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This is the supplementary material for Liu, Mourifie, and Wan (2019). In Section 1, we
state the assumptions made in the main text for the convenience of readers. In Section 2, we
provide asymptotic results of our estimation when Z is continuous. We discuss in details why
“mother’s education” is not a valid IV for our data set in Section 3. Additional empirical
and simulation results are included in Section 4 and Section 5, respectively.

1. Assumptions in the Main Text

Assumption 1 (Exclusion restrictions). (i) The variable S is excluded from the ob-
served treatment, i.e. D = ϑ(X,Z, ς) for some unknown measurable functions ϑ and random
vector ς. (ii) The variable Z does not enter fd(S,X) for each d ∈ D ≡ {0, 1, · · · , T}.

Assumption 2 (Independence). (U, ς) ⊥ S|X,Z, where U = (U0, U1, · · · , UT )′.

Assumption 3 (Differentiability). S is continuous. Let Sx be the support of S con-
ditional on X = x. Then for each x ∈ X , fd(·, x) for d = 0, 1, · · · , T is continuously
differentiable in the interior of Sx.

Assumption 4. {(Yi, Di, Xi, Si, Zi)}ni=1 are i.i.d. observations.

Assumption 5. The support of the conditional distribution of Z|(S,X) = (s, x) does not
depend on (s, x). Furthermore, V[π0(x, Z)] is positive definite.

Assumption 6. The bandwidth h is chosen such that h ∝ n−
1

6+(ds+dx)−δ for some 0 < δ <
1.

Assumption 7. (i) The conditional density of (S,X) given Z = z is bounded away from
0 and has bounded first-order derivative over its compact support for each z ∈ Z . (ii) π(·)
and E[Y |W = ·] are q+1 times continuously differentiable for some q ≥ 2. (iii) There exists
some ν > 2 such that E ‖U‖ν is finite.

Assumption 8. The symmetric kernel K(·) has support [−1, 1], integrates to one, and is
continuously differentiable.

2. Estimation When Z is Continuous

The first stage estimation is similar to the discrete case. Let dm = dx + dz + ds and
dπ = dx+dz: hence dm and dπ are the dimensions of the arguments in m and π, respectively.
Define:



α̂m = argminα
1
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,

and for d = 1, 2, · · · , T ,

α̂πd = argminα
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.

Then analogously to the discrete chase, we define our estimator m̂(s, x, z) to be the estimated
coefficient corresponding to the linear term (Si− s) in the first regression and π̂d(x, z) to be
the coefficient associated with the constant term in the second regression.

We state the assumptions for the continuous case as below. These assumptions strengthen
those for the discrete case and are needed to derive the uniform Bahadur representation
(Kong, Linton, and Xia, 2010) of the first stage estimators m̂ and π̂. With the Bahadur

representation, we can approximate the estimator β̂(s, x) by a U-statistics, from which we
derive its limiting distribution.

Assumption 9. The bandwidths h satisfies (i) h→ 0, nhdm+2 →∞; (ii) nhdπ+2(p+1) → 0;
(iii) nhdπ+dz →∞ in polynomial rates.

Assumption 10. (i) The joint density gw of W is bounded away from 0 and has bounded
first order derivative over its bounded support W . (ii) The conditional density gw|u of W
given U = u exists and is bounded for any u in its bounded support U . (iii) E[Y |W = ·] and
Pr(D = d|X = x, Z = z), for each d = 0, 1, · · · , T , are q+2 times continuously differentiable
for some q ≥ p.

Assumption 9-(i) and (ii) are the bandwidth conditions to apply the uniform Bahadur
representation (Kong, Linton, and Xia, 2010) to the first stage estimators for m and π,
respectively. Assumption 9-(ii) also plays a role of under-smoothing and eliminates the first
stage bias. Assumption 9-(iii) ensures the cross-product remainder terms of the Bahadur
representations of m̂ and π̂ are negligible for the second stage estimation. It is implied
by Assumption 9-(i) and (ii) when dz ≤ ds + 2. The intuition of Assumption 9-(iii) is
as following: the rate of convergence of the cross-product of the remainder terms from
the first stage depends on the dimension of Z and X and the rate of the second stage
estimator depends on S and X. Therefore, for the cross-product of the remainder terms to
be negligible, the dimension of Z can not be too high compared with S. In the case where
all variables are univariate, continuous and the degree of polynomial is chosen to be p = 2,
the rate condition is satisfied if we choose h = n−r for some r ∈ (1/8, 1/5). Note that using
p = 2 to estimate the first-order derivative of a function with three arguments, the optimal
rate is n−1/9. Hence, the required choice of r ∈ (1/8, 1/5) is effectively under-smoothing.
Assumption 10 requires the model admits enough smoothness, depending on the dimension
of the arguments of the unknown functions.

Proposition 1. Let (s, x) be an interior point of the joint support of (S,X). Suppose that

Assumptions 1 to 5 and 8 to 10 are satisfied, then β̂(s, x)
p→ β(s, x) and furthermore,

√
nhdx+ds+2

{
β̂(s, x)− β(s, x)

}
d→ N(0, V −1ΩmV

−1),

where V = E[π(x, Zi)π
′(x, Zi)] and Ωm is defined in Equation (A.5).
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Proof. Let Kw = Ks ×Kx ×Kz and also write Kt,h(·) for Kt(·/h), t ∈ {s, x, z}. By
Lemma 1 (notation defined therein), we have uniformly in w,

m̂(w) = m(w)

− 1

nhdm+1
Σ−(s,·)
n,m H−1

n

n∑
i=1

Ks,h(Si − s)Kx,h(Xi − x)Kz,h(Zi − z)εmi µm(Wi − w)︸ ︷︷ ︸
ηm,n(w)

+Op(h
p)︸ ︷︷ ︸

rm,1

+Op

(
log n

nhdm+1

)
︸ ︷︷ ︸

rm,2

. (1)

To save notation we suppress the subscript of πd, d = 1, · · · , T and use π to denote a generic
element in the vector π0 = [π1, ..., πT ]′; likewise we use π̂ to denote a generic element in π̂.
Lemma 2 shows that uniformly in (x, z),

π̂(x, z) = π(x, z)− 1

nhdπ
Σ−(1,·)
n,π H−1

n

n∑
i=1

Kx,h(Xi − x)Kz,h(Zi − z)επi µπ(W̃i − w̃)︸ ︷︷ ︸
ηπ,n(x,z)

+Op(h
p+2)︸ ︷︷ ︸

rπ,1

+Op

(
log n

nhdπ

)
︸ ︷︷ ︸

rπ,2

. (2)

Recall that our estimator is defined as

β̂(s, x) =

(
1

n

∑
π̂(x, Zi)π̂(x, Zi)

′
)−1(

1

n

∑
π̂(x, Zi)m̂(s, x, Zi)

)
.

First consider the denominator; it is easy to see that under the assumptions of Proposition 1
and the representation in Equation (2),

1

n

∑
i

π̂(x, Zi)π̂
′(x, Zi)

p→ E[π(x, Zi)π
′(x, Zi)] ≡ V.

For the numerator, it follows from Lemma 5 that ηn,m and ηn,π are op(1) and applying the
law of large number, we have

1

n

∑
π̂(x, Zi)m̂(s, x, Zi)

p→ E[π(x, Zi)m(s, x, Zi)]

The consistency of the estimator follows.
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Regarding the limiting distribution, we consider the following decomposition,

1

n

∑
π̂(x, Zi)m̂(s, x, Zi)− E[π(x, Zi)m(s, x, Zi)]

=

(
1

n

∑
π̂(x, Zi)m̂(s, x, Zi)−

1

n

∑
π(x, Zi)m(s, x, Zi)

)
+

(
1

n

∑
π(x, Zi)m(s, x, Zi)− E[π(x, Zi)m(s, x, Zi)]

)
The second term is standard and is of order Op(1/

√
n). It remains to deal with the first

term. For notational simplicity, we write ηm,n(s, x, Zi) as ηm,n(Zi), and write ηπ,n(x, Zi)
for ηπ,n(Zi).

1

n

∑
i
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1

n

∑
i
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1

n

∑
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+
1

n

∑
i

m(s, x, Zi){ηπ,n(Zi)+rπ,1+rπ,2}+
1

n

∑
i

{ηm,n(Zi)+rm,1+rm,2}{ηπ,n(Zi)+rπ,1+rπ,2}

=
1

n

∑
i

π(x, Zi)ηm,n(Zi) +
1

n

∑
i

m(s, x, Zi)ηπ,n(Zi) +
1

n

∑
i

π(x, Zi){rm,1 + rm,2}

+
1

n

∑
i

m(s, x, Zi){rπ,1 + rπ,2}+
1

n

∑
i

{ηm,n(Zi) + rm,1 + rm,2}{ηπ,n(Zi) + rπ,1 + rπ,2}.

The third and fourth RHS terms are of order smaller than Op(1/
√
nhdx+ds+2) by Lemma 4.

The last RHS term is of order smaller than Op(1/
√
nhdx+ds+2) by Lemma 7. By Lemma 3,

√
nhdx+ds+2

{
1

n

∑
i

π(x, Zi)ηm,n(s, x, Zi) +
1

n

∑
i

m(s, x, Zi)ηπ,n(x, Zi)

}
d→ N(0,Ωm).

It then follows that

√
nhdx+ds+2

{
1

n

∑
π̂(x, Zi)m̂(s, x, Zi)− E[π(x, Zi)m(s, x, Zi)]

}
d→ N(0,Ωm),

or alternatively,

√
nhdx+ds+2

{
β̂(s, x)− β(s, x)

}
d→ N(0, V −1ΩmV

−1).

�

We can see from Proposition 1 that the convergence rate of m̂, instead of π̂d, determines
the convergence rate of β̂ because m is the first-order derivative of a conditional expectation.
If m has a higher degree of smoothness, then β̂ will converge faster. Also, under Assump-
tion 5, the dimension of Z does not affect the convergence rate of β̂ since Z is averaged
out in the second stage with respect to its marginal (empirical) distribution. The factor
ds+dx reflects the fact that the estimand β is a function evaluated at a ds+dx-dimensional
vector (s, x); the factor 2 in the power of h reflects that m is the first-order derivative of
the function E[Y |W = w] with respect to s.
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For inference, we again propose to estimate the asymptotic variance by plugging-in
consistent estimator V̂ and Ω̂m, respectively. As before, we provide the formula for Ω̂m
(Equation B.2) and an example in Appendix B.

3. Validity of Mother’s Education as an IV in our data set

In this section, we test the necessary implications of LATE-validity assumption when
using mother’s education as an instrument. Following similar derivations in Mourifié and
Wan (2017, Equation 1), the LATE assumptions imply the following four testable necessary
conditions, that is, for any A ⊆ Y ,{

P(Y ∈ A,D = 2|Z = 0) ≤ P(Y ∈ A,D = 2|Z = 1) ≤ P(Y ∈ A,D = 2|Z = 2)
P(Y ∈ A,D = 0|Z = 2) ≤ P(Y ∈ A,D = 0|Z = 1) ≤ P(Y ∈ A,D = 0|Z = 0)

. (3)

Mourifié and Wan (2017) show that each of the inequality constraints can be rewritten as a
conditional moment inequality and the null hypothesis that all inequalities in (3) hold can
be written as

H0 : θ0 ≡ sup
y∈Y ,j=1,··· ,4

θ(y, j) ≤ 0, H1 : θ0 > 0, (4)

where θ(y, j), j = 1, · · · , 4, represent a conditional moment inequality. We test the null
hypothesis in (4) at the province level. Mourifié and Wan (2017) propose using the inter-
section bounds framework of Chernozhukov, Lee, and Rosen (2013), which we follow here.
We used the “clrtest” Stata command of Chernozhukov, Kim, Lee, and Rosen (2013) to
conduct the test and also use the “clrbound” command to calculate the lower bound of the
confidence set of θ0. The results are reported in Table 1. We can see that the test rejects
the null hypothesis in (3) or (4) for a significant portion of provinces, meaning that the
dataset under analysis here shows strong evidences against the use of mother’s education
as a conventional IV to estimate the LATE.1 Notice that in the rejected cases, the lower
boundaries of the confidence interval of θ0 are all above zero, as demonstrated in the right
panel of the table. In Table 1, the unknown conditional expectations are estimated with
the local regression method. As a robustness check, we also conduct the tests using sieve
estimation and the results are qualitatively similar and reported in Table 2.

4. Additional Empirical Results

In this section, we conduct a few robustness checks for our empirical results.

4.1. Adding Covariates.

So far our analysis uses the whole sample. We also estimate the model using subsamples
based on gender, ethnic group (Han and minority), and age (below or above the median
age of the whole sample).2 Although insignificant in some subsamples, the above-mentioned

1Since we are testing the hypothesis for 31 provinces, it is desirable to ensure that the Family-wise Error
Rate (FWER) is controlled at targeted levels. We conducted the test again at 0.1% significance level and
found rejections for Hubei, Guangdong, Chongqing, and Xizang. By the multiple testing procedure of Holm
(1979), we can conclude that our test rejects the null hypothesis with FWER be controlled by no more than
5%.

2The age can be viewed here as a proxy for experiences, which unfortunately we do not observe in this
dataset.
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Table 1: Testing LATE Assumption by Province (Local Regression)

Test (clrtest) Lower Bound of CI (clrbound)
Province Sample Size 90% 95% 99% 90% 95% 99%

Beijing 2,476 NRa NR NR -0.0000049 -0.0000054 -0.0000061
Tianjin 4,762 NR NR NR -0.0021587 -0.0022713 -0.0024809
Hebei 7,108 NR NR NR -0.0003199 -0.0004228 -0.0006254
Shanxi 7,872 NR NR NR -0.0003136 -0.0004318 -0.0006733
Neimeng 2,807 NR NR NR -0.0002477 -0.0002662 -0.0003040
Liaoning 4,286 R NR NR 0.0000625 -0.0000813 -0.0003704
Jilin 5,018 NR NR NR -0.0005115 -0.0005857 -0.0006417
Heilongjiang 3,901 NR NR NR -0.0008943 -0.0009552 -0.0010810
Shanghai 4,401 R R R 0.0028629 0.0020509 0.0002967
Jiangsu 5,284 NR NR NR -0.0000001 -0.0000060 -0.0000131
Zhejiang 3,894 NR NR NR -0.0000880 -0.0000932 -0.0001027
Anhui 4,902 NR NR NR -0.0000531 -0.0000604 -0.0000733
Fujian 3,278 NR NR NR -0.0001924 -0.0002106 -0.0002422
Jiangxi 3,777 NR NR NR -0.0001948 -0.0002129 -0.0002543
Shandong 7,737 NR NR NR -0.0001029 -0.0001114 -0.0001313
Henan 6,666 NR NR NR -0.0003481 -0.0003628 -0.0003927
Hubei 5,467 R R R 0.0039942 0.0033046 0.0019484
Hunan 6,769 NR NR NR -0.0000923 -0.0000973 -0.0001074
Guangdong 25,652b R R R 0.0006007 0.0005268 0.0003795
Guangxi 4,846 R R NR 0.0001403 0.0000723 -0.0000673
Hainan 2,902 NR NR NR -0.0002162 -0.0002688 -0.0003758
Chongqing 3631 R R R 0.0003058 0.0002450 0.0001268
Sichuan 6,347 R NR NR 0.0000219 -0.0000136 -0.0000824
Guizhou 3,797 NR NR NR -0.0000029 -0.0000031 -0.0000036
Yunnan 13,696 NR NR NR -0.0000022 -0.0000024 -0.0000028
Xizang 2,510 R R R 0.0000000 0.0000000 0.0000000
Shanxi 8,124 NR NR NR -0.0003338 -0.0004210 -0.0005974
Gansu 7,196 NR NR NR -0.0000273 -0.0000458 -0.0000836
Qinghai 2,451 R R R 0.0006214 0.0004856 0.0002012
Ningxia 1,521 NR NR NR -0.0000216 -0.0000288 -0.0000418
Xinjiang 3,380 NR NR NR -0.0000946 -0.0001081 -0.0001312

a. “R” stands for rejection of LATE assumptions and “NR” stands for no rejection.
b. For provinces with more than 8000 observations, we choose a random subsample of 8, 000
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Table 2: Testing LATE Assumption by Province (series estimation)

Test (clrtest) Lower Bound of CI (clrbound)
Province Sample Size 90% 95% 99% 90% 95% 99%

Beijing 2,476 R NR NR 0.0004902 -0.0000099 -0.0000124
Tianjin 4,762 NR NR NR -0.0027308 -0.0029010 -0.0032281
Hebei 7,108 NR NR NR -0.0006457 -0.0006887 -0.0007800
Shanxi 7,872 NR NR NR -0.0007102 -0.0007668 -0.0008840
Neimeng 2,807 NR NR NR -0.0004630 -0.0004917 -0.0005436
Liaoning 4,286 NR NR NR -0.0002511 -0.0004393 -0.0008444
Jilin 5,018 NR NR NR -0.0006048 -0.0006349 -0.0006952
Heilongjiang 3,901 NR NR NR -0.0009264 -0.0009834 -0.0011067
Shanghai 4,401 R R NR 0.0021831 0.0012057 -0.0000013
Jiangsu 5,284 NR NR NR -0.0002047 -0.0002246 -0.0002701
Zhejiang 3,894 NR NR NR -0.0000119 -0.0000134 -0.0000163
Anhui 4,902 NR NR NR -0.0000662 -0.0000711 -0.0000814
Fujian 3,278 R R NR 0.0046661 0.0021814 -0.0002473
Jiangxi 3,777 NR NR NR -0.0004043 -0.0004401 -0.0005066
Shandong 7,737 NR NR NR -0.0001303 -0.0001394 -0.0001574
Henan 6,666 NR NR NR -0.0002255 -0.0002392 -0.0002703
Hubei 5,467 R R R 0.0001907 0.0001295 0.0000017
Hunan 6,769 NR NR NR -0.0002038 -0.0002231 -0.0002601
Guangdong 25,652 R NR NR 0.0000374 -0.0000117 -0.0000192
Guangxi 4,846 R R R 0.0008004 0.0006593 0.0003694
Hainan 2,906 R R R 0.0050706 0.0041392 0.0021845
Chongqing 3,631 R R R 0.0002169 0.0001490 0.0000044
Sichuan 6,347 NR NR NR -0.0001346 -0.0001783 -0.0002720
Guizhou 3,797 R NR NR 0.0000127 -0.0000054 -0.0000064
Yunnan 13,696 NR NR NR -0.0000175 -0.0000280 -0.0000451
Xizang 2,510 NR NR NR -0.0000003 -0.0000003 -0.0000004
Shanxi 8,124 NR NR NR -0.0002387 -0.0003214 -0.0004953
Gansu 7,196 R NR NR 0.0000574 -0.0000181 -0.0000215
Qinghai 2,451 R R NR 0.0004750 0.0003183 -0.0000097
Ningxia 1,521 NR NR NR -0.0000366 -0.0000438 -0.0000564
Xinjiang 3,380 NR NR NR -0.0004457 -0.0005053 -0.0006315

“R” stands for rejection and “NR” stands for no rejection.
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pattern exists overall. For instance, the same result holds and is significant for both males
and females. It holds and is significant for populations below the median age of the sample
(27 years old), and holds but is less significant for populations older than 27. It also holds
for both Han but is not significant for minority groups.3 Please see Figures 1 to 3 for details.

Figure 1: Estimates and 95% CI by gender, c = −0.01
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4.2. Re-categorizing to Binary Treatment

To further examine if our result is robust, we estimate the model by re-categorizing the
education levels into a binary treatment and a binary outcome exclusion variable, that is,
D̃ = 0 (or Z̃ = 0) for elementary school and below, and D̃ = 0 (or Z̃ = 1) for middle school
and above. The results for the whole sample are reported in Section 4.2 and we can see
that the same pattern exists and is significant. Estimation results based on subsamples are
collected in Figure 5 of Section 4. Except that the result is not significant for subsample
of minorities (which is the case in triple-valued D and Z as well), we see the same pattern
over other subsamples.

4.3. Smoothing Constants.

We also use under-smoothing constant c = 0 and c = −0.03 and the results are plotted
in Figure 6. They are qualitatively similar to those report in the main text.

3One possible reason is that minority groups face different bars at entrance exams in China.
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Figure 2: Estimates and 95% CI by ethnic group, c = −0.01
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Table 3: Education (D̃) and Mother’s Education (Z̃): Re-categorizing

Z̃

D̃ 0 1 Total
0 36,153 1,496 37,649
1 96,495 42,314 138,809

Total 132,648 42,810 176,458
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Figure 3: Estimates and 95% CI by age, c = −0.01
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Figure 4: Binary Case, Whole Sample, c = −0.01
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Figure 5: Estimates and 95% CI,, Binary Case, Subsamples, c = −0.01
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Figure 6: Estimates and 95% CI, by smoothing level
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c=0 c= -0.03
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4.4. Internal Migration

. The internal labor migration has always been an important factor to consider in
research on China’s development and inequality, see e.g. Ha, Yi, Yuan, and Zhang (2016)
and references therein. In our sample 4.58% individuals have not lived in their Hukou address
for the past six months from the survey date, so we consider these individuals as a subsample
of internal migrants (across different prefectures). Although internal migration is not the
primary focus our analysis, as a robustness check, we conduct our analysis again by excluding
this subsample and the result is the same qualitatively and very similar quantitatively (hence
omitted here).

5. Simulation Results

In this section we provide some numerical examples to investigate the finite sample
performance of our estimator. We consider a binary D and triple-valued Z. Let e =
(e1, e2, e3, e4)′ ∈ R4 follow a multivariate normal distribution with zero mean and covariance
matrix given by 

1.0 0.5 0.3 0
0.5 1.0 0.3 0
0.3 0.3 1.0 0.3
0 0 0.3 1.0

 .

Let ς ∼ N(0, 1). Let U0 = 0.1(e1 − ς), U1 = 0.1(e2 + ς), Z = 1{0.3 ≤ Φ(e3) ≤ 0.7} +
21{Φ(e3) > 0.7} and S = 0.02 × Ceil[200Φ(e4) − 100], where Φ(·) is the standard normal
CDF and Ceil[·] is the ceiling function which returns the smallest integer that is no less than
its argument. Finally, let D = 1{Z+ς−0.5 > 0}. As constructed, (U0, U1) is correlated with
ς and Z, which implies the endogeneity of treatment D and invalidity of Z as a conventional
instrumental variable. In the meantime, S is independent with (U0, U1, ς) but correlated
with Z.4

We normalize f0(s) = 0 and hence Y0 = U0. We specify

f1(s) = 0.3e−4(s+1)2

+ 0.7e−16(s−1)2

, Y1 = f1(S) + U1

In this DGP, the conditional average treatment effect (for S = s) is given by ∆(s) =
f1(s)− f0(s) (as a function of s). Its derivative β1(s) is the parameter of interest:

β1(s) = −2.4(s+ 1)e−4(s+1)2

− 22.4(s− 1)e−16(s−1)2

.

Figure 7 plots ∆(s) and β1(s) , respectively.
We consider five sample sizes: n = 1000×2k, for k ∈ {0, 1, 2, 3, 4}. We use the Epanech-

nikov kernel. Since we estimate first-order derivative in the first stage, we use the second-
order polynomial (p = 2), as recommended by Fan and Gijbels (1996). To the best of
our knowledge, there are few results available for choosing the bandwidth optimally in the
two-stage nonparametric estimation context that we consider here. Hence, we follow the
“Rule of Thumb” bandwidth hROT proposed in Fan and Gijbels (1996, Section 4.1). In our

4In this design, the support of S is actually a fine grid on the unit interval. For comparison, we also
estimate m(s, z) by treating S as an ordered discrete random variable, with the latter we apply the method
of Li and Racine (2004) and Li, Racine and Wooldridge (2009). It turns out that both methods give very
similar results, probably because the grids are fine enough.
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Figure 7: True functions

simulation, hROT ∝ n−
1

2p+3 = n−
1
7 . We also consider different levels of under-smoothing:

h = hROTnc, where c ∈ {0,−0.01,−0.03}. Here c = 0 corresponds to no under-smoothing.
For each given sample size and under-smoothing level, we consider 1, 000 replications. For
each replication, we estimate β1(s) over 200 uniformly spread grids on the support of S.

We report the mean squared error (MSE) for β̂1(s) with s ∈ {−1.8,−1, 0, 1, 1.8}, which
corresponds to the 5%, 25%, 50%, 75% and 95% quantiles of S, respectively.

Performance of our estimator when choosing c = −0.01 is reported in Tables 4 to 6.
Figure 8 plots estimates and pointwise confidence band for two random samples of size 2000
and 16000, respectively. First, for each s and c, we can see that the MSE decreases as sample
size increases, as expected. The MSEs are relatively larger when s is close to the boundary
of the support (s = ±1.9) or the second-order derivative is larger in absolute values (s = 1),
which is also not surprising. As we increase the level of under-smoothing, we observe the
overall pattern that the variance increases and bias decreases. It appears that the trade-
off between the bias and variance carries through from the first-stage estimation to the
second stage, although the average magnitude of the variance is much larger than the bias.
When comparing MSEs across difference sample sizes, we can see that when the sample size
increases from 1000 to 2000, the MSEs overall decrease by a greater factor than what our
theory predicts (∝ 24/7 ≈ 1.5). This is possibly because sample sizes are not large enough
to fully show asymptotic behavior. If we look at larger sample sizes, we would observe that
the factor by which the MSEs decrease is roughly in line with the n2/7 convergence rate.

To investigate the performance of the confidence intervals, we calculate the confidence
intervals for β1(s), s ∈ {−1.8,−1, 0, 1, 1.8} and their coverage frequencies for the true values
at three nominal level 90%, 95% and 99%. As we can see from Table 9, the finite sample
coverage frequencies are quite close to nominal levels, especially in larger sample sizes.
Similar to the estimation, the performance of confidence intervals are better when s is away
from the boundaries of its support. To investigate the precision of the confidence intervals,
we test H0 : β1(−0.5) against H1 : β1(−0.5) 6= 0 by checking if 0 is contained in the
confidence interval of β1(−0.5). The rejection frequencies are reported in Table 10, which
shows that our test has stronger power against the false null hypothesis since the true value
is β1(−0.5) ≈ −0.44. We also examined other s values and obtained the same qualitative
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Figure 8: Estimates and Confidence Bands

results.
We also investigate the performance of the pointwise confidence intervals. For this,

we calculate the confidence intervals for β1(s), s ∈ {−1.8,−1, 0, 1, 1.8} and their coverage
frequencies for the true values at three nominal level 90%, 95% and 99%. As we can see from
Table 9, the finite sample coverage frequencies are quite close to nominal levels, especially
in larger sample sizes. Similar to the estimation, the performance of confidence intervals
are better when s is away from the boundaries of its support. To investigate the precision
of the confidence intervals, we test H0 : β1(−0.5) against H1 : β1(−0.5) 6= 0 by checking if
0 is contained in the confidence interval of β1(−0.5). The rejection frequencies are reported
in Table 10, which shows that our test has stronger power against the false null hypothesis
since the true value is β1(−0.5) ≈ −0.44. We also examined other s values and obtained
the same qualitative results.

Appendix A. Auxiliary Lemmas for Proving Proposition 1

This appendix collects auxiliary lemmas for proving Proposition 1. We define some
notation first. For the purpose of exposition, we define notation for estimation of m. The
notation for estimation of πd is similar. For j = 0, 1, · · · , p, let Nj be the number of dm-
dimensional vectors r such that |r| = j. Arrange all such vectors in the lexicographical
order with the first one is (0, 0, · · · , j) and last one is (j, · · · , 0, 0). Let τj be the one to
one mapping from an order to the associated vector. For example, τj(1) = (0, 0, · · · , j),
τj(2) = (0, 1, · · · , j − 1) · · · , and τj(Nj) = (j, 0, · · · , 0). For j = 0, · · · , p, let νn,m,j(w) =∫
ujKw(u)gw(w + hu)du,5 where here u is a dm × 1 vector and uj stands for the product

of powers of elements of u such that the sum of power index equals to j. Let Σn,m be a

5The general definition in KLX is that νn,m,j(w) =
∫
Kw(u)ujg(w+hu)fw(w+hu)du, where in KLX’s

notation, f is the joint density of W and function g is defined as in KLX-Equation. A7 Since we use
quadratic loss function, g(·) ≡ 1 in our case.

14



Table 4: Performance of β̂1(s), c = −0.01

n
s 1000 2000 4000 8000 16000

-1.8 0.3355 0.151 0.0689 0.0408 0.019
-1 0.0162 0.0091 0.0063 0.0044 0.003

MSE 0 0.0121 0.009 0.0051 0.0033 0.0025
1 0.0775 0.0134 0.008 0.0054 0.0047
1.8 0.2902 0.1074 0.0547 0.0277 0.0125
-1.8 0.0058 -0.013 -0.0114 0.0004 -0.0067
-1 -0.0085 0.0037 -0.0016 -0.0019 -0.0027

Bias 0 -0.0222 -0.0221 -0.0139 -0.0128 -0.0109
1 -0.1333 -0.0006 -0.001 -0.0039 -0.0019
1.8 -0.057 -0.0673 -0.0446 -0.0134 -0.0068
-1.8 0.3355 0.1509 0.0687 0.0408 0.0189
-1 0.0161 0.0091 0.0063 0.0044 0.003

Variance 0 0.0116 0.0085 0.005 0.0031 0.0024
1 0.0597 0.0134 0.008 0.0054 0.0047
1.8 0.287 0.1028 0.0528 0.0275 0.0124

symmetric matrix

Σn,m =

 Σn,m,0,0 Σn,m,0,1 · · · Σn,m,0,p
· · · · · · · · · · · ·

Σn,m,p,0 Σn,m,p,1 · · · Σn,m,p,p

 ,

where Σn,m,i,j is an Ni by Nj matrix whose (`, k) element is νn,m,τi(`)+τj(k). So Σn,m,0,0
is the (1, 1)th element of the matrix Σn,m and equals to νn,m,0(w); Σn,m,0,1 is a 1 × dm
vector contains terms of νn,m,1 corresponding to each variable in vector u; Σn,m,1,1 is a
dm × dm matrix which contains elements constructed from νn,m,2 where each elements
contains interaction terms from two variables from the vector u etc.. Let Σm be defined as
similar to Σn,m with νm,j = gw(w)

∫
Kw(u)ujdu replacing νn,m,j . Clearly Σm = Σn,m+o(1)

given h ↓ 0, as shown in KLX Lemma 8.
Let M(w) = E[Y |W = w]. Let αmr (w) be a vector of |r|-th order partial derivative of

M evaluated at w with the position of each term in the vector being arranged in the same
lexicographical order as described above. For example, for w = (s, x, z),

αm1 (w) =

(
∂M(w)

∂z
,
∂M(w)

∂x
,
∂M(w)

∂s

)′
3×1

and

αm2 (w) =

(
∂2M(w)

∂z2
,
∂2M(w)

∂z∂x
, · · · , ∂

2M(w)

∂s∂x
,
∂2M(w)

∂s2

)′
6×1

Let αm(w) be the stacked vector of αmr (w) of which 0 ≤ |r| ≤ p for some p ≥ 1 based on the
order that is increasing in |r|. Wherever it causes no confusion, we will simply write αr for
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Table 5: Performance of β̂1(s), c = 0

n
s 1000 2000 4000 8000 16000

-1.8 0.2623 0.1189 0.0703 0.0354 0.0196
-1 0.0131 0.0078 0.0057 0.0038 0.0025

MSE 0 0.012 0.0068 0.0043 0.0031 0.0019
1 0.0697 0.0108 0.0062 0.0044 0.0032

1.8 0.2924 0.1003 0.0583 0.0283 0.0132
-1.8 -0.0297 -0.0041 -0.0069 -0.0034 -0.001
-1 -0.0154 -0.0007 -0.001 -0.0017 -0.0011

Bias 0 -0.0301 -0.0295 -0.0203 -0.016 -0.0121
1 -0.116 -0.0015 0.0002 0.003 0.0008

1.8 -0.0977 -0.0809 -0.0678 -0.0387 -0.0289
-1.8 0.2614 0.1189 0.0702 0.0353 0.0196
-1 0.0129 0.0078 0.0057 0.0038 0.0025

Variance 0 0.0111 0.006 0.0039 0.0028 0.0017
1 0.0563 0.0108 0.0062 0.0044 0.0032

1.8 0.2829 0.0937 0.0537 0.0268 0.0124

αr(w) and write αm for αm(w). Let µmr (w) be a vector of polynomials of w with a typically
element equals to wr for some 0 ≤ |r| ≤ p and all the terms in µmr (w) are arranged in the
same lexicographical order as above. Let µm(w) be the stacked vector of µmr increasing in |r|.
Note that Taylor expansion leads to the approximation that M(w) ≈

∑
0≤|r|≤p

1
r!α

m
r ·µmr (w),

where “·” represents the inner product of two vectors.
Let Hn be a diagonal with the same number of rows as the dimension of µm, with

diagonal entries being h|r| for 0 ≤ |r| ≤ p and arranged in the same lexicographical order.
Let Wp be another diagonal matrix with diagonal entries be r! for 0 ≤ |r| ≤ p and arranged
in the same lexicographical order.

Lemmas 1 and 2 adopt the results from Kong, Linton, and Xia (2010, KLX).

Lemma 1. Under Assumptions 1 to 5 and 8 to 10, we have

sup
w∈W

|h{m̂(w)−m(w)} −m∗n(w)| = Op

(
log n

nhdm

)
,

where m∗n(w) is the Bahadur representation of m̂−m:

m∗n(w) = − 1

nhdm
Σ−(s,·)
n,m H−1

n

n∑
i=1

Ks,h(Si − s)Kx,h(Xi − x)Kz,h(Zi − z)

×

Yi − ∑
0≤|r|≤p

1

|r|!
αr · µmr (Wi − w)

µm(Wi − w) (A.1)
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Table 6: Performance of β̂1(s), c = −0.03

n
s 1000 2000 4000 8000 16000

-1.8 0.2835 0.1459 0.0719 0.038 0.0194
-1 0.0238 0.0144 0.0107 0.0071 0.0051

MSE 0 0.0171 0.0108 0.008 0.0057 0.0038
1 0.0989 0.0197 0.0135 0.0103 0.0078

1.8 0.3096 0.1102 0.055 0.0284 0.0145
-1.8 0.0043 -0.0195 0.0107 0.0065 -0.0019
-1 -0.0109 -0.0029 -0.0041 0.0003 -0.0021

Bias 0 -0.0142 -0.0139 -0.0116 -0.0097 -0.0056
1 -0.158 -0.0027 -0.003 -0.0027 0.0019

1.8 -0.0405 -0.0429 -0.0194 -0.0091 -0.004
-1.8 0.2835 0.1455 0.0718 0.038 0.0194
-1 0.0236 0.0144 0.0107 0.0071 0.0051

Variance 0 0.0169 0.0106 0.0078 0.0056 0.0038
1 0.074 0.0197 0.0135 0.0103 0.0078

1.8 0.308 0.1083 0.0546 0.0284 0.0145

where Σ
−(s,·)
n,m is a row from Σ−1

n,m which corresponds to the linear term of S.6 Furthermore,
Let εmi = Yi − E[Yi|Wi] and

ηm,n(w) = − 1

nhdm+1
Σ−(s,·)
n,m H−1

n

n∑
i=1

Ks,h(Si − s)Kx,h(Xi − x)Kz,h(Zi − z)εmi µm(Wi −w),

then

sup
w∈W

|m̂(w)−m(w)− ηm,n(w)| ≤ Op
(

log n

nhdm+1

)
+Op(h

p). (A.2)

Proof. Since the loss function is quadratic, to show the first displayed equation, we apply
the results stated in KLX (Equation 13, pp1536). We take λ1 = 1, λ2 = 1/2 and verify KLX
conditions A1-A7. Then Equation (A.1) holds by noticing that the partial derivative m that
we are estimating corresponds to the fourth element of αm, the fourth diagonal element of
Hn is 1/h and the fourth diagonal element of Wp is 1.

KLX-A1 part 1 holds since we consider the quadratic loss function. KLX-A1 part 2 holds
by Assumption 10-(i). KLX-A2 holds again because we consider quadratic loss function,
hence the first order derivative is linear. KLX-A3 is the assumption on kernels and it is
satisfied by Assumption 8. KLX-A4 is the smoothness assumption on the joint distribution
of (S,X,Z), it holds by Assumption 10-(i). KLX-A5 is the smoothness assumption on m
and is satisfied by Assumption 10-(ii). KLX-A7 part 1 is ensured by Assumption 10-(ii)
and part 2 holds since we have i.i.d. observations.

It remains to verify KLX-A6. For two sequences ab and bn, we use an � bn to denote

bn/an
p→ 0. Analogously define “≺”. First, since nhdm � nhdm+2 and nhdm+2 → ∞

6For example, if all the variables are scalar-valued, then it is the fourth row of Σ−1
n,m.
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Table 7: Coverage frequency for β1(s), Size

c = 0 c = −0.01 c = −0.03
s n 90% 95% 99% 90% 95% 99% 90% 95% 99%

1000 0.84 0.901 0.958 0.812 0.894 0.964 0.818 0.889 0.961
2000 0.863 0.931 0.979 0.853 0.921 0.976 0.843 0.916 0.98

s = −1.8 4000 0.883 0.945 0.99 0.878 0.935 0.981 0.87 0.928 0.986
8000 0.891 0.942 0.984 0.885 0.942 0.995 0.889 0.932 0.987
16000 0.884 0.945 0.984 0.891 0.953 0.987 0.915 0.946 0.985
1000 0.885 0.942 0.98 0.884 0.934 0.983 0.896 0.934 0.981
2000 0.898 0.938 0.988 0.895 0.952 0.986 0.897 0.947 0.981

s = −1 4000 0.91 0.947 0.992 0.896 0.948 0.985 0.909 0.945 0.988
8000 0.899 0.942 0.988 0.898 0.94 0.99 0.913 0.951 0.994
16000 0.889 0.957 0.997 0.902 0.952 0.998 0.916 0.96 0.992
1000 0.864 0.929 0.988 0.87 0.943 0.986 0.883 0.921 0.978
2000 0.865 0.925 0.983 0.898 0.927 0.984 0.881 0.94 0.99

s = 0 4000 0.892 0.949 0.986 0.875 0.937 0.987 0.898 0.947 0.992
8000 0.863 0.932 0.988 0.896 0.943 0.982 0.909 0.938 0.988
16000 0.882 0.935 0.99 0.9 0.942 0.991 0.917 0.948 0.987
1000 0.899 0.947 0.99 0.883 0.948 0.988 0.901 0.931 0.991
2000 0.886 0.957 0.993 0.894 0.95 0.985 0.889 0.945 0.994

s = 1 4000 0.914 0.945 0.992 0.902 0.947 0.991 0.902 0.95 0.99
8000 0.902 0.934 0.989 0.897 0.954 0.985 0.911 0.945 0.99
16000 0.909 0.951 0.989 0.9 0.944 0.989 0.893 0.959 0.99
1000 0.828 0.897 0.973 0.854 0.916 0.976 0.842 0.895 0.964
2000 0.847 0.911 0.962 0.851 0.923 0.97 0.854 0.908 0.981

s = 1.8 4000 0.876 0.922 0.983 0.881 0.926 0.982 0.88 0.932 0.983
8000 0.877 0.937 0.983 0.899 0.944 0.987 0.886 0.95 0.988
16000 0.864 0.956 0.993 0.886 0.949 0.983 0.895 0.952 0.985

by Assumption 9-(i), the first condition in the Equation A.2 of KLX-A6 is satisfied. The
second condition in the Equation A.2 holds because we take λ2 = 1/2 and the assumption
that nhdm+2(p+1) ≺ nhdπ+2(p+1) and nhdπ+2(p+1) → 0 by Assumption 9-(ii). To verify the
third condition in Equation A.2, let γn = nhdm/ log n, then using KLX’s notation in their
Equation A.1, we have for some M > 2,

dn = γ
−1− 1

4 + 1
2

n log n = γ
− 3

4
n log n, r(n) = γ

1
4
n

M (1)
n = Mγ−1

n , M (2)
n = M

1
4 γ
− 1

2
n .

Hence we have

n−1{r(n)}ν2/2dn log n{M (2)
n }−1 = M−1/4{log n}2n−1γ

ν2
8 −

3
4 + 1

2
n = M−1/4{log n}2n−1γ

ν2−2
8

n

= M−1/4{log n}2−
ν2−2

8 n−1(nhdm)
ν2−2

8 ,

where we can take ν2 ≤ ν1 and ν1 be large enough, then the above quantity diverges to
infinity. This is ensured by Assumption 10-(ii). Equation A.3 and A.4 of KLX-A6 are
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Table 8: Testing H0 : β1(−0.5) = 0 vs H0 : β1(−0.5) 6= 0, Power

Rejection Frequencies
c = 0 c = −0.01 c = −0.03

n 10% 5% 1% 10% 5% 1% 10% 5% 1%

1000 0.878 0.923 0.806 0.850 0.915 0.775 0.739 0.827 0.630
2000 0.972 0.990 0.971 0.961 0.986 0.944 0.904 0.941 0.848
4000 1.000 1.000 0.998 0.996 1.000 0.997 0.983 0.991 0.971
8000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.997
16000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

satisfied since by the i.i.d. observation Assumption 4, the mixing coefficient γ[k] = 0 for all
k ≥ 1.

Next we verify Equation (A.2) in the statement of this Lemma. By definition of ηm,n,
we can write m∗n(w) as

m∗n(w) = hηm,n(w) +
1

nhdm
Σ−(s,·)
n,m H−1

n

n∑
i=1

Ks,h(Si − s)Kx,h(Xi − x)Kz,h(Zi − z)

×

E[Yi|Wi]−
∑

0≤|r|≤p

1

|r|!
αr · µmr (Wi − w)

µm(Wi − w).

To show the second RHS term is of order Op(h
p+1), it is sufficient to show that the following

term is of order O(hp+1) uniformly in w:

en ≡
1

hdm
E

∣∣∣∣∣∣Ks,h(Si − s)Kx,h(Xi − x)Kz,h(Zi − z)µ̃m(Wi − w)

E[Yi|Wi]−
∑

0≤|r|≤p

1

|r|!
αr · µmr (Wi − w)

∣∣∣∣∣∣ ,
where µ̃m(Wi − w) = Σ

−(4,·)
n,m (w)H−1

n µm(Wi − w). For a generic vector Ci, let uc = Ci−c
h .

Conducting changing variable we have

en =

∫
|Ks(us)Kx(ux)Kz(uz)µ̃

m(huw)|×

∣∣∣∣∣∣M(w + huw)−
∑

0≤|r|≤p

1

|r|!
αr · µmr (huw)

∣∣∣∣∣∣ gw(huw+w)duw,

where M(·) = E[Y |W = ·] and gw is the density of W . en is of order O(hp+1) since M is
p + 1 times continuously differentiable, gw is uniformly bounded and the kernel function is
bounded with finite support. Hence we have uniformly over w

|h−1m∗n(w)− ηm,n(w)| = Op(h
p).
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Table 9: Coverage frequency for β1(s), Size

c = 0 c = −0.01 c = −0.03
s n 90% 95% 99% 90% 95% 99% 90% 95% 99%

1000 0.84 0.901 0.958 0.812 0.894 0.964 0.818 0.889 0.961
2000 0.863 0.931 0.979 0.853 0.921 0.976 0.843 0.916 0.98

s = −1.8 4000 0.883 0.945 0.99 0.878 0.935 0.981 0.87 0.928 0.986
8000 0.891 0.942 0.984 0.885 0.942 0.995 0.889 0.932 0.987
16000 0.884 0.945 0.984 0.891 0.953 0.987 0.915 0.946 0.985
1000 0.885 0.942 0.98 0.884 0.934 0.983 0.896 0.934 0.981
2000 0.898 0.938 0.988 0.895 0.952 0.986 0.897 0.947 0.981

s = −1 4000 0.91 0.947 0.992 0.896 0.948 0.985 0.909 0.945 0.988
8000 0.899 0.942 0.988 0.898 0.94 0.99 0.913 0.951 0.994
16000 0.889 0.957 0.997 0.902 0.952 0.998 0.916 0.96 0.992
1000 0.864 0.929 0.988 0.87 0.943 0.986 0.883 0.921 0.978
2000 0.865 0.925 0.983 0.898 0.927 0.984 0.881 0.94 0.99

s = 0 4000 0.892 0.949 0.986 0.875 0.937 0.987 0.898 0.947 0.992
8000 0.863 0.932 0.988 0.896 0.943 0.982 0.909 0.938 0.988
16000 0.882 0.935 0.99 0.9 0.942 0.991 0.917 0.948 0.987
1000 0.899 0.947 0.99 0.883 0.948 0.988 0.901 0.931 0.991
2000 0.886 0.957 0.993 0.894 0.95 0.985 0.889 0.945 0.994

s = 1 4000 0.914 0.945 0.992 0.902 0.947 0.991 0.902 0.95 0.99
8000 0.902 0.934 0.989 0.897 0.954 0.985 0.911 0.945 0.99
16000 0.909 0.951 0.989 0.9 0.944 0.989 0.893 0.959 0.99
1000 0.828 0.897 0.973 0.854 0.916 0.976 0.842 0.895 0.964
2000 0.847 0.911 0.962 0.851 0.923 0.97 0.854 0.908 0.981

s = 1.8 4000 0.876 0.922 0.983 0.881 0.926 0.982 0.88 0.932 0.983
8000 0.877 0.937 0.983 0.899 0.944 0.987 0.886 0.95 0.988
16000 0.864 0.956 0.993 0.886 0.949 0.983 0.895 0.952 0.985

Therefore, by triangular inequality,

sup
w∈W

|{m̂(w)−m(w)} − ηm,n(w)| ≤ sup
w∈W

|m̂(w)−m(w)− h−1m∗n(w)|

+ sup
w∈W

|h−1m∗n(w)− ηm,n(w)| = Op

(
log n

nhdm+1

)
+Op(h

p),

which establishes Equation (A.2). �

Let W̃ = (X,Z) and W̃ be its support. Again, to simplify notation, we use π to denote a
generic element from the vector π0 = [π1, ..., πT ]′. We define other notation in a similar way
as we define them for estimation m, with π replacing m. For example, Σn,π and Σπ are two
matrices defined analogously to Σn,m and Σm, with matrix dimension adjusted accordingly.

Lemma 2. Suppose that Assumptions 1 to 5 and 8 to 10 hold, then uniformly over W̃ ,

π̂(x, z)− π(x, z)− π∗n(x, z) = Op

(
log n

nhdπ

)
,
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Table 10: Testing H0 : β1(−0.5) = 0 vs H0 : β1(−0.5) 6= 0, Power

Rejection Frequencies
c = 0 c = −0.01 c = −0.03

n 10% 5% 1% 10% 5% 1% 10% 5% 1%

1000 0.878 0.923 0.806 0.850 0.915 0.775 0.739 0.827 0.630
2000 0.972 0.990 0.971 0.961 0.986 0.944 0.904 0.941 0.848
4000 1.000 1.000 0.998 0.996 1.000 0.997 0.983 0.991 0.971
8000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.997
16000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

where π∗n is the Bahadur representation of π̂ − π:

π∗n(x, z) = − 1

nhdπ
Σ−(1,·)
n,π H−1

n

n∑
i=1

Kx,h(Xi − x)Kz,h(Zi − z)

×

1{Di = d} −
∑

0≤|r|≤p

1

|r|!
αr · µπ(W̃i − w̃)

µπ(W̃i − w̃), (A.3)

where Σ
−(1,·)
n,π is the first row Σ−1

n,π. Furthermore, let επi = 1{Di = d} − Pr(Di = d|Xi, Zi)
and let

ηπ,n(x, z) = − 1

nhdπ
Σ−(1,·)
n,π H−1

n

n∑
i=1

Kx,h(Xi − x)Kz,h(Zi − z)επi µπ(W̃i − w̃),

then

sup
(x,z)∈W̃

|π̂(x, z)− π(x, z)− ηn,π(x, z)| ≤ Op
(

log n

nhdπ

)
+Op(h

p+2)). (A.4)

Proof. We verify KLX-A6; the other assumptions (A1-A5 and A7) and the rest of the
proof can be verified analogously to Lemma 1. Since nhdπ � nhdm+2 → ∞ at polynomial
rate, the first condition in the Equation A.2 of KLX-A6 is satisfied. The second condition in
the Equation A.2 holds because we take λ2 = 1/2 and the assumption that nhdπ+2(p+1) → 0
by Assumption 9-ii. To verify the third condition in the Equation A.2, let γn = nhdπ/ log n,
as before, we have for some M > 2,

dn = γ
−1− 1

4 + 1
2

n log n = γ
− 3

4
n log n, r(n) = γ

1
4
n

M (1)
n = Mγ−1

n , M (2)
n = M

1
4 γ
− 1

2
n

Hence we have

n−1{r(n)}ν2/2dn log n{M (2)
n }−1 = M−1/4{log n}2n−1γ

ν2
8 −

3
4 + 1

2
n = M−1/4{log n}2n−1γ

ν2−2
8

n

= M−1/4{log n}2−
ν2−2

8 n−1(nhdπ )
ν2−2

8 .

Note that E|επi |ν1 < ∞ for any ν1 since επi is bounded; then the above quantity diverges to
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infinity by letting ν2 arbitrarily large. Finally, note that the bias is of order hp+2 by KLX
Proposition 2. �

Lemma 3. Let gz be the density of Z and gw be the density of W . Let ηm,n and ηπ,n be as
defined in Equations (1) and (2), respectively. Suppose that the assumptions of Proposition 1
are satisfied, then

√
nhdm+2−dz

n

∑
i

π(x, Zi)ηm,n(s, x, Zi)
d→ N(0,Ωm).

where Ωm is a T × T positive definite matrix

Ωm(s, x) =

∫ {
σ2
m(x, s, Z1)

(∫
Γ (Z1;us, ux,−uz)Kz(uz)duz

)2

×K2
x(ux)K2

s(us)g
2
z(Z1)π(x, Z1)π′(x, Z1)

}
gw(s, x, Z1)duxdusdZ1, (A.5)

σ2
m(w) = V[εm|W = w] and Γ(·) is defined in Equation (A.6).

For a generic element π in π0 = [π1, ..., πT ]′, there is

√
nhdπ−dz

n

∑
i

m(s, x, Zi)ηπ,n(x, Zi)
d→ N(0,Ωπ),

Ωπ is a positive scalar such that

Ωπ ≡
∫ {

σ2
π(x, Z1)

(∫
Ψ(Z1;ux,−uz)Kz(uz)duz

)2

K2(ux)g2
z(Z1)m2(s, x, Z1)

}
gw(s, x, Z1)duxdZ1.

and σ2
π(x, z) = V[επ|(X,Z) = (x, z)] and Ψ(·) is defined in Equation (A.9).

Proof. Recall that

ηm,n(w) = − 1

nhdm+1
Σ−(s,·)
n,m H−1

n

n∑
i=1

Ks,h(Si − s)Kx,h(Xi − x)Kz,h(Zi − z)εmi µm(Wi −w),

where εmi = Yi − E[Yi|Wi]. Let dz be the dimension of Z, then

√
nhdm+2−dz

n

∑
i

π(x, Zi)ηm,n(s, x, Zi)

= − 1

n
√
hdz
√
nhdm

∑
i

∑
j 6=i

π(x, Zi)Σ
−(s,·)
n,m (Zi)Kz,h(Zj−Zi)Kx,h(Xj−x)Ks,h(Sj−s)εmj H−1

n µm(Wj−(s, x, Zi)
′)

− Kz(0)

n
√
hdz
√
nhdm

∑
i

π(x, Zi)Σ
−(s,·)
n,m (Zi)Kx,h(Xi − x)Ks,h(Si − s)εmi H−1

n µm(Wi − (s, x, Zi)
′)︸ ︷︷ ︸

B1

.

where we abbreviate Σ
−(s,·)
n,m (s, x, Zi) as Σ

−(s,·)
n,m (Zi). Since the second term B1 is asymptoti-
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cally negligible, we only focus on the first term. Note that the vector

H−1
n µm(Wj − (s, x, Zi)

′) =

(
1,
Zj − Zi

h
,
Xj − x
h

,
Sj − s
h

,

(
Zj − Zi

h

)2

, · · · ,
(
Sj − s
h

)p)′
.

then we can write in short hand

Σ−(s,·)
n,m (Zi)H

−1
n µm(Wj − (s, x, Zi)

′) = Γn

(
Zi;

Sj − s
h

,
Xj − x
h

,
Zj − Zi

h

)
.

Since Σ
−(s,·)
n,m (w) converges uniformly to Σ

−(s,·)
m (w), it follows that

Σ−(s,·)
m (Zi)H

−1
n µm(Wj − (s, x, Zi)

′) ≡ Γ

(
Zi;

Sj − s
h

,
Xj − x
h

,
Zj − Zi

h

)
= Γn

(
Zi;

Sj − s
h

,
Xj − x
h

,
Zj − Zi

h

)
+ o(1). (A.6)

By defining

ψ∗ij = π(x, Zi)Kz,h(Zj−Zi)Kx,h(Xj−x)Ks,h(Sj−s)εmj Γ

(
Zi;

Sj − s
h

,
Xj − x
h

,
Zj − Zi

h

)
,

and ψij = 1
2 (ψ∗ij + ψ∗ji), we can write

√
nhdm+2−dz

n

∑
i

π(x, Zi)ηm,n(Zi)
d
≈ −
√
n

n2

∑
i

∑
j 6=i

ψij√
hdz
√
hdm

,

So we can approximate the objective of analysis by a U-statistics.
It is easy to verify that E[ψij ] = 0 since E[εmj |Wi] = E[εmj |Wj ] = 0. To derive the limiting

distribution, it remains to find the variance. Let ψ̄1 = E[ψ12|W1, Y1] = 1
2{E[ψ∗12|W1, Y1] +

E[ψ∗21|W1, Y1]}; based on the standard U-statistics asymptotic result, the limiting variance
is 4V(ψ̄1)/(hdz+dm).

By law of iterated expectation, i.i.d. observation assumption and E[εm2 |W2] = 0, we have

E[ψ∗12|W1, Y1] = E[E[ψ∗12|W2,W1, Y1]|W1, Y1] = 0.
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Therefore,

2ψ̄1 = E[ψ∗21|W1, Y1]

= E
[
π(x, Z2)Kz,h(Z2 − Z1)Kx,h(X1 − x)Ks,h(S1 − s)εm1 Γ

(
Z2;

S1 − s
h

,
X1 − x
h

,
Z1 − Z2

h

)
|W1, Y1

]
= εm1 Kx,h(X1−x)Ks,h(S1−s)E

[
π(x, Z2)Γ

(
Z2;

S1 − s
h

,
X1 − x
h

,
Z1 − Z2

h

)
Kz,h(Z2 − Z1)|W1, Y1

]
(i)
= εm1 Kx,h(X1−x)Ks,h(S1−s)

∫
π(x, Z2)Γ

(
Z2;

S1 − s
h

,
X1 − x
h

,
Z1 − Z2

h

)
Kz,h(Z2−Z1)gz(Z2)dZ2

(ii)
= hdzεm1 Kx,h(X1−x)Ks,h(S1−s)

∫
π(x, Z1+huz)Γ

(
Z1 + huz;

S1 − s
h

,
X1 − x
h

,−uz
)
Kz(uz)gz(Z1+huz)duz

(iii)
= hdzεm1 Kx,h(X1−x)Ks,h(S1−s)

{
π(x, Z1)gz(Z1)

∫
Γ

(
Z1;

S1 − s
h

,
X1 − x
h

,−uz
)
Kz(uz)duz + o(h)

}
,

where (i) holds because i.i.d. observations; (ii) holds by changing variable uz = (Z2−Z1)/h,
and (iii) holds by the continuous differentiability of the integrand (implied by Assumption 10)
and the assumption that the support of the kernel is bounded. So the dominant term of 2ψ̄1

is

hdzεm1 Kx,h(X1−x)Ks,h(S1−s)π(x, Z1)gz(Z1)

∫
Γ

(
Z1;

S1 − s
h

,
X1 − x
h

,−uz
)
Kz(uz)duz.

Since E[ψ̄1] = 0, then up to the negligible terms, we have

4V(ψ̄1) = 4E[ψ̄1ψ̄
′
1] = h

2dz E
[(
ε
m
1 Kx,h(X1 − x)Ks,h(S1 − s)gz(Z1)

∫
Γ

(
Z1;

S1 − s

h
,
X1 − x

h
,−uz

)
Kz(uz)duz

)2

π(x, Z1)π
′
(x, Z1)

]
+o(1)

(i)
= h

2dz E
[
σ

2
m(W1)

(
Kx,h(X1 − x)Ks,h(S1 − s)gz(Z1)

∫
Γ

(
Z1;

S1 − s

h
,
X1 − x

h
,−uz

)
Kz(uz)duz

)2

π(x, Z1)π
′
(x, Z1)

]
+o(1)

(ii)
=

(
h

2dz+dx+ds
) ∫ {

σ
2
m(x, s, Z1)K

2
x(ux)K

2
s(us)g

2
z(Z1)

(∫
Γ (Z1;us, ux,−uz)Kz(uz)duz

)2
π(x, Z1)π

′
(x, Z1)

}
gw(s, x, Z1)duxdusdZ1+o(1)

(iii)
=

(
h
dz+dm

) ∫ {
σ

2
m(x, s, Z1)K

2
x(ux)K

2
s(us)g

2
z(Z1)

(∫
Γ (Z1;us, ux,−uz)Kz(uz)duz

)2
π(x, Z1)π

′
(x, Z1)

}
gw(s, x, Z1)duxdusdZ1+o(1)

(A.7)

where (i) holds by taking the conditional expectation of (εm1 )2 given W1; (ii) holds by chang-
ing variable ux = (X1 − x)/h, us = (S1 − s)/h and ingoing higher order terms, and (iii)
holds because dm = ds + dz + dx.

Then we know that

4V
(

ψ̄1√
hdm+dz

)
= Ωm(s, x), (A.8)

where

Ωm(s, x) =

∫ {
σ2
m(s, x, Z1)

(∫
Γ (Z1;us, ux,−uz)Kz(uz)duz

)2

×K2
x(ux)K2

s(us)g
2
z(Z1)π(x, Z1)π′(x, Z1)

}
gw(s, x, Z1)duxdusdZ1,

where the Γ term is defined in Equation (A.6). By the standard U statistics theory, we have
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(by abbreviating Ωm(s, x) as Ωm)

√
nhdm+2−dz

n

∑
i

π(x, Zi)ηm,n(Zi)
d→ N(0,Ωm).

Following similar argument, we can show that

√
nhdπ−dz

n

∑
i

m(x, s, Zi)ηπ,n(Zi)
d→ N(0,Ωπ),

where

Ωπ ≡
∫ {

σ2
π(x, Z1)Ψ2(Z1;ux,−uz)K2

x(ux)g2
z(Z1)m2(s, x, Z1)

}
gw(s, x, Z1)duxdZ1.

where the shorthand term Ψ is defined such that

Σ−(·)
π (Zi)H

−1
n µπ((Xj , Zj)− (x, Zi)

′) ≡ Ψ

(
Zi;

Xj − x
h

,
Zj − Zi

h

)
= Ψn

(
Zi;

Xj − x
h

,
Zj − Zi

h

)
+ o(1) = Σ−(·)

n,π (Zi)H
−1
n µπ((Xj , Zj)− (x, Zi)

′) + o(1) (A.9)

Since dm+2 > dπ, it follows that
√
nhdm+2−dz

n

∑
im(x, s, Zi)ηπ,n

p→ 0. For the same rea-

son, the asymptotic covariance between
√
nhdm+2−dz

n

∑
i π(x, Zi) and

√
nhdm+2−dz

n

∑
im(x, s, Zi)ηπ,n

converges in probability to zero as well. This establishes the result. �

Lemma 4. Let κn =
√
nhdm+2−dz . Suppose that the assumptions of Proposition 1 are

satisfied, then

1

n

∑
i

m(s, x, Zi){rπ,1 + rπ,2} = op(κ
−1
n ),

1

n

∑
i

π(x, Zi){rm,1 + rm,2} = op(κ
−1
n ).

Proof. The first equality holds because 1
n

∑
im(s, x, Zi) = Op(1/

√
n) = o(κ−1

n ), and the
fact that rπ,1 +rπ,2 = op(1) and does not depend on i. The second equality holds analogously.

�

Lemma 5. Suppose that the assumptions of Proposition 1 are satisfied and let ηm,n(w) and
ηπ,n(x, z) be as defined in Equations (1) and (2), then for a generic element π ∈ π0, then
there exists λm and λπ such that

√
nhdm+2−dz

n

∑
i

ηm,n(s, x, Zi)
d→ N(0, λm).;

√
nhdπ−dz

n

∑
i

ηπ,n(x, Zi)
d→ N(0, λπ).

Proof. It follows from the same argument as in Lemma 3 by replacing π(x, Zi) and
m(x, s, Zi) with 1, respectively. �

Lemma 6. Let κn =
√
nhdm+2−dz . Suppose that the assumptions of Proposition 1 are

satisfied, then (rπ,1 + rπ,2)(rm,1 + rm,2) = o(κ−1
n ).
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Proof. Note that

κn(rπ,1+rπ,2)(rm,1+rm,2) = κn

(
Op (hp) +Op

(
log n

nhdm+1

))
×
(
Op
(
hp+2

)
+Op

(
log n

nhdπ

))
= κnOp(h

2p+2) + κnOp

(
hp+2 log n

nhdm+1

)
+ κnOp

(
hp log n

nhdπ

)
+ κnOp

(
log n

n2hdm+1+dπ

)
.

The first right hand side term is
√
nhdm+6−dz+4p =

√
nhdπ+2+2p

√
h2p+ds−dz p→ 0 by As-

sumption 9-(ii) and Assumption 10-(iii). The second RHS term is of order log n
√

h2p+4nhdm+2−dz
n2h2dm+2 =

log n
√

h2p+4

nhdm+dz
≺ log n

√
hdz−ds
nhdm+dz

= log n
√

1
nhdm+ds

p→ 0, where x ≺ y denote x/y
p→ 0.

The third RHS term is of order log n
√

h2pnhdm+2−dz
n2h2dπ

= log n
√

h2phds+2

nhdπ+dz

p→ 0 by Assump-

tion 9-(iii). For the fourth RHS term, it is of order (log n)2
√

nhdm+2−dz
n4h2dm+2+2dπ

= (log n)2
√

1
n3hdm+2dπ+dz

=

(log n)2
√

1
nhdπ+dznhdπnhdm

p→ 0 by Assumption 9-(i) and (ii).

Lemma 7. Let κn =
√
nhdm+2−dz . Suppose that the assumptions of Proposition 1 are

satisfied, then

Tn ≡
1

n

∑
i

{ηm,n(s, x, Zi) + rm,1 + rm,2}{ηπ,n(x, Zi) + rπ,1 + rπ,2} = op
(
κ−1
n

)
.

Proof. Tn can be decomposed as the following four terms,

Tn =
1

n

∑
i

ηm,n(s, x, Zi)ηπ,n(x, Zi) + (rπ,1 + rπ,2)
1

n

∑
i

ηm,n(s, x, Zi)

+ (rm,1 + rm,2)
1

n

∑
i

ηπ,n(x, Zi) + (rπ,1 + rπ,2)(rm,1 + rm,2). (A.10)

The RHS4 is dealt with by Lemma 6. The RHS2 and RHS3 are of order op
(
κ−1
n

)
by

Lemma 5 and the fact that the r terms converge to zero (in probability). It remains to verify
RHS1 of Equation (A.10) is also of order op(κ

−1
n ). Let

Un ≡
1

n

∑
i

ηm,n(s, x, Zi)ηπ,n(x, Zi)

=
1

n3hdm+1hdπ
×
∑
i

∑
j

Kz,h(Zj − Zi)Kx,h(Xj − x)Ks,h(Sj − s)εmj Γ

(
Zi;

Sj − s
h

,
Xj − x
h

,
Zj − Zi

h

)
×

(∑
t

Kz,h(Zt − Zi)Kx,h(Xt − x)επt Ψ

(
Zi;

Xt − x
h

,
Zt − Zi

h

))

=
1

n3hdm+1hdπ

n∑
i=1

n∑
j=1

n∑
t=1

ξ∗ijt, (A.11)
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where

ξ∗ijt = Γ

(
Zi;

Sj − s
h

,
Xj − x
h

,
Zj − Zi

h

)
Ψ

(
Zi;

Xt − x
h

,
Zt − Zi

h

)
×Ks,h(Sj − s)Kx,h(Xj − x)Kx,h(Xt − x)Kz,h(Zj − Zi)Kz,h(Zt − Zi)εmj επt ,

and Ψ
(
Zi;

Xt−x
h , Zt−Zih

)
is defined analogously as Γ

(
Zi;

Sj−s
h ,

Xj−x
h ,

Zj−Zi
h

)
. We decom-

pose Un into five parts:

U1n =
1

n3hdm+1hdπ
×

n∑
i=1

n∑
j 6=i

n∑
t 6=j,t 6=i

ξ∗ijt,

U2n =
1

n3hdm+1hdπ
×

n∑
i=1

n∑
j 6=i

n∑
t=j

ξ∗ijt =
1

n3hdm+1hdπ
×

n∑
i=1

n∑
j 6=i

ξ∗ijj ,

U3n =
1

n3hdm+1hdπ
×

n∑
i=1

n∑
j=i

n∑
t6=j

ξ∗ijt =
1

n3hdm+1hdπ
×

n∑
i=1

n∑
t 6=i

ξ∗iit,

U4n =
1

n3hdm+1hdπ
×

n∑
i=1

n∑
j 6=i

n∑
t=i

ξ∗ijt =
1

n3hdm+1hdπ
×

n∑
i=1

n∑
j 6=i

ξ∗iji,

U5n =
1

n3hdm+1hdπ
×

n∑
i

ξ∗iii,

so Un = U1n +U2n +U3n +U4n +U5n. We will show that all these terms are asymptotically
negligible.

Part 1: U1n. We write

U1n =
n(n− 1)(n− 2)

√
hdm+dπ

n3hdm+1hdπ
× 1

n(n− 1)(n− 2)
×

n∑
i=1

n∑
j 6=i

n∑
t6=j,t 6=i

ψ∗ijt︸ ︷︷ ︸
Ũ1n

,

where ψ∗ijt =
ξ∗ijt√
hdm+dπ

. The U1n term is proportional to a third order U-statistics with kernel

function ψ∗ijt. Let ψijt be a symmetric transformation of ψ∗ijt, that is, ψijt = 1
6

∑
p ψ
∗
ijt where∑

p is the sum over all permutations of i, j, t. Write Hi = (Wi, Yi, Di). It is staightforward to
calculate that E[ψ∗123|H1] = E[ψ∗123|H2] = E[ψ∗123|H3] = 0, which implies that E[ψijt|H1] = 0

as well as E[U1n] = 0. Hence Ũ1n is a degenerated U-statistics. In the mean time, E[ψ2
123]
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is of the same order of E[(ψ∗123)2], which is

E[(ψ∗123)2] =
1

hdm+dπ
E[(ξ∗123)2]

=
1

hdm+dπ

∫
Γ2

(
Z1;

S2 − s
h

,
X2 − x
h

,
Z2 − Z1

h

)
Ψ2

(
Z1;

X3 − x
h

,
Z3 − Z1

h

)
K2
s,h(S2−s)K2

x,h(X2−x)

×K2
x,h(X3−x)K2

z,h(Z2−Z1)K2
z,h(Z3−Z1)(εm2 ε

π
3 )2g(Z1, S2, X2, Z2, X3, Z3)d(Z1, S2, X2, Z2, X3, Z3)

≈
∫

Γ2 (Z1;us, ux2, uz2) Ψ2 (Z1;ux3, uz3)K2
s(us)K

2
x(ux2)K2

x(ux3)K2
z(uz2)K2

z(uz3)

× (σm(s, x, Z1)σπ(x, Z1))2g(Z1, s, x, Z1, x, Z1)d(Z1, us, ux2, uz2, ux3, uz3),

where we apply changing of variable: (S2− s)/h = us, (X2−x)/h = ux2, (X3−x)/h = ux3,
(Z2−Z1)/h = uz2, (Z3−Z1)/h = uz3 and use law of iterated expectation, it is straightforward
to see that the above term is finite. Then by Serfling (1980, Theorem, Chapter 5.5.2),

nŨ1n
d→ 3Y , where Y is an infinite weighted sum of χ2 distributions. So the order of U1n

is

U1n ∼ Op

(
n(n− 1)(n− 2)

√
hdm+dπ

n3hdm+1hdπ
× 1

n

)
= Op

(
1√

n2hdπ+dm+2

)
.

By Assumption 9-iii, nhdz+dπ � nhdz+dπ+1 →∞, hence,

κnU1n ∼
√
nhdm+2−dz ×Op

(
1√

n2hdπ+dm+2

)
∼ Op

(√
1

nhdz+dπ

)
= op(1).

Part 2: U2n. Wherever causes no confusion, we will write Γij = Γ
(
Zi;

Sj−s
h ,

Xj−x
h ,

Zj−Zi
h

)
and Ψit = Ψ

(
Zi;

Xt−x
h , Zt−Zih

)
. Now we analyze the U2n term, which we can write as

U2n =
1

n3hdm+1hdπ
×

n∑
i=1

∑
j 6=i

ΓijΨijKs,h(Sj − s)K2
x,h(Xj − x)K2

z,h(Zj − Zi)εmj επj

=
hτn(n− 1)

n3hdm+1hdπ
× 1

n(n− 1)

n∑
i=1

∑
j 6=i

1

hτ
ΓijΨijKs,h(Sj − s)K2

x,h(Xj − x)K2
z,h(Zj − Zi)εmj επj︸ ︷︷ ︸

φ∗ij︸ ︷︷ ︸
Ũ2n

where τ = 1
2ds+dz+ 1

2dx. Now we analyze Ũ2n, which is a second order statistics with kernel
function φ∗ij. Let φij be the symmetric transformation of φ∗ij. To calculate the variance of
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Ũ2n, we need to calculate the variance of E[φij |H1] = 1
2E[φ∗12|H1] + 1

2E[φ∗21|H1].

E[φ∗12|H1] =
1

hτ

∫
Γ12Ψ12Ks,h(S2−s)K2

x,h(X2−x)K2
z,h(Z2−Z1)E[εm2 ε

π
2 |W2]gw(W2)dW2

=
hdm

hτ

∫
Γ (Z1;us, ux, uz) Ψ (Z1;ux, uz)Ks(us)K

2
x(ux)K2

z(uz)σmπ(s, x, Z1+huz)gw(s, x, Z1+huz)dusduxduz

= h
1
2ds+

1
2dx

∫
Γ (Z1;us, ux, uz) Ψ (Z1;ux, uz)Ks(us)K

2
x(ux)K2

z(uz)σmπ(s, x, Z1+huz)gw(s, x, Z1+huz)dusduxduz

where we apply the changing of variable (S2−s)/h = us, (X2−x)/h = ux, (Z2−Z1)/h = uz,
and σmπ(s, x, z) = E[εmεπ|W = w]. It is not difficult to see that E(E[φ∗12|H1])2 ↓ 0.

Next, we look at E[φ∗21|H1] and apply (Z1 − Z2)/h = uz,

E[φ∗21|H1] =
1

hτ
Ks,h(S1 − s)K2

x,h(X1 − x)

∫
Γ21Ψ21K

2
z,h(Z1 − Z2)E[εm1 ε

π
1 |W1]gz(Z2)dZ2

=
hdz

hτ
Ks,h(S1−s)K2

x,h(X1−x)

∫
Γ

(
Z1 − huz ;

S1 − s
h

,
X1 − x
h

, uz

)
Ψ

(
Z1 − huz ;

X1 − x
h

, uz

)
K2
z(uz)E[εm1 ε

π
1 |W1]gz(Z1−huz)duz

≈
hdz

hτ
Ks,h(S1−s)K2

x,h(X1−x)σmπ(W1)gz(Z1)

∫
Γ

(
Z1;

S1 − s
h

,
X1 − x
h

, uz

)
Ψ

(
Z1;

X1 − x
h

, uz

)
K2
z(uz)duz

where we apply (Z1 − Z2)/h = uz. Therefore,

E(E[φ∗21|H1])2 =

≈
h2dz

h2τ

∫
K2
s,h(S1−s)K4

x,h(X1−x)σ2
mπ(W1)g2z(Z1)

(∫
Γ

(
Z1;

S1 − s
h

,
X1 − x
h

, uz

)
Ψ

(
Z1;

X1 − x
h

, uz

)
K2
z(uz)duz

)2

gz(Z1)dZ1

≈
h2dz+dx+ds

h2τ

∫
K2
s(us)K

4
x(ux)σ2

mπ(s, x, Z1)g2z(Z1)

(∫ ∫
Γ (Z1;us, ux, uz) Ψ (Z1;ux, uz)K2

z(uz)duz

)2

gz(Z1)dZ1,

which is of order O(1) the last equality holds because τ = 1
2ds + dz + 1

2dx. So we have
E(E[φ21|H1])2 = max{E(E[φ∗21|H1])2,E(E[φ∗12|H1])2} = O(1). Therefore,

√
n
(
Ũ2n − E[Ũ2n]

)
= Op(1).

It remains to analyze the order of E[Ũ2n].

E[φ∗21] = E[E[φ∗21|H1]] =

=
hdz

hτ

∫
Ks,h(S1−s)K2

x,h(X1−x)σmπ(W1)gz(Z1)

∫
Γ

(
Z1;

S1 − s
h

,
X1 − x
h

, uz

)
Ψ

(
Z1;

X1 − x
h

, uz

)
K2
z(uz)duzdW1

= h
1
2ds+

1
2dx

∫
K2
x(ux)Ks(us)σmπ(s, x, Z1)gz(Z1)Γ (Z1;us, ux, uz) Ψ (Z1;ux, uz)K

2
z(uz)duzduxdusdZ1

In the mean time, we can show that

E[φ∗12] = E[E[φ∗12|H1]] =

=
hdz

hτ

∫
Ks,h(S1−s)K2

x,h(X1−x)σmπ(W1)gz(Z1)

∫
Γ̃(uz, S1, X1)Ψ̃(uz, X1)K2

z(uz)duzdW1

= h
1
2ds+

1
2dx

∫
Γ (Z1;us, ux, uz) Ψ (Z1;ux, uz)Ks(us)K

2
x(ux)K2

z(uz)σmπ(s, x, Z1+huz)gw(s, x, Z1+huz)dusduxduzdZ1
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So E[Ũ2n] = O(hdm/hτ ) = h
1
2ds+

1
2dx . Now we can conclude that

Ũ2n = Ũ2n − E[Ũ2n]︸ ︷︷ ︸
=Op

(
1√
n

) + E[Ũ2n]︸ ︷︷ ︸
=O
(
h

1
2
ds+ 1

2
dx
) .

Therefore,

κnU2n ∼
hτ
√
nhdm+2−dz

nhdm+1+dπ
×Op

(
1√
n

)
+
hτ
√
nhdm+2−dz

nhdm+1+dπ
×O

(
h

1
2ds+

1
2dx
)

= Op

(
1

nhdπ

)
+Op

(√
hds

nhdπ+dz

)
= op(1).

The RHS is o(1) because Assumption 9-(iii).
Part 3: U3n. Let k0 = K(0). Recall that

U3n =
k0

n3hdm+1hdπ
×

n∑
i=1

n∑
t6=i

ΓiiΨitKs,h(Si − s)Kx,h(Xi − x)Kx,h(Xt − x)Kz,h(Zt − Zi)εmi επt︸ ︷︷ ︸
ζ∗ij

.

Let ζij = 1
2 (ζ∗ij+ζ∗ji). So U3n = k0

n3hdm+1hdπ
×
∑n
i=1

∑n
t 6=i ζij is proportional to a U-statistics.

Now consider

E[ζ∗12|H1] = E[Γ11Ψ12Ks,h(S1 − s)Kx,h(X1 − x)Kx,h(X2 − x)Kz,h(Z2 − Z1)εm1 ε
π
2 |H1]

= Γ11Ks,h(S1 − s)Kx,h(X1 − x)εm1 E[Ψ12Kx,h(X2 − x)Kz,h(Z2 − Z1)επ2 |H1]

= Γ11Ks,h(S1−s)Kx,h(X1−x)εm1 E[Ψ12Kx,h(X2−x)Kz,h(Z2−Z1)E[επ2 |H1,W2]|H1] = 0

Likewise,

E[ζ∗21|H1] = E[Γ22Ψ21Ks,h(S2 − s)Kx,h(X2 − x)Kx,h(X1 − x)Kz,h(Z1 − Z2)εm2 ε
π
1 |H1]

= Kx,h(X1 − x)επ1E[Γ22Ψ21Ks,h(S2 − s)Kx,h(X2 − x)Kz,h(Z1 − Z2)εm2 |H1]

= Kx,h(X1−x)επ1E[Γ22Ψ21Ks,h(S2−s)Kx,h(X2−x)Kz,h(Z1−Z2)E[εm2 |H1,W2]|H1] = 0.

Therefore,
E[ζ12|W1, Y1] = 0⇒ E[ζij ] = 0.

So we can conclude that U3n is proportional to a degenerate U-statistics. It remains to find
the order of the variance: E[ζ2

12] = 1
4E (ζ∗21 + ζ∗12)

2
.

Consider E(ζ∗21)2 first.

E(ζ∗21)2 =

∫
Γ2

11Ψ2
12K

2
s,h(S1 − s)K2

x,h(X1 − x)K2
x,h(X2 − x)K2

z,h(Z2 − Z1)

× σ2
m(W1)σ2

π(W2)g(W1)g(W2)dW1dW2.

Apply changing variable routine it is easy to see that E(ζ∗21)2 = O(hdm+dπ ). Likewise,
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E(ζ∗12)2 = O(hdm+dπ ). Therefore, V(ζ12) = O(hdm+dπ ). As the consequence, it follows that

1

n(n− 1)

1√
hdm+dπ

n∑
i=1

n∑
t6=i

ζij = Op

(
1

n

)
,

or equivalently,

U3n =
k0(n− 1)

√
hdm+dπ

n2hdm+1hdπ
1

n(n− 1)

1√
hdm+dπ

n∑
i=1

n∑
t6=i

ζij = O

(
1

n2
√
hdm+dπ+2

)
= o(κ−1

n ).

Part 4: U4n. Recall that

U4n =
k0

n3hdm+1hdπ

n∑
i=1

n∑
j 6=i

ΓijΨiiKs,h(Sj−s)Kx,h(Xj−x)Kx,h(Xi−x)Kz,h(Zj−Zi)εmj επi ,

Following the same argument for U3n that U4n = o(κ−1
n ).

Part 5: U5n. Now we consider U5n, then

U5n =
k2

0

n3hdm+1hdπ

n∑
i=1

ΓiiΨiiKs,h(Si − s)Kx,h(Xi − x)Kx,h(Xi − x)εmi ε
π
i

=
k2

0

n2hdπ+1

{
1

nhdm

n∑
i=1

ΓiiΨiiKs,h(Si − s)Kx,h(Xi − x)Kx,h(Xi − x)εmi ε
π
i

}
,

the term in the bracket converges in probably to a finite constant by law of large number and
applying usual changing variable trick, so U5n = Op(

1
n2hdπ+1 ) = o(κ−1

n ).
Part 6: Un. Combine Part 1–pat 5, we can conclude that Un = o(κ−1

n ). Hence the
conclusion of the lemma holds. �

Appendix B. Auxiliary Results for Section 2

Recall that

Ωm(s, x) =

∫ {
σ2
m(s, x, Z1)

(∫
Γ (Z1;us, ux,−uz)Kz(uz)duz

)2

×K2
x(ux)K2

s(us)g
2
z(Z1)π(x, Z1)π′(x, Z1)

}
gw(s, x, Z1)duxdusdZ1.

We first look at the term
∫

Γ (Z1;us, ux,−uz)K(uz)duz. Recall that Σm is a matrix

Σm =

 Σm,0,0 Σm,0,1 · · · Σm,0,p
· · · · · · · · · · · ·

Σm,p,0 Σm,p,1 · · · Σm,p,p

 ,

in which Σm,i,j is an Ni by Nj matrix whose (`, k) element is νm,τi(`)+τj(k), where νm,j =

gw(w)
∫
Kw(u)ujdu. Therefore,

Σm = gw(w)Λm,
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where Λm is defined analogously as Σm but with a typical element being λm,j =
∫
Kw(u)ujdu.

Hence, the corresponding row of Σ−1
m , Σ

−(s,·)
m (w) = g−1

w (w)Λ
−(s,·)
m , where Λ

−(s,·)
m is the

corresponding row of the inverse of Λm and is just a vector of constants. Let it be
λ = (λ1, λ2, · · · , λN̄ ), where N̄ =

∑p
j=1Nj . By definition of Γ (see Equation (A.6)),∫

Γ (Z1;us, ux,−uz)Kz(uz)duz = g−1
w (s, x, Z1)

×
∫
λ · (1,−uz, ux, us, · · · , (us)p)

′
Kz(uz)duz (B.1)

Note that the integral part of the right hand side is an known function of (us, ux), for which
we denote as $(us, ux). Given this, the formula for Ωm can be simplified as

Ωm =

∫
$2(us, ux)K2

x(ux)K2
s(us)duxdus×

∫ {
σ2
m(s, x, Z1)π(x, Z1)π′(x, Z1)

gS,X|Z(s, x|Z = Z1)

}
gz(Z1)dZ1.

The first term on the right hand side is a constant (let us denote it by cK) can be directly
calculated based on the kernel and the second term can be estimated by sample analogs and
plug-in estimators.

Ω̂m =
cK
n

∑
i

σ̂2
m(s, x, Zi)π̂(x, Zi)π̂

′(x, Zi)

ĝS,X|Z(s, x|Zi)
, (B.2)

where

σ̂2
m(s, x, z) =

∑
i(Yi − Ŷi)Kw,h(Wi − w)

Tr
(
W∗j −W∗jX∗j

(
X∗′j W∗jX∗j

)−1 X∗′j Wj

) ,
and X∗j and W∗j are defined analogously to Xj and Wj defined in ??.

Example 1. Consider the case in which S,X and Z are all one-dimensional. Suppose
p = 2 then we have N̄ = N0 +N1 +N2 = 10. If we use triangular kernel (for each variable),
that is, K(u) = (1− |u|)1{|u| ≤ 1}, then

∫
urK(u)du = 0 for odd r, and

∫
u2K(u)du = 1

6 ,∫
u4K(u)du = 1

15 .

Λm =



1 0 0 0 1
6 0 0 1

6 0 1
6

0 1
6 0 0 0 0 0 0 0 0

0 0 1
6 0 0 0 0 0 0 0

0 0 0 1
6 0 0 0 0 0 0

1
6 0 0 0 1

15 0 0 1
36 0 1

36
0 0 0 0 0 1

36 0 0 0 0
0 0 0 0 0 0 1

36 0 0 0
1
6 0 0 0 1

36 0 0 1
15 0 1

36
0 0 0 0 0 0 0 0 1

36 0
1
6 0 0 0 1

36 0 0 1
36 0 1

15


10×10

Calculating the inverse of Λm we found that the only nonzero element in the fourth row of
Λ−1
m is the fourth element, that is, λ = (0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0). Therefore,

∫
Γ (Z1;us, ux,−uz)K(uz)duz
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is simply ∫
Γ (Z1;us, ux,−uz)K(uz)duz = g−1

w (s, x, Z1)× 6us.

In this case, $(us, ux) = 6us and therefore,

cK =

∫ 1

−1

36u2
s(1− |us|)2dus ×

∫ 1

−1

(1− |ux|)2dux =
8

5
.

The estimator for Ωm is therefore

Ω̂m =
8

5n

∑
i

σ̂2
m(s, x, Zi)π̂(x, Zi)π̂

′(x, Zi)

ĝS,X|Z(s, x|Zi)
.

Corollary 1. Let Ω̂m be defined as in Equation (B.2) and V̂ be defined as in ??, and let
ĝW (w) be a uniformly consistent estimator for the joint density of W at (s, x, z), and suppose
σ2
m(s, x, z) is constant in a local neighborhood of (s, x, z), then(

V̂ −1Ω̂mV̂
−1
)− 1

2
√
nhdx+ds+2(β̂(s, x)− β(s, x))

d→ N(0, I).

33



References

Chernozhukov, V., W. Kim, S. Lee, and A. M. Rosen (2013): “Implementing Inter-
section Bounds in Stata,” working paper.

Chernozhukov, V., S. Lee, and A. M. Rosen (2013): “Intersection Bounds: Estimation
and Inference,” Econometrica, 81(2), 667–737.

Fan, J., and I. Gijbels (1996): Local polynomial modelling and its applications: mono-
graphs on statistics and applied probability 66, vol. 66. CRC Press.

Ha, W., J. Yi, Y. Yuan, and J. Zhang (2016): “The dynamic effect of rural-to-urban
migration on inequality in source villages: System GMM estimates from rural China,”
China Economic Review, 37, 27–39.

Holm, S. (1979): “A simple sequentially rejective multiple test procedure,” Scandinavian
journal of statistics, pp. 65–70.

Kong, E., O. Linton, and Y. Xia (2010): “Uniform Bahadur representation for local
polynomial estimates of M-regression and its application to the additive model,” Econo-
metric Theory, 26(05), 1529–1564.

Liu, S., I. Mourifie, and Y. Wan (2019): “Two-way Exclusion Restrictions in Models
with Heterogeneous Treatment Effects,” Discussion paper.
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