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Identification of Autoregressive Signals in Colored Noise
Using Damped Sinusoidal Model
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Abstract—This brief addresses a new method for autoregressive (AR)
parameter estimation from colored noise-corrupted observations using
a damped sinusoidalmodel for autocorrelation function of the noise-free
signal. Thedamped sinusoidalmodel parameters are first estimated using
a least-squares based method from the given noisy observations. The AR
parameters are then directly obtained from thedamped sinusoidalmodel
parameters. The performance of the proposed scheme is evaluated using
numerical examples.

Index Terms—Autoregressive (AR) process, colored noise, damped sinu-
soidal modeling, parameter estimation.

I. INTRODUCTION

Parameter estimation of the stochastic signal model is an important
issue in various fields of science and engineering, e.g., econometrics,
geophysics, speech processing, image processing, biomedical signal
processing, and communication [1], [2]. The most popular stochastic
signal model is the Gaussian, minimum phase, AR model. In time-se-
ries analysis and signal modeling, both noise-free and noisy autoregres-
sive (AR) systems have been extensively studied by many researchers
[3]–[6]. In the latter case, except very few exceptions for colored noise,
research results reported so far mostly considered white additive noise.

Zhang and Takeda [7] have proposed a method for parameter esti-
mation of AR moving average (ARMA) systems corrupted by colored
noise. In that work, a generalized least-squares (GLS) method has been
suggested for estimating the AR parameters using short and noisy data.
Although it is claimed in [7] that the estimates converge to the true
values within a few iterations, it is shown in [8] that they actually re-
main unchanged after the first iteration. Furthermore, the GLS method
has limitations for certain AR systems and cannot be used to estimate
the AR parameters, especially when the poles of the AR system lie
relatively near the unit circle and the noise is relatively strong, i.e.,
signal-to-noise ratio (SNR) is low. To alleviate this problem, a max-
imum likelihood method for identifying AR systems has been reported
in [8]. The algorithm however utilizes a bootstrap technique where the
initial values are obtained from the GLS method. The method is highly
dependent on initial values and may fail to converge at a low SNR.

Recently, Zheng [9] has extended the improved LS (ILS) type of
method to the parameter estimation of AR processes corrupted by col-
ored noise (CN), which is called the ILS-CN method for short. Poor
estimate of the initial values by the LS method impedes convergence
of the iterative scheme particularly at low SNRs.

In this brief, we introduce a new AR parameter-estimation scheme
via damped sinusoidalmodeling of the autocorrelation function of the
noise-free AR signal. The model parameters, leading to AR parameters,
are estimated from colored-noise corrupted observations by using a LS
type algorithm.
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II. PROBLEM FORMULATION

The input–output relationship of apth-order AR process can be ex-
pressed as

x(n) = �

p

k=1

akx(n� k) + u(n) (1)

where the unknown inputu(n) is a sequence of zero-mean white
Gaussian noise with unknown variance�2u and x(n) denotes the
output signal. Here,ak (k = 1; 2; � � � ; p) are the unknown AR
parameters. The orderp of the AR system is assumed to be known.

In many practical situations, observation noise corrupts the data sam-
ples. In this brief, we assume that the output signalx(n) contains addi-
tive colored noise. Then, the observed processy(n) can be expressed
as

y(n) = x(n) + w(n): (2)

The additive colored noisew(n) originates from an MA process given
by

w(n) = B(z)v(n) (3)

wherev(n) is a zero-mean white Gaussian noise with unknown vari-
ance�2v andB(z) = 1+b1z

�1+b2z
�2+ � � �+bq z

�q . We consider
that the colored noisew(n) is finitely autocorrelated, i.e.,

Rww(�) � E [w(n)w(n� �)] = 0; for j�j � L (4)

whereE[�] represents the expectation operator andL is a given posi-
tive integer. Moreover,v(n) is statistically independent ofu(n), i.e.,
E[v(n)u(n � t)] = 0 for all t.

The objective of this brief is to propose a novel method using a
damped sinusoidalmodel for autocorrelation function of the noise-free
signal to estimate the AR parameters. Thedamped sinusoidalmodel
parameters are estimated usingRyy(m), calculated from a finite set of
noisy observations. The desired AR parametersfakg are then directly
obtained from this model parameter.

III. PROPOSEDIDENTIFICATION METHOD

A. Motivation

It is known that the AR system parameters, i.e.fakg, satisfy the re-
cursive equation of the clean-signal autocorrelation sequenceRxx(m)
given by [2]

Rxx(m) = �

p

k=1

akRxx(m� k); m � 0: (5)

In general,Rxx(m) is estimated as

Rxx(m) =
1

N

N�1�jmj

n=0

x(n)x(n�m) (6)

whereN is the number of data points. The AR parameters can be es-
timated solving anyp equations given by (5). Usually,Rxx(m) for
m = 0; 1; 2; � � � ; p is used to form symmetric Toeplitz equations. How-
ever, when observation noise satisfying the model in (3) corrupts the
data samplesx(n), fakg may be estimated directly usingRyy(m) for
m � L, whereRyy(m) is the autocorrelation function of the noisy
signaly(n), and is usually estimated as

Ryy(m) =
1

N

N�1�jmj

n=0

y(n)y(n�m): (7)
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Because, it can be shown using (4) thatRyy(m) = Rxx(m) for m �
L. It is worth mentioning that at a low SNR, the autcorrelation func-
tion of the noisy signal(Ryy(m)) includes significant error at all lags
for m � L resulting mainly from the nonideal nature of the autocor-
relation sequence of the additive noise. As such, the correlation-based
methods, e.g. the high-order Yule–Walker (HOYW) method, for com-
putingfakg usingRyy(m),m � L fail to estimate the AR parameters
with acceptable level of accuracy. In this brief, instead of using the re-
cursive equation forRxx(m) as in (5), we present a new nonrecursive
model for calculatingRxx(m) based on the roots of the AR systems.

B. AR Parameter Estimation Using Damped Sinusoidal Model

The transfer function of apth-order AR system in thez domain can
be expressed as

H(z) =
1

A(z)
=

p

k=1

Ck

1� zkz�1
(8)

whereA(z) = 1 + a1z
�1 + a2z

�2 + � � � + apz
�p, zk denotes the

kth pole of the AR system andCk is the partial fraction coefficient
corresponding to thekth pole. The unit impulse responseh(n) of the
causal AR system described in (8) can be expressed as

h(n) =

p

k=1

Ck(zk)
n
: (9)

If this relaxed AR system is excited by a sequence of white noiseu(n)
with distributionN (0; �2u), the responsexM (n) is given by

x
M (n) = u(n) � h(n) =

n

l=0

u(l)h(n� l): (10)

Using (9), (10) can be written as

x
M (n) =

p

k=1

n

l=0

Cku(l)(zk)
n�l

: (11)

Clearly,x(n) andxM (n) are the same because (1) is the difference
equation implementation of input–output using the system parameters
and (11) is the convolution sum implementation of the same using the
system roots. Using (11), the autocorrelation of the noise-free signal
xM (n) can be obtained as

R
M
xx(m) =Rxx(m) =

p

k=1

�k(zk)
m (12)

where

�k =�
2
u

C2
k

1� z2k
+

p

q=1;q 6=k

CkCq

1� zkzq
: (13)

The coefficient�k may be real or complex depending on whether the
pole is real or complex. Sincex(n) is real, in the latter case, a complex
pole will always be accompanied by its complex conjugate pole. Con-
sidering the effect of complex and real poles, (12) can be simplified as

Rxx(m) =

g

j=1

(rj)
m [Pj cos(!jm) +Qj sin(!jm)] ; for m � 0

(14)
whereg = {the number of complex conjugate pair of poles+the
number of real poles},rj and!j denote, respectively, the magnitude
and angle of thejth pole and,Pj andQj are constants. In general,rj
governs the decay rate of the AR system response and!j determines
the angular position of the pole of the AR system in thez plane.

We estimate each of the damped sinusoidal functions of the alterna-
tive representation ofRxx(m) described in (14) in an iterative fashion.
At first, from the given set of noisy data pointsy(n), the autocorre-
lation function of the noisy signalRyy(m) is calculated using (7). It

is sufficient to consider only a few nonzero positive lags ofRyy(m),
wherem = L;L + 1; � � � ; L + M � 1. The component function
f(rj)

m[Pj cos(!jm) + Qj sin(!jm)]g in (14) is then estimated by
best fitting a finite sequence of this function withRyy(m) for L �
m � L + M � 1. The fitted parameters at the first step will give an
estimate ofrj and!j , j = 1. The corresponding fitted function is then
subtracted fromRyy(m) to obtain the first residue function<1(m).
In the second step, another function of the proposed model is fitted to
this residue function to get the second set ofrj and!j , j = 2. Then, a
second residue function<2(m) is calculated by subtracting the second
fitted function from the first residue function. Thekth residue function
is thus defined as

<k(m) =

Ryy(m); for k = 0

<k�1(m)� (rk)
m

� [Pk cos(!km)

+Qk sin(!km)] ; for k = 1; 2; � � � ; g � 1

:

(15)
For 0 < !k < �, we obtainrk exp[(�j!k)] as one pair of complex
conjugate poles of the AR system. However,!k = 0 or � represent a
real pole given byrk or�rk, respectively. Proceeding this way when
all thep poles are identified, no further steps are required. As for ex-
ample, in case of a fourth-order system with two real poles and a pair of
complex-conjugate poles, we need three steps. Once the poles are es-
timated, the AR system parameters can be obtained from their unique
relationship [6].

In the proposed method, the parameters!k, rk, Pk, andQk of the
kth component function are chosen such that the sum-squared error,
between the(k�1)th residue function and thekth component function,
defined by

J
(i)
k =

m

<k�1(m)� r
(i)
k

m

� P
(i)
k cos !

(i)
k m +Q

(i)
k sin !

(i)
k m

2

;

k = 1; 2; � � � ; g � 1; m = L;L+ 1; � � � ; L+M � 1

(16)

is minimized. Since the proposed method is iterative, the superscript
“(i)” denotes the iteration index, i.e.,!(i)

k denotes the angle of thekth
pole at iterationi. The optimum parameters are found asPk = P

(i)
k ,

Qk = Q
(i)
k , rk = r

(i)
k , and!k = !

(i)
k for the value ofi at whichJ(i)k

is minimum. For arbitrary values ofr(i)k and!(i)
k ,P (i)

k andQ(i)
k can be

obtained by minimizingJ(i)k in the LS sense as

DU = V (17)

where the elements of (2� 2) matrixD are defined by

D11 =
m

(r
(i)
k )

2m
cos2(!

(i)
k m)

D22 =
m

(r
(i)
k )

2m
sin2(!

(i)
k m)

D12 =D21 =
m

(r
(i)
k )

2m
cos(!

(i)
k m) sin(!

(i)
k m)

U
T =[P

(i)
k Q

(i)
k ]

and

V
T =[V1 V2]

with

V1 =
m

<k�1(m)(r
(i)
k )

m
cos(!

(i)
k m)

V2 =
m

<k�1(m)(r
(i)
k )

m
sin(!

(i)
k m):
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C. Efficient Implementation of Damped Sinusoidal Method

To estimate thekth component function of the damped sinusoidal
model, if !k andrk are searched in their entire domain, e.g., [0,�]
and [0,1], respectively with an acceptable resolution, the computational
cost will be extremely high. As such, we look for an alternative ap-
proach. It is known that the noisy processy(n) can be more accurately
characterized by a higher order AR process containing both noise and
system poles [10]. Then, these mixture of noise plus system poles can
be used as candidate solutions for (16). Therefore, to derive a com-
putationally efficient method, at first we estimate poles of a higher
order AR model fitted to the observed noisy process by using the stable
noise-uncompensated lattice filter (NULF) [11]. The order of the over-
fitted AR model may be determined using a standard technique [12].
Now, instead of scanning the entire domains of!k andrk, the angular
positions!l, l = 1; 2; � � � ; ~p, and magnituderl, l = 1; 2; � � � ; ~p, of
these poles are used to minimize (16). Here,~p denotes the order of the
higher order AR model. Note that unlike conventional noise-compen-
sation techniques [9], [13], the proposed method is inherently stable.

IV. NUMERICAL RESULTS

In this section, we illustrate the performance of the proposed method
using three numerical examples. First, the noisy sequencey(n) =
x(n) + w(n) is generated using the AR(3) process and noise model
expressed by

x(n) = 2:299x(n� 1)� 2:1262x(n� 2) + 0:7604x(n� 3) + u(n)

(18)

w(n) = v(n)� v(n� 1) + 0:2v(n� 2): (19)

The roots of the third-order AR process are located at0:7245�j0:6080
and 0.8501. The roots of the noise model are located at 0.7236 and
0.2764. The variance of the input signal is fixed at�2u = 1 and the vari-
ance�2v of the noise processv(n) is selected to give different SNR’s
defined as

SNR = 10 log
10

N

n=1
x2(n)

N

n=1
w2(n)

dB (20)

In all the simulations~p = 30 andN = 4000 data samples from noisy
observations were used. For determining thedamped sinusoidalmodel
parameters we have usedRyy(m) for m = L;L+ 1; L+ 2; � � � ; L+
M � 1. In simulationsM = 10p was used, wherep is the AR system
order andL is chosen to be equal top as also assumed in [9].

The estimated AR parameters using the proposed method and the
ILS-CN method reported in [9] are presented in Table I for different
SNR’s. The entries denote arithmetic means and standard deviations
of the estimateda1, a2, anda3 based on 10 independent runs. As can
be seen, the accuracy of estimation of both the methods are compa-
rable atSNR = 10 dB andSNR = 5 dB. But atSNR = 0 dB, the
ILS-CN method completely fails to estimate the AR parameters while
no significant deterioration in performance of the proposed method is
observed. The deteriorating performance of the ILS-CN method with
decreasing SNRs is due to increasingly poor estimation of the noise
autocovariance function in the bias correction term using the recursive
technique described in [9]. However, in our model such an estimation
of the noise autocovariance function is not required. It can also be seen
from Table I that the standard deviations of estimation using the pro-
posed method are noticeably lower than the ILS-CN method demon-
strating better consistency of the proposed scheme.

Second, consider the AR(4) process given by

x(n) = 2:595x(n� 1)� 3:339x(n� 2) + 2:2x(n� 3)

�0:731x(n� 4) + u(n) (21)

TABLE I
RESULTS FORAR(3) PROCESSUSING THE ILS-CN AND PROPOSEDMETHODS

[( ) DENOTES THESTANDARD DEVIATION]

TABLE II
RESULTS FORAR(4) PROCESSUSING THE ILS-CN AND PROPOSEDMETHODS

[( ) DENOTES THESTANDARD DEVIATION]

The roots of the AR process are located at0:7681 � j0:5587 and
0:5294 � j0:7281. The noise model is assumed to be the same as in
(19). Table II displays the arithmetic means and standard deviations of
the estimated AR parametersa1, a2, a3, anda4 based on 10 indepen-
dent runs. It is evident that the ILS-CN method can estimate the AR
parameters with good accuracy only atSNR = 20 dB while it fails
to identify the parameters at 10 and 0 dB SNR’s. On the contrary, the
estimates of the AR parameters obtained from the proposed method
at all these SNRs are close enough to their respective true values with
better standard deviations. Also, it was observed that at a relatively low
SNR, the ILS-CN method faces nonconvergence problem and there was
an average of three flop tests out of ten simulation runs. Nonconver-
gence within 2500 iterations had been considered a “flop test” and was
ignored.
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(a)

(b)

Fig. 1. Estimated poles of the AR(4) system at different SNR’s (o: true, +:
ILS-CN, x: proposed).

Next, we present in Fig. 1(a), the estimated poles by the two methods
atSNR = 20 dB of an AR(4) system given by

x(n) = 2:7606x(n� 1)� 3:8106x(n� 2)

+2:6535x(n� 3)� 0:9238x(n� 4) + u(n): (22)

Here also, the noise model is assumed to be the same as in (19). As
shown, for this system having poles very close to the unit circle the
estimates obtained by the proposed method match the true ones with
high accuracy in contrast to the complete failure of the ILS-CN method.
The results in Fig. 1(b) show that the accuracy of estimation of the
proposed method is consistently good even atSNR = 0 dB for such a
system. Note that in both the plots, the results indicate the mean of ten
independent runs.

To compare the computational efficiency of the two methods, we
present in Table III the number of MATLAB FLOPS (floating point
operations) associated with each one. The comparison is made for the
results shown in Table I, Table II, and Fig. 1. The performance re-
sults in terms of number of FLOPS shown in the table indicate that the
proposed method is computationally more expensive than the ILS-CN
method.

TABLE III
COMPARISON OFCOMPUTATIONAL COMPLEXITY OF THE TWO ESTIMATORS

V. CONCLUSION

In this brief, a new method has been presented for estimating the
parameters of AR signals corrupted by colored noise. In the proposed
method, the AR parameters are computed from thedamped sinusoidal
model parameters introduced here for the autocorrelation sequence of
the noise-free AR signal. A LS type algorithm is used for estimating the
damped sinusoidalmodel parameters iteratively from the noisy data.
Compared with the extended improved LS technique reported in [9],
the proposed one consistently gives more accurate results particularly
at low SNRs with the cost paid in computational complexity. Moreover,
stability using the proposed method is always guaranteed, a feature
seldom seen in noise-compensation techniques.

REFERENCES

[1] P. E. Papamichalis, Practical Approaches to Speech
Coding. Englewood Cliffs, NJ: Prentice-Hall, 1987.

[2] S. M. Kay,Modern Spectral Estimation. Englewood Cliffs, NJ: Pren-
tice-Hall, 1988.

[3] , “Noise compensation for autoregressive spectral estimates,”IEEE
Trans. Acoust. Speech, Signal Processing, vol. ASSP-28, pp. 292–303,
Mar. 1980.

[4] S. Li and B. W. Dickinson, “An efficient method to compute consistent
estimates of the AR parameters of an ARMA model,”IEEE Trans. Au-
tomat. Contr., vol. AC-31, pp. 275–278, Mar. 1986.

[5] W. X. Zheng, “A least-squares based method for autoregressive signals
in the presence of noise,”IEEE Trans. Circuits Syst. II, vol. 46, pp.
81–85, Jan. 1999.

[6] M. K. Hasan, K. I. U. Ahmed, and T. Yahagi, “Further results on au-
toregressive spectral estimation from noisy observations,”IEICE Trans.
Fund., vol. E84-A, no. 2, pp. 577–588, 2001.

[7] X. Zhang and H. Takeda, “An approach to time-series analysis and
ARMA spectral estimation,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-35, pp. 1303–1313, Sept. 1987.

[8] M. K. Hasan, M. M. Mollah, and T. Yahagi, “Maximum likelihood esti-
mation of autoregressive systems degraded by colored noise,”J. Signal
Processing, vol. 1, no. 2, pp. 125–133, 1997.

[9] W. X. Zheng, “Estimation of the parameters of autoregressive signals
from colored noise-corrupted measurements,”IEEE Signal Processing
Lett., vol. 7, no. 7, pp. 201–204, 2000.

[10] S. M. Kay, “The effects of noise on the autoregressive spectral esit-
mator,”IEEE Trans. Accoust., Speech, Signal Processing, vol. ASSP-27,
pp. 478–485, May 1979.

[11] S. Li and B. W. Dickinson, “Application of the lattice filter to robust
estimation of AR and ARMA models,”IEEE Trans. Acoust., Speech,
Signal Processing, vol. 36, pp. 502–512, Apr. 1988.

[12] P. M. Djuric and S. M. Kay, “Order selection of autoregressive models,”
IEEE Trans. Signal Processing, vol. 40, pp. 2829–2833, Nov. 1992.

[13] H.-T. Hu, “Noise compensation for linear prediction via orthogonal
transformation,”Electron. Lett., vol. 32, no. 16, pp. 1444–1445, 1996.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


