
International Communications in Heat and Mass Transfer 35 (2008) 1275–1280

Contents lists available at ScienceDirect

International Communications in Heat and Mass Transfer

j ourna l homepage: www.e lsev ie r.com/ locate / ichmt
MHD-conjugate heat transfer analysis for a vertical flat plate in presence of viscous
dissipation and heat generation☆

A.A. Mamun a,⁎, Z.R. Chowdhury b, M.A. Azim c, M.M. Molla d

a Institute of Natural Sciences, United International University, Dhaka-1209, Bangladesh
b Department of Electrical and Electronic Engineering, United International University, Dhaka-1209, Bangladesh
c School of Business Studies, Southeast University, Dhaka, Bangladesh
d Department of Mechanical Engineering, University of Glasgow, Glasgow G12 8QQ, UK
☆ Communicated by A.R. Balakrishnan and S. Jayanti.
⁎ Corresponding author.

E-mail address: mamun3213ssh@gmail.com (A.A. M

0735-1933/$ – see front matter © 2008 Elsevier Ltd. Al
doi:10.1016/j.icheatmasstransfer.2008.06.007
a b s t r a c t
a r t i c l e i n f o
Available online 8 November 2008
 In this paper, the effects ofm
Keywords:
Magnetohydrodynamic
Conjugate heat transfer
Viscous dissipation
Heat generation
Vertical flat plate
Finite difference
agnetic field, viscous dissipation and heat generation on natural convectionflowof
an incompressible, viscous and electrically conducting fluid along a vertical flat plate in the presence of
conduction are investigated. Numerical solutions for the governing momentum and energy equations are
given. A discussion is provided for the effects of magnetic parameter, viscous dissipation parameter and heat
generation parameter on two-dimensional flow. Detailed analysis of the velocity profile, temperature
distribution, skin friction, rate of heat transfer and the surface temperature distribution are shown graphically.
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1. Introduction

The natural convection flow of an incompressible, viscous and
electrically conductingfluid has been studied by several research groups
[1–5] due to its potential application in nuclear reactors' cooling system
design. In these studies thewall conduction resistance for the convective
heat transfer between a solid wall and a fluid flow was neglected
considering a thin vertical wall. However, in practical systems the wall
conduction resistances have a significant effect in the fluid flow and in
the heat transfer characteristics in the vicinity of the wall. Thus the
conduction in the solid wall and the convection in the fluid, known as
conjugate heat transfer (CHT), should be determined simultaneously.

Perelman [6]first studied the boundary layer equations for the fluid
flow over a flat plate of finite thickness considering two-dimensional
thermal conduction in the plate. The investigation was then extended
by Luikov et al. [7] and since then various types of CHT problems have
been studied. The early theoretical and experimental works of the CHT
for a viscous fluid have been reviewed by Gdalevich and Fertman [8]
and Miyamoto et al. [9]. Miyamoto observed that a mixed-problem
study of the natural convection has to be performed for an accurate
analysis of the thermo-fluid-dynamic (TFD) field if the convective heat
transfer depends strongly on the thermal boundary conditions. Pozzi
and Lupo [10] investigated the entire TFD field resulting from the
coupling of natural convection along and conduction inside a heated
amun).

l rights reserved.
flat plate by means of two expansions, regular series and asymptotic
expansions. Moreover, Vynnycky and Kimura [11] studied the two-
dimensional conjugate free convection for a vertical plate of finite
extent adjacent to a semi-infinite porous medium using finite
difference techniques. Pop et al. [12] extended the analysis of Vynnycky
for the mixed convection flow. On the other hand, Hossain [5] studied
the effects of viscous dissipation and Joule heating onmagneto-hydro-
dynamic (MHD) natural convection flow. The equations governing the
flow were solved and the numerical solutions were obtained for
coolant liquidmetals, with small Prandtl number, using Keller box [13]
scheme. Vajravelu and Hadjinicolaou [14] analyzed the heat transfer
behavior within the boundary layer of a viscous fluid over a stretching
sheet with viscous dissipation and internal heat generation. In this
analysis, the volumetric rate of heat generation, q′′′[W/m3], was
considered as q′′′=Q0(T − T∞) for T≥T∞ and equal to zero for TbT∞,
where Q0 is a heat generation constant. This relation is legitimate as an
approximation of the condition of some exothermic process having T∞
as the onset temperature. They used Q0(T − T∞) when the inlet
temperature is not less than T∞. Moreover, effects of heat generation/
absorption and thermophoresis on hydromagnetic flow along a flat
plate were studied by Chamkha and Camille [15].

This article illustrates the effects of magnetic field and heat
generation on the coupling of conduction inside and the laminar
natural convection along a flat plate in the presence of viscous
dissipation. The effects have not been studied yet, according to the
authors' best knowledge. The developed equations representing the
effects are converted into the dimensionless equations by using
suitable transformations with a goal to attain similarity solutions. The
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Nomenclature

b plate thickness
Cfx local skin friction coefficient
cp specific heat at constant pressure
f dimensionless stream function
g acceleration due to gravity
H0 strength of the magnetic field
κf, κs fluid and solid thermal conductivities, respectively
l length of the plate
M magnetic parameter
N viscous dissipation parameter
Nux local Nusselt number
Pr Prandtl number
Q heat generation parameter
Tb temperature at outside surface of the plate
Tf temperature of the fluid
Ts solid temperature
T∞ fluid ambient temperature
ū, v ̄ velocity components
u,v dimensionless velocity components
x̄, ȳ Cartesian coordinates
x,y dimensionless Cartesian coordinates
β coefficient of thermal expansion
τw shearing stress
μ,ν dynamic and kinematic viscosities, respectively
ρ density of the fluid
σ electrical conductivity

Fig. 1. Physical model and coordinate system.
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non-dimensional equations are then transformed into non-linear
equations by introducing a non-similarity transformation. The result-
ing non-linear equations, together with their corresponding boundary
conditions based on conduction and convection, are solved numeri-
callywith the help of the finite differencemethod alongwithNewton's
linearization approximation. There are emphases on the evolution of
the surface shear stress in terms of the local skin friction coefficient and
the rate of heat transfer in terms of local Nusselt number. The velocity
profiles, temperature distributions within the boundary layer and
temperature distributions on the interface are also studied.

2. Mathematical analysis

Let us consider a steady natural convection flow of an electrically
conducting, viscous and incompressible fluid along a vertical flat plate
of length l and thickness b (Fig. 1). It is assumed that the temperature
at the outside surface is maintained at a constant temperature Tb,
where Tb>T∞, the ambient temperature of the fluid. A uniform
magnetic field of strength H0 is imposed along the ȳ-axis.

The boundary layer equations governing the convective flow under
these assumptionswith theBoussinesq approximations canbewritten as
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The Viscous dissipation and heat generation term are included in
the energy equation (Eq. (3)). The term Q0

ρcp
Tf−T∞ð Þ, Q0 being a constant,

represents the amount of generated or absorbed heat per unit volume.
Heat is generated or absorbed from the source term according as Q0 is
positive or negative.
Thesegoverningequationshave tobe solvedalongwith the following
boundary conditions [16–19]
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The non-dimensional governing equations and boundary condi-
tions can be obtained from Eqs. (1–4) using the following non-
dimensional quantities [20]
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where l is the length of the plate, Gr is the Grashof number and θ is the
dimensionless temperature.

The non-dimensional governing equations can be written as
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μGr1=2 is the magnetic parameter, N = m2Gr
l2cp Tb−T∞ð Þ is the viscous

dissipation parameter, Q = Q0L2

μcpGr1=2
is the heat generation parameter

and Pr = μcp
κ f

is the Prandtl number.
If the length of the plate l is considered to be κ fb

κs

� �
Gr1=4, the

corresponding boundary conditions are obtained in non-dimensional
form as follows:

u = 0 v = 0; θ−1 =
@θ
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on y = 0; x > 0
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ð9Þ

Eqs. (7) and (8) are solved for the above boundary conditions (9).
The variables ψ, η and θ are introduced in the following forms to
facilitate the solution:

ψ = x4=5 1 + xð Þ−1=20f x; ηð Þ
η = y x−1=5 1 + xð Þ−1=20
θ = x1=5 1 + xð Þ−1=5h x;ηð Þ

ð10Þ

here η is the similarity variable and ψ is the non-dimensional stream
function which satisfies the continuity equation and is related to the



Fig. 2. (a) Variation of velocity profiles and (b) variation of temperature profiles against
η for varying of M with Q=0.01 and N=0.01.

Fig. 3. (a) Variation of velocity profiles and (b) variation of temperature profiles against
η for varying of N with Q=0.01 and M=0.5.
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velocity components in the usual way as u=∂ψ/∂y and v=−∂ψ/∂x.
Moreover, h(x,η) represents the dimensionless temperature. The
momentum and energy equations (Eqs. (7) and (8), respectively) are
transformed for the new coordinate system. At first, the velocity
components are expressed in terms of the new variables for this
transformation. Thus we get
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where primes denote differentiation with respect to η. The boundary
conditions as mentioned in Eq. (9) then take the following form:

f x;0ð Þ = f 0 x;0ð Þ = 0
h0 x;0ð Þ = − 1 + xð Þ1=4 + x1=5 1 + xð Þ1=20h x;0ð Þ
f 0 x;∞ð ÞY0; h x;∞ð ÞY0

ð13Þ

The Eqs. (11) and (12), governing the MHD-conjugate convective
heat transfer problems together with the boundary conditions 13
reduce to those analysis of Merkin and Pop [17] ifM=0, N=0, Q=0 and
x1/5=ξ are considered.

The set of equations, Eqs. (11) and (12), together with the boundary
conditions (Eq. (13)) are solved numerically by applying the implicit
finite difference method with Keller box scheme [13,21]. It is
important from practical point of view to calculate the values of the
rate of heat transfer in terms of the Nusselt number and the surface
shear stress in terms the skin friction coefficient. These can be written
in the non-dimensional form as [20,22]

Cf =
Gr−3=4l2

μm
τw and Nu =

lGr−1=4

κ f Tb−T∞ð Þ qw ð14Þ

where τw [=μ(∂ū/∂ȳ)y ̄=0] and qw [=− κf(∂Tf/∂ȳ)y ̄=0] are the shearing
stress and the heat flux, respectively. Using the new variables
described in Eq. (5), Eq. (14) can be written as

Cfx = x2=5 1 + xð Þ−3=20fW x;0ð Þ ð15Þ

Nux = − 1 + xð Þ−1=4h0 x;0ð Þ ð16Þ

The numerical values of the surface temperature are also obtained
from the relation

θ x;0ð Þ = x1=5 1 + xð Þ−1=5h x;0ð Þ ð17Þ

We have also discussed the velocity profiles and the temperature
distributions for different values of the magnetic parameter, viscous
dissipation parameter and heat generation parameter.

3. Results

The resulting solutions for the velocity profiles and temperature
distributions are shown in Figs. 2 and 3. In the simulation, the value of
the Prandtl number is considered to be 0.733 that corresponds to
hydrogen. Detailed numerical solutions have been obtained for
different values of other parameters considered for the analysis.



Table 2
Comparison of the present numerical results of skin friction coefficient with Prandtl
number Pr=0.733 and M=0, N=0 and Q=0

x1/5=ξ Cfx

Pozzi and Lupo [10] Merkin and Pop [17] Present work

0.7 0.430 0.430 0.424
0.8 0.530 0.530 0.529
0.9 0.635 0.635 0.635
1.0 0.741 0.745 0.744
1.1 0.829 0.859 0.860
1.2 0.817 0.972 0.975

Table 1
Comparison of the present numerical results of surface temperature with Prandtl
number Pr=0.733 and M=0, N=0 and Q=0

x1/5=ξ θ(x,0)

Pozzi and Lupo [10] Merkin and Pop [17] Present work

0.7 0.651 0.651 0.651
0.8 0.684 0.686 0.687
0.9 0.708 0.715 0.716
1.0 0.717 0.741 0.741
1.1 0.699 0.762 0.763
1.2 0.640 0.781 0.781
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A comparison of the surface temperature and the local skin friction
factor obtained in the present work with x1/5=ξ, M=0, N=0, and Q=0
and obtained by Pozzi and Lupo [10] and Merkin and Pop [17] have
been shown in Tables 1 and 2, respectively. It is evident that there is an
excellent agreement among the respective results.
Fig. 4. (a) Variation of velocity profiles and (b) variation of temperature profiles against
η for varying of Q with M=0.5 and N=0.01.
The magnetic parameter M, representing the Lorentz force,
opposes the flow. The peak velocity decreases with the increasing M
due to this retarding effect as shown in Fig. 2(a). As a result, the
separation of the boundary layer occurs earlier since the momentum
boundary layer becomes thicker.

From Fig. 2(b) it can be observed that the magnetic field decreases
the temperature gradient at the wall and increases the temperature in
the flow region for a particular value of η. Thus, the magnetic
parameter increases the thickness of the thermal boundary layer.
Temperature at the interface also varies since the conduction is
considered within the plate.

Fig. 3(a) and (b) illustrates the variation of the velocity and
temperature profiles with η for selected values of N whenM=0.5, and
Q=0.01. It can be noted from Fig. 3(a) that an increase in the viscous
dissipation parameter N is associated with a slight increase in the
velocity. This behavior is similar to that of temperature profile as
shown in Fig. 3(b). It implies that the viscous dissipation enhances the
temperature and therefore increases the velocity.

Fig. 4 displays the numerical results of the velocity and
temperature, respectively obtained from the solution of the Eqs. (11)
and (12) subject to the boundary condition 13 for different small
values of Q plotted against η with M=0.5, and N=0.01. The velocity
gradient at the surface increases due to the increasing Q and
accordingly, the velocity of the fluid increases as shown in Fig. 4(a).
It is observed from Fig. 4(a) that for each value of the heat generation
parameter there exists a global maximum of the velocity within the
boundary layer. The maximum velocities are 0.3215, 0.3382, 0.3512
and 0.3600 for Q=0.01,0.05, 0.08, and 0.10, respectively. It can be seen
that the velocity increases by 10.694% as Q increases from 0.01 to 0.10.
Fig. 5. (a) Variation of skin friction coefficients and (b) variation of rate of heat transfer
against x for varying of M with and N=0.01 and Q=0.01.



1279A.A. Mamun et al. / International Communications in Heat and Mass Transfer 35 (2008) 1275–1280
Fig. 4(b) presents clearly that the temperature increases gradually for
increasingQ and exceeds the level of the surface temperature. As a result
there exists critical levels of temperature near the interface which
therefore decreases the level of local Nusselt number (see Fig. 7(b)).

The variation of the local skin friction coefficient Cfx and local rate
of heat transfer Nux with N=0.01 and Q=0.01 for different values ofM
at different positions are illustrated in Fig. 5. The Magnetic force
opposes the flow, as mentioned earlier, and reduces the shear stress at
the wall. The reduced skin friction coefficients with the increasing M
represent this phenomenon as illustrated in Fig. 5(a). Moreover, the
heat transfer rate depends on the gradient of temperature. As the
gradient decreases with the increasing M [Fig. 2(b)], the heat transfer
rate also decreases as revealed in Fig. 5(b).

Fig. 6(a) and (b) illustrates the effect of viscous dissipation
parameter on the local skin friction coefficient and the local heat
transfer rate, respectively while M=0.50, and Q=0.01. It can be seen
that the skin friction factor increases with an increase in the viscous
parameter. Moreover, the skin friction coefficient increases along the x
direction for a particular N. This is to be expected since the fluid
motionwithin the boundary layer increases for increasing N (Fig. 3(b))
and eventually increases the skin friction factor. Fig. 6(b) shows that
the effect of the viscous parameter leads to a decrease of the local heat
transfer rate. i.e. the greater value of N, the lower heat transfer rate.

Fig. 7(a) and (b) plots the local skin friction coefficient and the local
heat transfer rate against x for different values of heat generation
parameter Q in the presence of viscous magnetic field. It can be
concluded that an increase in the heat generation parameter leads to
an increase in the skin friction factor and a decrease in the local heat
transfer rate. The increasing Q accelerates the fluid flow, as mentioned
Fig. 7. (a) Variation of skin friction coefficients and (b) variation of rate of heat transfer
against x for varying of Q with M=0.5 and Q=0.01.

Fig. 6. (a) Variation of skin friction coefficients and (b) variation of rate of heat transfer
against x for varying of N with M=0.5 and Q=0.01.
in Fig. 4(a), and generates the greater bouyancy force and therefore
increases the skin friction factor. On the other hand, owing to the
increasing Q, there creates a hot layer of fluid near the surface. As a
result the resultant temperature of the fluid exceeds the surface
temperature. Accordingly, the rate of heat transfer from the surface
decreases.

Fig. 8(a) and (b) illustrates the influence of the magnetic parameter
M and the viscous dissipation parameter N on interfacial temperature
with x. It is seen that the interfacial temperature rises along the x
direction for a particular value of M. Moreover, the increasing M gives
rise to an increased solid-fluid interface temperature. This is expected
behaviour since the magnetic field acting along the horizontal
direction increases the temperature as observed in Fig. 2(b). On the
other hand, it can be revealed that the interfacial temperature
increases with increasing x for a given value of N. Higher values of N
result in a greater temperature variation on the wall compared with
the case of lower value of N.

Fig. 9 presents the variation of the surface temperature distribution
as a function of x for different values of Q. It can be noted that the
interfacial temperature increases with increasing x for a particular
value of Q. Furthermore, the temperature at the interface increases for
the increasing Q. This is because the temperaturewithin the boundary
layer increases for the increasing Q as observed in Fig. 4(b).

4. Conclusion

A time independent, two-dimensional, laminar free convection
flow is studied considering conduction, viscous dissipation and heat
generation in the presence of a magnetic field. The dimensionless
boundary layer equations together with the corresponding boundary



Fig. 9. Variation of surface temperature distributions against x for different values of Q
with M=0.5 and N=0.01.

Fig. 8. (a) Variation of surface temperature distributions against x for different values of
M with N=0.01 and Q=0.01 and (b) Variation of surface temperature distributions
against x for different values of N with M=0.5, and Q=0.01.
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conditions are solved numerically using implicit finite difference
method. The effects of the magnetic field, dissipation parameter and
heat generation parameter are analyzed on the fluid flow. The velocity
of the fluid and the skin friction at the interface increase with the
decreasing magnetic field while they decrease with the decreasing
dissipation parameter and heat generation parameter. The tempera-
ture of the fluid increases with the increasing magnetic field,
dissipation parameter and heat generation parameter. Moreover, the
rate of heat transfer decreases with the increasing magnetic field,
dissipation parameter and heat generation parameter. The surface
temperature increases with the increasing magnetic parameter,
dissipation parameter and heat generation parameter.
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