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Identification of Autoregressive Signals in Colored Noise Il. PROBLEM FORMULATION
Using Damped Sinusoidal Model The input—output relationship ofigh-order AR process can be ex-
Md. Kamrul Hasan, A. K. M. Z. Rahim Chowdhury, and pressed as
M. Rezwan Khan P
x(n) = — Z arx(n — k) + u(n) (1)
k=1

Abstract—This brief addresses a new method for autoregressive (AR) . . .
parameter estimation from colored noise-corrupted observations using Where the unknown input(n) is a sequence of zero-mean white
a damped sinusoidamodel for autocorrelation function of the noise-free  Gaussian noise with unknown varianeé and z(n) denotes the
signal. Thedamped sinusoidaiodel parameters are first estimated using output signal. Hereq,. (k = 1,2,---,p) are the unknown AR
a least-squares based_method frqm the given noisy obse_rvat|o_ns. The AR parameters. The ordgrof the AR system is assumed to be known.
parameters are then directly obtained from thedamped sinusoidamodel . . . . .
parameters. The performance of the proposed scheme is evaluated using In many practical situations, observation noise corrupts the data sam-
numerical examples. ples. In this brief, we assume that the output sigrial) contains addi-

Index Terms—Autoregressive (AR) process, colored noise, damped sinu- g\;e colored naise. Then, the observed progess can be expressed

soidal modeling, parameter estimation.

y(n) = xz(n) + wn). 2

|. INTRODUCTION - . . )
The additive colored noise(rn) originates from an MA process given

Parameter estimation of the stochastic signal model is an import@yt
issue in various fields of science and engineering, e.g., econometrics,
geophysics, speech processing, image processing, biomedical signal w(n) = B(z)v(n) ©)]
processing, and communication [1], [2]. The most popular stochastic ) ) ) ) ) )
signal model is the Gaussian, minimum phase, AR model. In time-é’éheref(") ISa zero-meanivlvhlte Ggus&an noise with unknown vari-
ries analysis and signal modeling, both noise-free and noisy autoregfd&:® andB(z) =1 +b13_ _'H’ZZ +ootbg, qb,' We consider
sive (AR) systems have been extensively studied by many researcﬁg?g, the colored noise:(») is finitely autocorrelated, i.e.,
[3]-[6]. In the latter case, except very few exceptions for colored noise, RywN) = Efw(n)w(n —N)] =0, for|\>L 4)
research results reported so far mostly considered white additive noise. ) ) ) )
Zhang and Takeda [7] have proposed a method for parameter e¥ff€re£l] represents the expectation operator &g a given posi-
mation of AR moving average (ARMA) systems corrupted by colore@/€ Integer. Moreovery(n) is statistically independent af(n), i.e.,
noise. In that work, a generalized least-squares (GLS) method has bg )(n)”(fl _.t)] =0 f_or aI_I L. . .
suggested for estimating the AR parameters using short and noisy dgta. N obj.ectlvg of this brief is to propose a ngvel method. using a
amped sinusoidahodel for autocorrelation function of the noise-free

Although it is claimed in [7] that the estimates converge to the truse'fgnal to estimate the AR parameters. Ermnped sinusoidahodel

values within a few iterations, it is shown in [8] that they actually re- rameters are estimated usig, (m ), calculated from a finite set of

main unchanged after the first iteration. Furthermore, the GLS methﬁgisy observations. The desired AR paramefers} are then directly
has limitations for certain AR systems and cannot be used to estimgbqained from this .model parameter

the AR parameters, especially when the poles of the AR system lie
relatively near the unit circle and the noise is relatively strong, i.e.,
signal-to-noise ratio (SNR) is low. To alleviate this problem, a max-
imum likelihood method for identifying AR systems has been reporteti Motivation

in [8]. The algorithm however utilizes a bootstrap technique where thet is known that the AR system parameters, {&, }, satisfy the re-
initial values are obtained from the GLS method. The method is hightyirsive equation of the clean-signal autocorrelation sequBpgén)
dependent on initial values and may fail to converge at a low SNR. given by [2]

I1l. PROPOSEDIDENTIFICATION METHOD

Recently, Zheng [9] has extended the improved LS (ILS) type of »
method to the parameter estimation of AR processes corrupted by col- R..(m)=— Z arRez(m — k), m > 0. (5)
ored noise (CN), which is called the ILS-CN method for short. Poor k=1

estimate of the initial values by the LS method impedes convergentyeneral,,. (m) is estimated as
of the iterative scheme particularly at low SNRs. )
In this brief, we introduce a new AR parameter-estimation scheme N 1
. . - - . . Ryz(m)= = Z x(n)x(n —m) (6)
via damped sinusoidahodeling of the autocorrelation function of the N —
noise-free AR signal. The model parameters, leading to AR parameters, ) =
are estimated from colored-noise corrupted observations by using a}/&ereXV is the number of data points. The AR parameters can be es-
type algorithm timated solving any equations given by (5). Usualyg...(m) for
' m=0,1,2,---,pisusedtoform symmetric Toeplitz equations. How-
ever, when observation noise satisfying the model in (3) corrupts the
data samples(n), {ax } may be estimated directly usiig,, (m) for
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Because, it can be shown using (4) ti&at, (m) = R..(m) form > is sufficient to consider only a few nonzero positive lagsRgf, (),
L. It is worth mentioning that at a low SNR, the autcorrelation funcwherem =L, L+1,---,L + M — 1. The component function
tion of the noisy signal R, , (m)) includes significant error at all lags {(r;)™[P; cos(w, m) + Q, sin(w;m)]} in (14) is then estimated by
for m > L resulting mainly from the nonideal nature of the autocorbest fitting a finite sequence of this function with,, (m) for L <
relation sequence of the additive noise. As such, the correlation-based L + M — 1. The fitted parameters at the first step will give an
methods, e.qg. the high-order Yule—Walker (HOYW) method, for conestimate of-; andw;, j = 1. The corresponding fitted function is then
puting{a } usingR,, (m),m > L fail to estimate the AR parameterssubtracted fromR,, () to obtain the first residue functiof; ().
with acceptable level of accuracy. In this brief, instead of using the rie the second step, another function of the proposed model is fitted to
cursive equation foR?..(m) as in (5), we present a new nonrecursivehis residue function to get the second setoéndw;, j = 2. Then, a
model for calculating?...(m) based on the roots of the AR systems.second residue functioR. () is calculated by subtracting the second
fitted function from the first residue function. Tlh residue function
B. AR Parameter Estimation Using Damped Sinusoidal Model is thus defined as

The transfer function of ath-order AR system in the domain can Ryy(m), fork=0
be expressed as Ri—1(m) = (re)™

| p ) R (m) = X [Py cos(wim)
H(z)= —— = 2 ®) FQusin(wem)], fork =1,2,--.9 -1
A(2) kz::l 1— 2271 4 (15)
2 For0 < wi < w, we obtainry, exp[(Z;jws )] as one pair of complex

whereA(z) = 1+ a2zt +az2 2 + -~ + a2z, z denotes the
kth pole of the AR system and’. is the partial fraction coefficient
corresponding to th&th pole. The unit impulse responsén) of the
causal AR system described in (8) can be expressed as

conjugate poles of the AR system. Howevet, = O or 7 represent a

real pole given by, or —r;, respectively. Proceeding this way when

all thep poles are identified, no further steps are required. As for ex-
ample, in case of a fourth-order system with two real poles and a pair of
complex-conjugate poles, we need three steps. Once the poles are es-

h(n) = Z Crlzk)" ©) timated, the AR system parameters can be obtained from their unique
- relationship [6].
If this relaxed AR system is excited by a sequence of white noise In the proposed method, the parametesr, Pr, andQ, of the
with distributionA"(0, 0';), the response™ (n) is given by kth component function are chosen such that the sum-squared error,
between thék —1)th residue function and tHegh component function,
M (n) = u(n) « hin) = Zu(l)h(n —1). (10)  defined by
=0 o _ , O\"™
Using (9), (10) can be written as T = Z Ri—1(m) = ("k )
. . m ' ‘ ‘
;cM(n) = Z ZOL:UU)(ZL»)"_I- 11 X [P,Sl) cos (w,(;)m) + ng) sin ( (i )m)” ,
k=11=0 k=1,2,---,9—-1; m=LL+1,---,.L+M-1
Clearly, z(n) and«™ (n) are the same because (1) is the difference (16)

equation implementation of input—output using the system parameters
and (11) is the convolution sum implementation of the same using d?em'”'m'zed Since the proposed methOd is iterative, the superscript
system roots. Using (11), the autocorrelation of the noise-free signél)” denotes the iteration index, i. es;” denotes the angle of tfigh

#V () can be obtained as pole at |terat|on The optimum parameters are foundRBs= P( D
» Qr = Qk VTR = 7,§ ,andwy = ka ) for the value of at WhIChJ()
RM(m) = Ryu(m) = Z Br(zi)™ (12) is minimum. Forarbltrary values mf andwéf),P(, g andQ » canbe
1 obtained by m|n|m|2|nglk in the LS sense as
where . . DU=V 17)
P 2 Ci CiCyq . )
Be=0u |72+ oo | (13)  where the elements of (2 2) matrixD are defined by
ko g=1,q#k TR

_ (N2 20 (4)
The coefficient3, may be real or complex depending on whether the Du =3 (n)" cos®(w"m)

pole is real or complex. Sincgn) is real, in the latter case, a complex N2m o ()
pole will always be accompanied by its complex conjugate pole. Con- Doy =) (1)) sin®(wi m)
sidering the effect of complex and real poles, (12) can be simplified as

m

g D2 =Dy = Z (r,(ct))zm ros(w,(;)m ) Sin(w,&,’)m)
Roz(m) = Z(T‘j)m [P; cos(w;m) + Q; sin(w;m)], form >0 m
= U =R Q)

(14)
whereg = {the number of complex conjugate pair of poleghe
number of real poles};; andw; denote, respectively, the magnitude
and angle of thgth pole and,P; and(Q; are constants. In general, v =V, 3]
governs the decay rate of the AR system responseJartktermines

and

the angular position of the pole of the AR system in th@ane. with

We estimate each of the damped sinusoidal functions of the alterna- Vi= Z Rr—1 (771)(7.£i))7n cos(wi,i)'m)
tive representation aR...(m) described in (14) in an iterative fashion.
At first, from the given set of noisy data poing$n), the autocorre- V, = Zsﬁkﬂ(m)(‘ri”)m sin(wé%n)-

lation function of the noisy signak,, (m) is calculated using (7). It

m



968 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 7, JULY 2003

C. Efficient Implementation of Damped Sinusoidal Method TABLE |
. . . . ResuLTs FORAR(3) PROCESSUSING THEILS-CN AND PROPOSEDMETHODS
To estimate théith component function of the damped sinusoidal [(-) DENOTES THESTANDARD DEVIATION]
model, if w, andr, are searched in their entire domain, e.g.,4D,
and [0,1], respectively with an acceptable resolution, the computational True Estimated AR parameters
cost will be extremely high. As such, we look for an alternative ap- {ax} SNRl édB) Héségé\; lifg%%%ef
proach. It is known that the noisy proceg® ) can be more accurately (;0:1080) (10:0300)
characterized by a higher order AR process containing both noise and a = 5 —2.2322 —2.3471
system poles [10]. Then, these mixture of noise plus system poles can (0.3983) | (£0.0067)
be used as candidate solutions for (16). Therefore, to derive a com- —2.2990 v (ié.(l)g?l‘o)) (;é'géggL
putationally efficient method, at first we estimate poles of a higher 10 71746 71768
order AR model fitted to the observed noisy process by using the stable (£0.1691) | (£0.0418)
noise-uncompensated lattice filter (NULF) [11]. The order of the over- az = 5 2.1804 2.1999
fitted AR model may be determined using a standard technique [12]. (i0'62‘21) (ip.0168)
2.1262 0 15.9248 2.171I6
Now, instead of scanning the entire domainssgfandr;., the angular (£22.0143) | (£0.0474)
positionsw, I = 1,2,---,p, and magnitude;, I = 1,2,---,p, of 10 —0.7613 —0.7881
these poles are used to minimize (16). Hgrdenotes the order of the B . (ig-%‘ég) (fgg%g)
higher order AR model. Note that unlike conventional noise-compen- 4= (;0:3171) (£0.0081)
sation techniques [9], [13], the proposed method is inherently stable. —0.7604 0 106.8487 —0.7830
(4£174.9853) | (£0.0266)

IV. NUMERICAL RESULTS

In this section, we illustrate the performance of the proposed method
using three numerical examples. First, the noisy sequefcg =

e wln)i i i TABLE I
é)xl)l)’e—is—sLeU(glgyls generated using the AR(3) process and noise mOdElESULTs FORAR(4) PROCESSUSING THE ILS-CN AND PROPOSEDMETHODS

[(+) DENOTES THESTANDARD DEVIATION]

2(n) =2.299x(n — 1) — 2.1262x(n — 2) 4+ 0.76042(n — 3) + u(n)

True Estimated AR parameters

(18) {ax} [SNR({dB) ] ILS-CN T Proposed
20 —2.5978 —2.6104
w(n) =v(n) —v(n—1)+0.2v(n - 2). (19) (£0.1479) | (£0.0363)
. = T —1.4897 | —2.6075
The roots of the third-order AR process are locateldat45+ 70.6080 a 0 (£1.4057) | (£0.0299)
and 0.8501. The roots of the noise model are located at 0.7236 and —2.595 0 —04344 | —2.6354
0.2764. The variance of the input signal is fixed-at= 1 and the vari- (£0.1934) (ig-gigg)

ances? of the noise process(n) is selected to give different SNR’s 20 3.3240 )
. (£0.3732) | (2£0.0565)
defined as ay = 10 T.4641 33711
S (£3.7896) | (£0.0572)
S (n 3.339 0 =0.0641 3.3975
SNR = 10log,, S3——; —dB (20) (£0.2999) | (0.0812)
n= (1) 20 —2.2038 | —2.2291
. . . . +0.3677) | (£0.0394
In all the simulationg = 30 and N = 4000 data samples from noisy a3 = 10 (_0,3150) (_2_2302)
observations were used. For determiningdheped sinusoidahodel (£3.9980) (:!:0.9482)
pgrameters.we ha}ve ugﬂéy('n7) form=L,L+ 1.: L+2,---,L+ —-2.2 0 (igééllji) (;ééégg)
M — 1. In simulationsM = 10p was used, wherg is the AR system 50 07307 07373
order andL is chosen to be equal fpas also assumed in [9]. (£0.1524) | (£0.0155)
The estimated AR parameters using the proposed method and the ag = 10 0.4358 0.7411
ILS-CN method reported in [9] are presented in Table | for different 0731 0 (ié'ggg) (ig%gg)
SNR’s. The entries denote arithmetic means and standard deviations ' (:i:0:1083) (:|:020237)

of the estimated, a2, andas based on 10 independent runs. As can
be seen, the accuracy of estimation of both the methods are compa-
rable atSNR = 10 dB andSNR = 5 dB. But atSNR = 0 dB, the
ILS-CN method completely fails to estimate the AR parameters whiléhe roots of the AR process are located)at681 + j0.5587 and

no significant deterioration in performance of the proposed methoddg294 + j0.7281. The noise model is assumed to be the same as in
observed. The deteriorating performance of the ILS-CN method with9). Table Il displays the arithmetic means and standard deviations of
decreasing SNRs is due to increasingly poor estimation of the noft€ estimated AR parameters, a2, a3, anda4 based on 10 indepen-
autocovariance function in the bias correction term using the recursil@nt runs. It is evident that the ILS-CN method can estimate the AR
technique described in [9]. However, in our model such an estimatiparameters with good accuracy onlySXR = 20 dB while it fails

of the noise autocovariance function is not required. It can also be séerdentify the parameters at 10 and 0 dB SNR’s. On the contrary, the
from Table | that the standard deviations of estimation using the pr@stimates of the AR parameters obtained from the proposed method
posed method are noticeably lower than the ILS-CN method demdi-all these SNRs are close enough to their respective true values with

strating better consistency of the proposed scheme. better standard deviations. Also, it was observed that at a relatively low
Second, consider the AR(4) process given by SNR, the ILS-CN method faces nonconvergence problem and there was
an average of three flop tests out of ten simulation runs. Nonconver-

w(n) = 2.5952(n — 1) = 3.33%(n — 2) + 2.22(n — 3) gence within 2500 iterations had been considered a “flop test” and was

—0.731z(n — 4) + u(n) (21) ignored.
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Al ) ! o e ) " | TABLE I
e : T COMPARISON OFCOMPUTATIONAL COMPLEXITY OF THE TWO ESTIMATORS
0.8 : P 1
"’,‘;-‘.a Computational Complexity
06l : ] Simulated FLOPS (x10°)
04k Example ILS-CN Proposed
: : B AR(3) system 0.33 1.78
£ o2k H : H . (TABLE I, SNR=10 dB)
z : : AR(4) system 1.05 .79
§ b b RS - s fo (TABLE II, SNR=20 dB)
ol : : : l AR(4) system 0.57 178
‘ (Fig. 1, SNR=20 dB)
041 4
e +® ] V. CONCLUSION
o8y : -2 In this brief, a new method has been presented for estimating the
At BRSNS e 1 parameters of AR signals corrupted by colored noise. In the proposed
2 o5 0 05 1 method, the AR parameters are computed frontnr@ped sinusoidal
Roal Pan model parameters introduced here for the autocorrelation sequence of
@) the noise-free AR signal. A LS type algorithm is used for estimating the

damped sinusoidahodel parameters iteratively from the noisy data.
T . T - y Compared with the extended improved LS technique reported in [9],
e : e the proposed one consistently gives more accurate results particularly
08} '“"e, 1 at low SNRs with the cost paid in computational complexity. Moreover,
i : stability using the proposed method is always guaranteed, a feature
seldom seen in noise-compensation techniques.
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To compare the computational efficiency of the two methods, we
present in Table Il the number of MATLAB FLOPS (floating point
operations) associated with each one. The comparison is made for the
results shown in Table I, Table Il, and Fig. 1. The performance re-
sults in terms of number of FLOPS shown in the table indicate that the
proposed method is computationally more expensive than the ILS-CN
method.
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