-s\right) \boldsymbol{K}_{x, h}\left(X_{j}-x\right) \boldsymbol{K}_{x, h}\left(X_{t}-x\right) \boldsymbol{K}_{z, h}\left(Z_{j}-Z_{i}\right) \boldsymbol{K}_{z, h}\left(Z_{t}-Z_{i}\right) \epsilon_{j}^{m} \epsilon_{t}^{\pi}
\end{aligned}
$$

and $\Psi\left(Z_{i} ; \frac{X_{t}-x}{h}, \frac{Z_{t}-Z_{i}}{h}\right)$ is defined analogously as $\Gamma\left(Z_{i} ; \frac{S_{j}-s}{h}, \frac{X_{j}-x}{h}, \frac{Z_{j}-Z_{i}}{h}\right)$. We decompose U_{n} into five parts:

$$
\begin{gathered}
U_{1 n}=\frac{1}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \sum_{i=1}^{n} \sum_{j \neq i}^{n} \sum_{t \neq j, t \neq i}^{n} \xi_{i j t}^{*}, \\
U_{2 n}=\frac{1}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \sum_{i=1}^{n} \sum_{j \neq i}^{n} \sum_{t=j}^{n} \xi_{i j t}^{*}=\frac{1}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \sum_{i=1}^{n} \sum_{j \neq i}^{n} \xi_{i j j}^{*}, \\
U_{3 n}=\frac{1}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{t \neq j}^{n} \xi_{i j t}^{*}=\frac{1}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \sum_{i=1}^{n} \sum_{t \neq i}^{n} \xi_{i i t}^{*}, \\
U_{4 n}=\frac{1}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \sum_{i=1}^{n} \sum_{j \neq i}^{n} \sum_{t=i}^{n} \xi_{i j t}^{*}=\frac{1}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \sum_{i=1}^{n} \sum_{j \neq i}^{n} \xi_{i j i}^{*} \\
U_{5 n}=\frac{1}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \sum_{i}^{n} \xi_{i i i}^{*}
\end{gathered}
$$

so $U_{n}=U_{1 n}+U_{2 n}+U_{3 n}+U_{4 n}+U_{5 n}$. We will show that all these terms are asymptotically negligible.

Part 1: $\boldsymbol{U}_{1 n}$. We write

$$
U_{1 n}=\frac{n(n-1)(n-2) \sqrt{h^{d_{m}+d_{\pi}}}}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \underbrace{\frac{1}{n(n-1)(n-2)} \times \sum_{i=1}^{n} \sum_{j \neq i}^{n} \sum_{i \neq j, t \neq i}^{n} \psi_{i j t}^{*}}_{\tilde{U}_{1 n}}
$$

where $\psi_{i j t}^{*}=\frac{\xi_{i j t}^{*}}{\sqrt{h^{d_{m}+d_{\pi}}}}$. The $U_{1 n}$ term is proportional to a third order U-statistics with kernel function $\psi_{i j t}^{*}$. Let $\psi_{i j t}$ be a symmetric transformation of $\psi_{i j t}^{*}$, that is, $\psi_{i j t}=\frac{1}{6} \sum_{p} \psi_{i j t}^{*}$ where \sum_{p} is the sum over all permutations of i, j, t. Write $H_{i}=\left(W_{i}, Y_{i}, D_{i}\right)$. It is staightforward to calculate that $\mathbb{E}\left[\psi_{123}^{*} \mid H_{1}\right]=\mathbb{E}\left[\psi_{123}^{*} \mid H_{2}\right]=\mathbb{E}\left[\psi_{123}^{*} \mid H_{3}\right]=0$, which implies that $\mathbb{E}\left[\psi_{i j t} \mid H_{1}\right]=0$ as well as $\mathbb{E}\left[U_{1 n}\right]=0$. Hence $\tilde{U}_{1 n}$ is a degenerated U-statistics. In the mean time, $\mathbb{E}\left[\psi_{123}^{2}\right]$
is of the same order of $\mathbb{E}\left[\left(\psi_{123}^{*}\right)^{2}\right]$, which is

$$
\begin{aligned}
& \mathbb{E}\left[\left(\psi_{123}^{*}\right)^{2}\right]=\frac{1}{h^{d_{m}+d_{\pi}}} \mathbb{E}\left[\left(\xi_{123}^{*}\right)^{2}\right] \\
& =\frac{1}{h^{d_{m}+d_{\pi}}} \int \Gamma^{2}\left(Z_{1} ; \frac{S_{2}-s}{h}, \frac{X_{2}-x}{h}, \frac{Z_{2}-Z_{1}}{h}\right) \Psi^{2}\left(Z_{1} ; \frac{X_{3}-x}{h}, \frac{Z_{3}-Z_{1}}{h}\right) \boldsymbol{K}_{s, h}^{2}\left(S_{2}-s\right) \boldsymbol{K}_{x, h}^{2}\left(X_{2}-x\right) \\
& \times \boldsymbol{K}_{x, h}^{2}\left(X_{3}-x\right) \boldsymbol{K}_{z, h}^{2}\left(Z_{2}-Z_{1}\right) \boldsymbol{K}_{z, h}^{2}\left(Z_{3}-Z_{1}\right)\left(\epsilon_{2}^{m} \epsilon_{3}^{\pi}\right)^{2} \bar{g}\left(Z_{1}, S_{2}, X_{2}, Z_{2}, X_{3}, Z_{3}\right) d\left(Z_{1}, S_{2}, X_{2}, Z_{2}, X_{3}, Z_{3}\right) \\
& \quad \approx \int \Gamma^{2}\left(Z_{1} ; u_{s}, u_{x 2}, u_{z 2}\right) \Psi^{2}\left(Z_{1} ; u_{x 3}, u_{z 3}\right) \boldsymbol{K}_{s}^{2}\left(u_{s}\right) \boldsymbol{K}_{x}^{2}\left(u_{x 2}\right) \boldsymbol{K}_{x}^{2}\left(u_{x 3}\right) \boldsymbol{K}_{z}^{2}\left(u_{z 2}\right) \boldsymbol{K}_{z}^{2}\left(u_{z 3}\right) \\
& \\
& \quad \times\left(\sigma_{m}\left(s, x, Z_{1}\right) \sigma_{\pi}\left(x, Z_{1}\right)\right)^{2} \bar{g}\left(Z_{1}, s, x, Z_{1}, x, Z_{1}\right) d\left(Z_{1}, u_{s}, u_{x 2}, u_{z 2}, u_{x 3}, u_{z 3}\right)
\end{aligned}
$$

where we apply changing of variable: $\left(S_{2}-s\right) / h=u_{s},\left(X_{2}-x\right) / h=u_{x 2},\left(X_{3}-x\right) / h=u_{x 3}$, $\left(Z_{2}-Z_{1}\right) / h=u_{z 2},\left(Z_{3}-Z_{1}\right) / h=u_{z 3}$ and use law of iterated expectation, it is straightforward to see that the above term is finite. Then by Serfling (1980, Theorem, Chapter 5.5.2), $n \tilde{U}_{1 n} \xrightarrow{d} 3 \mathscr{Y}$, where \mathscr{Y} is an infinite weighted sum of χ^{2} distributions. So the order of $U_{1 n}$ is

$$
U_{1 n} \sim O_{p}\left(\frac{n(n-1)(n-2) \sqrt{h^{d_{m}+d_{\pi}}}}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \frac{1}{n}\right)=O_{p}\left(\frac{1}{\sqrt{n^{2} h^{d_{\pi}+d_{m}+2}}}\right)
$$

By Assumption 9-iii, $n h^{d_{z}+d_{\pi}} \succ n h^{d_{z}+d_{\pi}+1} \rightarrow \infty$, hence,

$$
\kappa_{n} U_{1 n} \sim \sqrt{n h^{d_{m}+2-d_{z}}} \times O_{p}\left(\frac{1}{\sqrt{n^{2} h^{d_{\pi}+d_{m}+2}}}\right) \sim O_{p}\left(\sqrt{\frac{1}{n h^{d_{z}+d_{\pi}}}}\right)=o_{p}(1)
$$

Part 2: $\boldsymbol{U}_{2 n}$. Wherever causes no confusion, we will write $\Gamma_{i j}=\Gamma\left(Z_{i} ; \frac{S_{j}-s}{h}, \frac{X_{j}-x}{h}, \frac{Z_{j}-Z_{i}}{h}\right)$ and $\Psi_{i t}=\Psi\left(Z_{i} ; \frac{X_{t}-x}{h}, \frac{Z_{t}-Z_{i}}{h}\right)$. Now we analyze the $U_{2 n}$ term, which we can write as

$$
\begin{aligned}
& U_{2 n}=\frac{1}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \sum_{i=1}^{n} \sum_{j \neq i} \Gamma_{i j} \Psi_{i j} \boldsymbol{K}_{s, h}\left(S_{j}-s\right) \boldsymbol{K}_{x, h}^{2}\left(X_{j}-x\right) \boldsymbol{K}_{z, h}^{2}\left(Z_{j}-Z_{i}\right) \epsilon_{j}^{m} \epsilon_{j}^{\pi} \\
= & \underbrace{n^{3} h^{d_{m}+1} h^{d_{\pi}}}_{\tilde{U}_{2 n}^{\tau} n(n-1)} \times \underbrace{\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} \underbrace{\frac{1}{h^{\tau}} \Gamma_{i j} \Psi_{i j} \boldsymbol{K}_{s, h}\left(S_{j}-s\right) \boldsymbol{K}_{x, h}^{2}\left(X_{j}-x\right) \boldsymbol{K}_{z, h}^{2}\left(Z_{j}-Z_{i}\right) \epsilon_{j}^{m} \epsilon_{j}^{\pi}}}_{\phi_{i j}^{*}}
\end{aligned}
$$

where $\tau=\frac{1}{2} d_{s}+d_{z}+\frac{1}{2} d_{x}$. Now we analyze $\tilde{U}_{2 n}$, which is a second order statistics with kernel function $\phi_{i j}^{*}$. Let $\phi_{i j}$ be the symmetric transformation of $\phi_{i j}^{*}$. To calculate the variance of
$\tilde{U}_{2 n}$, we need to calculate the variance of $\mathbb{E}\left[\phi_{i j} \mid H_{1}\right]=\frac{1}{2} \mathbb{E}\left[\phi_{12}^{*} \mid H_{1}\right]+\frac{1}{2} \mathbb{E}\left[\phi_{21}^{*} \mid H_{1}\right]$.

$$
\begin{aligned}
& \mathbb{E}\left[\phi_{12}^{*} \mid H_{1}\right]=\frac{1}{h^{\tau}} \int \Gamma_{12} \Psi_{12} \boldsymbol{K}_{s, h}\left(S_{2}-s\right) \boldsymbol{K}_{x, h}^{2}\left(X_{2}-x\right) \boldsymbol{K}_{z, h}^{2}\left(Z_{2}-Z_{1}\right) \mathbb{E}\left[\epsilon_{2}^{m} \epsilon_{2}^{\pi} \mid W_{2}\right] g_{w}\left(W_{2}\right) d W_{2} \\
= & \frac{h^{d_{m}}}{h^{\tau}} \int \Gamma\left(Z_{1} ; u_{s}, u_{x}, u_{z}\right) \Psi\left(Z_{1} ; u_{x}, u_{z}\right) \boldsymbol{K}_{s}\left(u_{s}\right) \boldsymbol{K}_{x}^{2}\left(u_{x}\right) \boldsymbol{K}_{z}^{2}\left(u_{z}\right) \sigma_{m \pi}\left(s, x, Z_{1}+h u_{z}\right) g_{w}\left(s, x, Z_{1}+h u_{z}\right) d u_{s} d u_{x} d u_{z} \\
= & h^{\frac{1}{2} d_{s}+\frac{1}{2} d_{x}} \int \Gamma\left(Z_{1} ; u_{s}, u_{x}, u_{z}\right) \Psi\left(Z_{1} ; u_{x}, u_{z}\right) \boldsymbol{K}_{s}\left(u_{s}\right) \boldsymbol{K}_{x}^{2}\left(u_{x}\right) \boldsymbol{K}_{z}^{2}\left(u_{z}\right) \sigma_{m \pi}\left(s, x, Z_{1}+h u_{z}\right) g_{w}\left(s, x, Z_{1}+h u_{z}\right) d u_{s} d u_{x} d u_{z}
\end{aligned}
$$

where we apply the changing of variable $\left(S_{2}-s\right) / h=u_{s},\left(X_{2}-x\right) / h=u_{x},\left(Z_{2}-Z_{1}\right) / h=u_{z}$, and $\sigma_{m \pi}(s, x, z)=\mathbb{E}\left[\epsilon^{m} \epsilon^{\pi} \mid W=w\right]$. It is not difficult to see that $\mathbb{E}\left(\mathbb{E}\left[\phi_{12}^{*} \mid H_{1}\right]\right)^{2} \downarrow 0$.

Next, we look at $\mathbb{E}\left[\phi_{21}^{*} \mid H_{1}\right]$ and apply $\left(Z_{1}-Z_{2}\right) / h=u_{z}$,

$$
\begin{aligned}
& \mathbb{E}\left[\phi_{21}^{*} \mid H_{1}\right]=\frac{1}{h^{\tau}} \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \boldsymbol{K}_{x, h}^{2}\left(X_{1}-x\right) \int \Gamma_{21} \Psi_{21} \boldsymbol{K}_{z, h}^{2}\left(Z_{1}-Z_{2}\right) \mathbb{E}\left[\epsilon_{1}^{m} \epsilon_{1}^{\pi} \mid W_{1}\right] g_{z}\left(Z_{2}\right) d Z_{2} \\
= & \frac{h^{d_{z}}}{h^{\tau}} \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \boldsymbol{K}_{x, h}^{2}\left(X_{1}-x\right) \int \Gamma\left(Z_{1}-h u_{z} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h}, u_{z}\right) \Psi\left(Z_{1}-h u_{z} ; \frac{X_{1}-x}{h}, u_{z}\right) \boldsymbol{K}_{z}^{2}\left(u_{z}\right) \mathbb{E}\left[\epsilon_{1}^{m} \epsilon_{1}^{\pi} \mid W_{1}\right] g_{z}\left(Z_{1}-h u_{z}\right) d u_{z} \\
\approx & \frac{h^{d_{z}}}{h^{\tau}} \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \boldsymbol{K}_{x, h}^{2}\left(X_{1}-x\right) \sigma_{m \pi}\left(W_{1}\right) g_{z}\left(Z_{1}\right) \int \Gamma\left(Z_{1} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h}, u_{z}\right) \Psi\left(Z_{1} ; \frac{X_{1}-x}{h}, u_{z}\right) \boldsymbol{K}_{z}^{2}\left(u_{z}\right) d u_{z}
\end{aligned}
$$

where we apply $\left(Z_{1}-Z_{2}\right) / h=u_{z}$. Therefore,

$$
\begin{aligned}
& \mathbb{E}\left(\mathbb{E}\left[\phi_{21}^{*} \mid H_{1}\right]\right)^{2}= \\
\approx & \frac{h^{2 d_{z}}}{h^{2 \tau}} \int \boldsymbol{K}_{s, h}^{2}\left(S_{1}-s\right) \boldsymbol{K}_{x, h}^{4}\left(X_{1}-x\right) \sigma_{m \pi}^{2}\left(W_{1}\right) g_{z}^{2}\left(Z_{1}\right)\left(\int \Gamma\left(Z_{1} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h}, u_{z}\right) \Psi\left(Z_{1} ; \frac{X_{1}-x}{h}, u_{z}\right) \boldsymbol{K}_{z}^{2}\left(u_{z}\right) d u_{z}\right)^{2} g_{z}\left(Z_{1}\right) d Z_{1} \\
\approx & \frac{h^{2 d_{z}+d_{x}+d_{s}}}{h^{2 \tau}} \int \boldsymbol{K}_{s}^{2}\left(u_{s}\right) \boldsymbol{K}_{x}^{4}\left(u_{x}\right) \sigma_{m \pi}^{2}\left(s, x, Z_{1}\right) g_{z}^{2}\left(Z_{1}\right)\left(\iint \Gamma\left(Z_{1} ; u_{s}, u_{x}, u_{z}\right) \Psi\left(Z_{1} ; u_{x}, u_{z}\right) \boldsymbol{K}_{z}^{2}\left(u_{z}\right) d u_{z}\right)^{2} g_{z}\left(Z_{1}\right) d Z_{1}
\end{aligned}
$$

which is of order $O(1)$ the last equality holds because $\tau=\frac{1}{2} d_{s}+d_{z}+\frac{1}{2} d_{x}$. So we have $\mathbb{E}\left(\mathbb{E}\left[\phi_{21} \mid H_{1}\right]\right)^{2}=\max \left\{\mathbb{E}\left(\mathbb{E}\left[\phi_{21}^{*} \mid H_{1}\right]\right)^{2}, \mathbb{E}\left(\mathbb{E}\left[\phi_{12}^{*} \mid H_{1}\right]\right)^{2}\right\}=O(1)$. Therefore,

$$
\sqrt{n}\left(\tilde{U}_{2 n}-\mathbb{E}\left[\tilde{U}_{2 n}\right]\right)=O_{p}(1)
$$

It remains to analyze the order of $\mathbb{E}\left[\tilde{U}_{2 n}\right]$.

$$
\begin{aligned}
& \mathbb{E}\left[\phi_{21}^{*}\right]=\mathbb{E}\left[\mathbb{E}\left[\phi_{21}^{*} \mid H_{1}\right]\right]= \\
= & \frac{h^{d_{z}}}{h^{\tau}} \int \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \boldsymbol{K}_{x, h}^{2}\left(X_{1}-x\right) \sigma_{m \pi}\left(W_{1}\right) g_{z}\left(Z_{1}\right) \int \Gamma\left(Z_{1} ; \frac{S_{1}-s}{h}, \frac{X_{1}-x}{h}, u_{z}\right) \Psi\left(Z_{1} ; \frac{X_{1}-x}{h}, u_{z}\right) \boldsymbol{K}_{z}^{2}\left(u_{z}\right) d u_{z} d V \\
= & h^{\frac{1}{2} d_{s}+\frac{1}{2} d_{x}} \int \boldsymbol{K}_{x}^{2}\left(u_{x}\right) \boldsymbol{K}_{s}\left(u_{s}\right) \sigma_{m \pi}\left(s, x, Z_{1}\right) g_{z}\left(Z_{1}\right) \Gamma\left(Z_{1} ; u_{s}, u_{x}, u_{z}\right) \Psi\left(Z_{1} ; u_{x}, u_{z}\right) \boldsymbol{K}_{z}^{2}\left(u_{z}\right) d u_{z} d u_{x} d u_{s} d Z_{1}
\end{aligned}
$$

In the mean time, we can show that

$$
\begin{aligned}
& \mathbb{E}\left[\phi_{12}^{*}\right]=\mathbb{E}\left[\mathbb{E}\left[\phi_{12}^{*} \mid H_{1}\right]\right]= \\
= & \frac{h^{d_{z}}}{h^{\tau}} \int \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \boldsymbol{K}_{x, h}^{2}\left(X_{1}-x\right) \sigma_{m \pi}\left(W_{1}\right) g_{z}\left(Z_{1}\right) \int \tilde{\Gamma}\left(u_{z}, S_{1}, X_{1}\right) \tilde{\Psi}\left(u_{z}, X_{1}\right) \boldsymbol{K}_{z}^{2}\left(u_{z}\right) d u_{z} d W_{1} \\
= & h^{\frac{1}{2} d_{s}+\frac{1}{2} d_{x}} \int \Gamma\left(Z_{1} ; u_{s}, u_{x}, u_{z}\right) \Psi\left(Z_{1} ; u_{x}, u_{z}\right) \boldsymbol{K}_{s}\left(u_{s}\right) \boldsymbol{K}_{x}^{2}\left(u_{x}\right) \boldsymbol{K}_{z}^{2}\left(u_{z}\right) \sigma_{m \pi}\left(s, x, Z_{1}+h u_{z}\right) g_{w}\left(s, x, Z_{1}+h u_{z}\right) d u_{s} d u_{x} d u_{z} d
\end{aligned}
$$

So $\mathbb{E}\left[\tilde{U}_{2 n}\right]=O\left(h^{d_{m}} / h^{\tau}\right)=h^{\frac{1}{2} d_{s}+\frac{1}{2} d_{x}}$. Now we can conclude that

$$
\tilde{U}_{2 n}=\underbrace{\tilde{U}_{2 n}-\mathbb{E}\left[\tilde{U}_{2 n}\right]}_{=O_{p}\left(\frac{1}{\sqrt{n}}\right)}+\underbrace{\mathbb{E}\left[\tilde{U}_{2 n}\right]}_{=O\left(h^{\frac{1}{2} d_{s}+\frac{1}{2} d_{x}}\right)} .
$$

Therefore,

$$
\begin{aligned}
\kappa_{n} U_{2 n} \sim \frac{h^{\tau} \sqrt{n h^{d_{m}+2-d_{z}}}}{n h^{d_{m}+1+d_{\pi}}} \times O_{p}\left(\frac{1}{\sqrt{n}}\right)+ & \frac{h^{\tau} \sqrt{n h^{d_{m}+2-d_{z}}}}{n h^{d_{m}+1+d_{\pi}}} \times O\left(h^{\frac{1}{2} d_{s}+\frac{1}{2} d_{x}}\right) \\
& =O_{p}\left(\frac{1}{n h^{d_{\pi}}}\right)+O_{p}\left(\sqrt{\frac{h^{d_{s}}}{n h^{d_{\pi}+d_{z}}}}\right)=o_{p}(1)
\end{aligned}
$$

The RHS is o(1) because Assumption (iii).
Part 3: $\boldsymbol{U}_{\mathbf{3 n} \boldsymbol{n}}$. Let $k_{0}=K(0)$. Recall that
$U_{3 n}=\frac{k_{0}}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \times \sum_{i=1}^{n} \sum_{t \neq i}^{n} \underbrace{\Gamma_{i i} \Psi_{i t} \boldsymbol{K}_{s, h}\left(S_{i}-s\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{x, h}\left(X_{t}-x\right) \boldsymbol{K}_{z, h}\left(Z_{t}-Z_{i}\right) \epsilon_{i}^{m} \epsilon_{t}^{\pi}}_{\zeta_{i j}^{*}}$.
Let $\zeta_{i j}=\frac{1}{2}\left(\zeta_{i j}^{*}+\zeta_{j i}^{*}\right)$. So $U_{3 n}=\frac{k_{0}}{n^{3} h^{d m+1} h^{d \pi}} \times \sum_{i=1}^{n} \sum_{t \neq i}^{n} \zeta_{i j}$ is proportional to a U-statistics. Now consider

$$
\begin{aligned}
& \mathbb{E}\left[\zeta_{12}^{*} \mid H_{1}\right]=\mathbb{E}\left[\Gamma_{11} \Psi_{12} \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \boldsymbol{K}_{x, h}\left(X_{1}-x\right) \boldsymbol{K}_{x, h}\left(X_{2}-x\right) \boldsymbol{K}_{z, h}\left(Z_{2}-Z_{1}\right) \epsilon_{1}^{m} \epsilon_{2}^{\pi} \mid H_{1}\right] \\
&=\Gamma_{11} \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \boldsymbol{K}_{x, h}\left(X_{1}-x\right) \epsilon_{1}^{m} \mathbb{E}\left[\Psi_{12} \boldsymbol{K}_{x, h}\left(X_{2}-x\right) \boldsymbol{K}_{z, h}\left(Z_{2}-Z_{1}\right) \epsilon_{2}^{\pi} \mid H_{1}\right] \\
&= \Gamma_{11} \boldsymbol{K}_{s, h}\left(S_{1}-s\right) \boldsymbol{K}_{x, h}\left(X_{1}-x\right) \epsilon_{1}^{m} \mathbb{E}\left[\Psi_{12} \boldsymbol{K}_{x, h}\left(X_{2}-x\right) \boldsymbol{K}_{z, h}\left(Z_{2}-Z_{1}\right) \mathbb{E}\left[\epsilon_{2}^{\pi} \mid H_{1}, W_{2}\right] \mid H_{1}\right]=0
\end{aligned}
$$

Likewise,

$$
\begin{gathered}
\mathbb{E}\left[\zeta_{21}^{*} \mid H_{1}\right]=\mathbb{E}\left[\Gamma_{22} \Psi_{21} \boldsymbol{K}_{s, h}\left(S_{2}-s\right) \boldsymbol{K}_{x, h}\left(X_{2}-x\right) \boldsymbol{K}_{x, h}\left(X_{1}-x\right) \boldsymbol{K}_{z, h}\left(Z_{1}-Z_{2}\right) \epsilon_{2}^{m} \epsilon_{1}^{\pi} \mid H_{1}\right] \\
=\boldsymbol{K}_{x, h}\left(X_{1}-x\right) \epsilon_{1}^{\pi} \mathbb{E}\left[\Gamma_{22} \Psi_{21} \boldsymbol{K}_{s, h}\left(S_{2}-s\right) \boldsymbol{K}_{x, h}\left(X_{2}-x\right) \boldsymbol{K}_{z, h}\left(Z_{1}-Z_{2}\right) \epsilon_{2}^{m} \mid H_{1}\right] \\
=\boldsymbol{K}_{x, h}\left(X_{1}-x\right) \epsilon_{1}^{\pi} \mathbb{E}\left[\Gamma_{22} \Psi_{21} \boldsymbol{K}_{s, h}\left(S_{2}-s\right) \boldsymbol{K}_{x, h}\left(X_{2}-x\right) \boldsymbol{K}_{z, h}\left(Z_{1}-Z_{2}\right) \mathbb{E}\left[\epsilon_{2}^{m} \mid H_{1}, W_{2}\right] \mid H_{1}\right]=0 .
\end{gathered}
$$

Therefore,

$$
\mathbb{E}\left[\zeta_{12} \mid W_{1}, Y_{1}\right]=0 \Rightarrow \mathbb{E}\left[\zeta_{i j}\right]=0
$$

So we can conclude that $U_{3 n}$ is proportional to a degenerate U-statistics. It remains to find the order of the variance: $\mathbb{E}\left[\zeta_{12}^{2}\right]=\frac{1}{4} \mathbb{E}\left(\zeta_{21}^{*}+\zeta_{12}^{*}\right)^{2}$.

Consider $\mathbb{E}\left(\zeta_{21}^{*}\right)^{2}$ first.

$$
\begin{aligned}
\mathbb{E}\left(\zeta_{21}^{*}\right)^{2}=\int \Gamma_{11}^{2} \Psi_{12}^{2} \boldsymbol{K}_{s, h}^{2}\left(S_{1}-s\right) \boldsymbol{K}_{x, h}^{2}\left(X_{1}-x\right) & \boldsymbol{K}_{x, h}^{2}\left(X_{2}-x\right) \boldsymbol{K}_{z, h}^{2}\left(Z_{2}-Z_{1}\right) \\
& \times \sigma_{m}^{2}\left(W_{1}\right) \sigma_{\pi}^{2}\left(W_{2}\right) g\left(W_{1}\right) g\left(W_{2}\right) d W_{1} d W_{2}
\end{aligned}
$$

Apply changing variable routine it is easy to see that $\mathbb{E}\left(\zeta_{21}^{*}\right)^{2}=O\left(h^{d_{m}+d_{\pi}}\right)$. Likewise,
$\mathbb{E}\left(\zeta_{12}^{*}\right)^{2}=O\left(h^{d_{m}+d_{\pi}}\right)$. Therefore, $\mathbb{V}\left(\zeta_{12}\right)=O\left(h^{d_{m}+d_{\pi}}\right)$. As the consequence, it follows that

$$
\frac{1}{n(n-1)} \frac{1}{\sqrt{h^{d_{m}+d_{\pi}}}} \sum_{i=1}^{n} \sum_{t \neq i}^{n} \zeta_{i j}=O_{p}\left(\frac{1}{n}\right)
$$

or equivalently,

$$
U_{3 n}=\frac{k_{0}(n-1) \sqrt{h^{d_{m}+d_{\pi}}}}{n^{2} h^{d_{m}+1} h^{d_{\pi}}} \frac{1}{n(n-1)} \frac{1}{\sqrt{h^{d_{m}+d_{\pi}}}} \sum_{i=1}^{n} \sum_{t \neq i}^{n} \zeta_{i j}=O\left(\frac{1}{n^{2} \sqrt{h^{d_{m}+d_{\pi}+2}}}\right)=o\left(\kappa_{n}^{-1}\right)
$$

Part 4: $\boldsymbol{U}_{\mathbf{4 n}}$. Recall that

$$
U_{4 n}=\frac{k_{0}}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \sum_{i=1}^{n} \sum_{j \neq i}^{n} \Gamma_{i j} \Psi_{i i} \boldsymbol{K}_{s, h}\left(S_{j}-s\right) \boldsymbol{K}_{x, h}\left(X_{j}-x\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{z, h}\left(Z_{j}-Z_{i}\right) \epsilon_{j}^{m} \epsilon_{i}^{\pi}
$$

Following the same argument for $U_{3 n}$ that $U_{4 n}=o\left(\kappa_{n}^{-1}\right)$.
Part 5: $\boldsymbol{U}_{5 n}$. Now we consider $U_{5 n}$, then

$$
\begin{aligned}
& U_{5 n}=\frac{k_{0}^{2}}{n^{3} h^{d_{m}+1} h^{d_{\pi}}} \sum_{i=1}^{n} \Gamma_{i i} \Psi_{i i} \boldsymbol{K}_{s, h}\left(S_{i}-s\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \epsilon_{i}^{m} \epsilon_{i}^{\pi} \\
& =\frac{k_{0}^{2}}{n^{2} h^{d_{\pi}+1}}\left\{\frac{1}{n h^{d_{m}}} \sum_{i=1}^{n} \Gamma_{i i} \Psi_{i i} \boldsymbol{K}_{s, h}\left(S_{i}-s\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \boldsymbol{K}_{x, h}\left(X_{i}-x\right) \epsilon_{i}^{m} \epsilon_{i}^{\pi}\right\},
\end{aligned}
$$

the term in the bracket converges in probably to a finite constant by law of large number and applying usual changing variable trick, so $U_{5 n}=O_{p}\left(\frac{1}{n^{2} h^{d} \pi^{+1}}\right)=o\left(\kappa_{n}^{-1}\right)$.

Part 6: $\boldsymbol{U}_{\boldsymbol{n}}$. Combine Part 1-pat 5, we can conclude that $U_{n}=o\left(\kappa_{n}^{-1}\right)$. Hence the conclusion of the lemma holds.

Appendix B. Auxiliary Results for Section 2

Recall that

$$
\begin{aligned}
& \Omega_{m}(s, x)=\int\left\{\sigma_{m}^{2}\left(s, x, Z_{1}\right)\left(\int \Gamma\left(Z_{1} ; u_{s}, u_{x},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z}\right)^{2}\right. \\
&\left.\times \boldsymbol{K}_{x}^{2}\left(u_{x}\right) \boldsymbol{K}_{s}^{2}\left(u_{s}\right) g_{z}^{2}\left(Z_{1}\right) \boldsymbol{\pi}\left(x, Z_{1}\right) \boldsymbol{\pi}^{\prime}\left(x, Z_{1}\right)\right\} g_{w}\left(s, x, Z_{1}\right) d u_{x} d u_{s} d Z_{1}
\end{aligned}
$$

We first look at the term $\int \Gamma\left(Z_{1} ; u_{s}, u_{x},-u_{z}\right) \boldsymbol{K}\left(u_{z}\right) d u_{z}$. Recall that Σ_{m} is a matrix

$$
\Sigma_{m}=\left(\begin{array}{cccc}
\Sigma_{m, 0,0} & \Sigma_{m, 0,1} & \cdots & \Sigma_{m, 0, p} \\
\cdots & \cdots & \cdots & \cdots \\
\Sigma_{m, p, 0} & \Sigma_{m, p, 1} & \cdots & \Sigma_{m, p, p}
\end{array}\right)
$$

in which $\Sigma_{m, i, j}$ is an N_{i} by N_{j} matrix whose (ℓ, k) element is $\nu_{m, \tau_{i}(\ell)+\tau_{j}(k)}$, where $\nu_{m, \underline{j}}=$ $g_{w}(w) \int \boldsymbol{K}_{w}(u) u^{\underline{j}} d u$. Therefore,

$$
\Sigma_{m}=g_{w}(w) \Lambda_{m}
$$

where Λ_{m} is defined analogously as Σ_{m} but with a typical element being $\lambda_{m, \underline{j}}=\int \boldsymbol{K}_{w}(u) u \underline{\underline{j}} d u$. Hence, the corresponding row of $\Sigma_{m}^{-1}, \Sigma_{m}^{-(s, \cdot)}(w)=g_{w}^{-1}(w) \Lambda_{m}^{-(s, \cdot)}$, where $\Lambda_{m}^{-(s, \cdot)}$ is the corresponding row of the inverse of Λ_{m} and is just a vector of constants. Let it be $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{\bar{N}}\right)$, where $\bar{N}=\sum_{j=1}^{p} N_{j}$. By definition of Γ (see Equation A.6),

$$
\begin{align*}
\int \Gamma\left(Z_{1} ; u_{s}, u_{x},-u_{z}\right) \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z}= & g_{w}^{-1}\left(s, x, Z_{1}\right) \\
& \times \int \boldsymbol{\lambda} \cdot\left(1,-u_{z}, u_{x}, u_{s}, \cdots,\left(u_{s}\right)^{p}\right)^{\prime} \boldsymbol{K}_{z}\left(u_{z}\right) d u_{z} \tag{B.1}
\end{align*}
$$

Note that the integral part of the right hand side is an known function of $\left(u_{s}, u_{x}\right)$, for which we denote as $\varpi\left(u_{s}, u_{x}\right)$. Given this, the formula for Ω_{m} can be simplified as
$\Omega_{m}=\int \varpi^{2}\left(u_{s}, u_{x}\right) \boldsymbol{K}_{x}^{2}\left(u_{x}\right) \boldsymbol{K}_{s}^{2}\left(u_{s}\right) d u_{x} d u_{s} \times \int\left\{\frac{\sigma_{m}^{2}\left(s, x, Z_{1}\right) \boldsymbol{\pi}\left(x, Z_{1}\right) \boldsymbol{\pi}^{\prime}\left(x, Z_{1}\right)}{g_{S, X \mid Z}\left(s, x \mid Z=Z_{1}\right)}\right\} g_{z}\left(Z_{1}\right) d Z_{1}$.
The first term on the right hand side is a constant (let us denote it by c_{K}) can be directly calculated based on the kernel and the second term can be estimated by sample analogs and plug-in estimators.

$$
\begin{equation*}
\widehat{\Omega}_{m}=\frac{c_{K}}{n} \sum_{i} \frac{\hat{\sigma}_{m}^{2}\left(s, x, Z_{i}\right) \hat{\boldsymbol{\pi}}\left(x, Z_{i}\right) \hat{\pi}^{\prime}\left(x, Z_{i}\right)}{\hat{g}_{S, X \mid Z}\left(s, x \mid Z_{i}\right)} \tag{B.2}
\end{equation*}
$$

where

$$
\hat{\sigma}_{m}^{2}(s, x, z)=\frac{\sum_{i}\left(Y_{i}-\hat{Y}_{i}\right) \boldsymbol{K}_{w, h}\left(W_{i}-w\right)}{\operatorname{Tr}\left(\mathbb{W}_{j}^{*}-\mathbb{W}_{j}^{*} \mathbb{X}_{j}^{*}\left(\mathbb{X}_{j}^{\prime \prime} \mathbb{W}_{j}^{*} \mathbb{X}_{j}^{*}\right)^{-1} \mathbb{X}_{j}^{*^{\prime}} \mathbb{W}_{j}\right)},
$$

and \mathbb{X}_{j}^{*} and \mathbb{W}_{j}^{*} are defined analogously to \mathbb{X}_{j} and \mathbb{W}_{j} defined in ??.
Example 1. Consider the case in which S, X and Z are all one-dimensional. Suppose $p=2$ then we have $\bar{N}=N_{0}+N_{1}+N_{2}=10$. If we use triangular kernel (for each variable), that is, $K(u)=(1-|u|) 1\{|u| \leq 1\}$, then $\int u^{r} K(u) d u=0$ for odd r, and $\int u^{2} K(u) d u=\frac{1}{6}$, $\int u^{4} K(u) d u=\frac{1}{15}$.

$$
\Lambda_{m}=\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{6} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{6} & 0 & 0 & 0 & \frac{1}{15} & 0 & 0 & \frac{1}{36} & 0 & \frac{1}{36} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{36} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{36} & 0 & 0 & 0 \\
\frac{1}{6} & 0 & 0 & 0 & \frac{1}{36} & 0 & 0 & \frac{1}{15} & 0 & \frac{1}{36} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{36} & 0 \\
\frac{1}{6} & 0 & 0 & 0 & \frac{1}{36} & 0 & 0 & \frac{1}{36} & 0 & \frac{1}{15}
\end{array}\right)_{10 \times 10}
$$

Calculating the inverse of Λ_{m} we found that the only nonzero element in the fourth row of Λ_{m}^{-1} is the fourth element, that is, $\boldsymbol{\lambda}=(0,0,0,6,0,0,0,0,0,0,0)$. Therefore, $\int \Gamma\left(Z_{1} ; u_{s}, u_{x},-u_{z}\right) K\left(u_{z}\right) d u_{z}$
is simply

$$
\int \Gamma\left(Z_{1} ; u_{s}, u_{x},-u_{z}\right) K\left(u_{z}\right) d u_{z}=g_{w}^{-1}\left(s, x, Z_{1}\right) \times 6 u_{s}
$$

In this case, $\varpi\left(u_{s}, u_{x}\right)=6 u_{s}$ and therefore,

$$
c_{K}=\int_{-1}^{1} 36 u_{s}^{2}\left(1-\left|u_{s}\right|\right)^{2} d u_{s} \times \int_{-1}^{1}\left(1-\left|u_{x}\right|\right)^{2} d u_{x}=\frac{8}{5}
$$

The estimator for Ω_{m} is therefore

$$
\widehat{\Omega}_{m}=\frac{8}{5 n} \sum_{i} \frac{\hat{\sigma}_{m}^{2}\left(s, x, Z_{i}\right) \hat{\boldsymbol{\pi}}\left(x, Z_{i}\right) \hat{\boldsymbol{\pi}}^{\prime}\left(x, Z_{i}\right)}{\hat{g}_{S, X \mid Z}\left(s, x \mid Z_{i}\right)}
$$

Corollary 1. Let $\widehat{\Omega}_{m}$ be defined as in Equation B.2 and \widehat{V} be defined as in ??, and let $\hat{g}_{W}(w)$ be a uniformly consistent estimator for the joint density of W at (s, x, z), and suppose $\sigma_{m}^{2}(s, x, z)$ is constant in a local neighborhood of (s, x, z), then

$$
\left(\widehat{V}^{-1} \widehat{\Omega}_{m} \widehat{V}^{-1}\right)^{-\frac{1}{2}} \sqrt{n h^{d_{x}+d_{s}+2}}(\hat{\beta}(s, x)-\beta(s, x)) \xrightarrow{d} N(0, I)
$$

References

Chernozhukov, V., W. Kim, S. Lee, and A. M. Rosen (2013): "Implementing Intersection Bounds in Stata," working paper.

Chernozhukov, V., S. Lee, and A. M. Rosen (2013): "Intersection Bounds: Estimation and Inference," Econometrica, 81(2), 667-737.

Fan, J., and I. Gijbels (1996): Local polynomial modelling and its applications: monographs on statistics and applied probability 66, vol. 66. CRC Press.

Ha, W., J. Yi, Y. Yuan, and J. Zhang (2016): "The dynamic effect of rural-to-urban migration on inequality in source villages: System GMM estimates from rural China," China Economic Review, 37, 27-39.

Holm, S. (1979): "A simple sequentially rejective multiple test procedure," Scandinavian journal of statistics, pp. 65-70.

Kong, E., O. Linton, and Y. XiA (2010): "Uniform Bahadur representation for local polynomial estimates of M-regression and its application to the additive model," Econometric Theory, 26(05), 1529-1564.

Liu, S., I. Mourifie, and Y. Wan (2019): "Two-way Exclusion Restrictions in Models with Heterogeneous Treatment Effects," Discussion paper.

Mourifié, I., and Y. Wan (2017): "Testing Local Average Treatment Effect Assumptions," Review of Economics and Statistics, 99(2), 305-313.

Serfling, R. J. (1980): Approximation theorems of mathematical statistics. John Wiley \& Sons.

[^0]: ${ }^{1}$ Since we are testing the hypothesis for 31 provinces, it is desirable to ensure that the Family-wise Error Rate (FWER) is controlled at targeted levels. We conducted the test again at 0.1% significance level and found rejections for Hubei, Guangdong, Chongqing, and Xizang. By the multiple testing procedure of Holm (1979), we can conclude that our test rejects the null hypothesis with FWER be controlled by no more than 5%.
 ${ }^{2}$ The age can be viewed here as a proxy for experiences, which unfortunately we do not observe in this dataset.

[^1]: ${ }^{3}$ One possible reason is that minority groups face different bars at entrance exams in China.

[^2]: ${ }^{4}$ In this design, the support of S is actually a fine grid on the unit interval. For comparison, we also estimate $m(s, z)$ by treating S as an ordered discrete random variable, with the latter we apply the method of Li and Racine (2004) and Li, Racine and Wooldridge (2009). It turns out that both methods give very similar results, probably because the grids are fine enough.

[^3]: ${ }^{5}$ The general definition in KLX is that $\nu_{n, m, \underline{j}}(w)=\int \boldsymbol{K}_{w}(u) u \underline{\underline{j}} g(w+h u) f_{w}(w+h u) d u$, where in KLX's notation, f is the joint density of W and function g is defined as in KLX-Equation. A7 Since we use quadratic loss function, $g(\cdot) \equiv 1$ in our case.

[^4]: ${ }^{6}$ For example, if all the variables are scalar-valued, then it is the fourth row of $\Sigma_{n, m}^{-1}$.

