Effect of V_{DD} Noise on Phase Jitter

Ricky Yuen

University of Toronto
Department of Electrical Engineering
April 2, 2003

Outline

- What is phase noise and timing jitter?
- Impulse Sensitivity Function (ISF)
- Relationship of ISF and phase noise
- Minimize phase noise in circuit design
- Estimation of ISF
- Measuring ISF in circuit
- Conclusions

What is Phase Noise?

- Ideal oscillator output
 - $V_{out}(t) = V_o \cos(\omega_o t + \phi_o)$
- Practical oscillator output
 - $V_{out}(t) = V_o [1 + A(t)] cos(\omega_o t + \phi(t))$

Timing Jitter

- Timing Jitter is time domain representation of phase noise
- Standard deviation of the phase

uncertainty, δ_{τ} $\delta_{\tau}^{2} = \frac{4}{\pi \omega_{o}} \int_{0}^{\infty} S_{\phi}(\omega) \sin^{2}\left(\frac{\omega \tau}{2}\right) d\omega$

Impulse Sensitivity Function

- Γ ISF = Γ(ω_οτ)
- Characterizes phase response of oscillator due to arbitrary noise source
- $\Delta \phi_{\text{impulse}} = \Gamma(\omega_{\text{o}}\tau) \Delta q/q_{\text{max}}, \Delta q << q_{\text{max}}$
- Γ ISF is periodic with 2π

Result of ISF Simulations

Different type of oscillations exhibit different ISF

ISF demonstrates a LTV current to phase

system

Relationship of ISF and Phase Noise

$$\phi(t) = \int_{-\infty}^{\infty} h_{\phi}(t,\tau)i(\tau)d\tau = \int_{-\infty}^{t} \frac{\Gamma(\omega_0 \tau)}{q_{max}}i(\tau)d\tau$$

$$\phi(t) = \int_{-\infty}^{\infty} h_{\phi}(t,\tau)i(\tau)d\tau = \int_{-\infty}^{t} \frac{\Gamma(\omega_{0}\tau)}{q_{max}}i(\tau)d\tau \qquad \phi(t) = \frac{1}{q_{max}} \left[c_{0} \int_{-\infty}^{t} i(\tau)d\tau + \sum_{n=1}^{\infty} c_{n} \int_{-\infty}^{t} i(\tau)\cos(n\omega_{0}\tau)d\tau \right]$$

- Two step process to get phase noise
 - Linear Current to Phase conversion (ISF)
 - Nonlinear Phase to Voltage conversion

Sinusoidal Noise Source

$$i(t) = I_0 \cos(\Delta \omega t)$$

- Current at $n\omega_0 + \Delta\omega$ will result in two equal sideband at $\pm\Delta\omega$ $S_{\phi}(\omega)$, $\Delta\omega <<\omega_0$
- S_v(ω) is nonlinear transfer function with φ(t) as the input

$$\phi(t) \approx \frac{I_0 c_0}{q_{max}} \int_{-\infty}^{t} \cos(\Delta \omega \tau) d\tau = \frac{I_0 c_0 \sin(\Delta \omega t)}{q_{max} \Delta \omega}$$

General Noise Source

Device's flicker noise is scaled by c_0 and become $1/f^3$ region in the phase noise spectrum

- Important to minimize the DC component of the ISF to lower 1/f³ corner
- Lower RMS value of ISF to lower phase noise

Minimizing Low Frequency Noise Contribution

DC value of the ISF relates to the symmetry of the waveform

Estimation of ISF

- Estimate using triangular function
- Peak and width of ISF inversely related to slope of transition

$$\Gamma_{rms}^2 = \frac{1}{\pi} \left[\int_0^{1/f'_{rise}} x^2 dx + \int_0^{1/f'_{fall}} x^2 dx \right] = \frac{1}{3\pi} \left(\frac{1}{f'_{rise}} \right)^3 (1 + A^3)$$

$$\Gamma_{dc} = \frac{2\pi}{\eta^2} \frac{1}{N^2} \left(\frac{1-A}{1+A} \right)$$

Measuring ISF for V_{DD} Noise

Clock Buffer Characterization

- Fix input clock transition time
- Apply impulse function noise source to V_{DD}
- Measure ½V_{DD} crossing of output
- Sweep transition time of V_{DD} noise
- Compare results with noiseless case to get phase change

Measuring ISF for V_{DD} Noise

- V_{DD} noise simulation
- Agrees with earlier analysis on shape of ISF
- Maximum occurs at the transition

Conclusions

- Phase noise and timing jitter are related
- RMS and DC value of ISF directly relates to the shape of the phase noise spectrum
- Design goal: symmetry is important for minimizing phase noise
- The ISF can be used to calculate the phase jitter due to supply noise