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1. INTRODUCTION 
     The interaction between the conduction inside and the 
bouyancy forced flow of fluid along a solid surface is 
termed as conjugate heat transfer (CHT) process. In 
practical systems, such as heat exchangers, the 
convection in the surrounding fluid influences 
significantly the conduction in a tube wall. Accordingly, 
the conduction in the solid body and the convection in the 
fluid should be determined simultaneously. The CHT 
problems have been studied by several research groups 
[1, 2, 3] with the help of mathematical models on simple 
heat exchanger geometries. Gdalevich and Fertman [4] 
and Miyamoto et al [5] reviewed the early theoretical and 
experimental works of the CHT problems for a viscous 
fluid. Miyamoto observed that a mixed-problem study of 
the natural convection has to be performed for an acurate 
analysis of the thermo-fluid dynamic (TFD) field if the 
convective heat transfer depends strongly on the thermal 
boundary conditions. Pozzi and Lupo [6] investigated the 
entire TFD field resulting from the coupling of natural 
convection along and conduction inside a heated flat 
plate by means of two expansions, regular series and 
asymptotic expansions. Moreover, Vynnycky and 
Kimura [7] studied the two dimensional conjugate free 
convection for a vertical plate of finite extent adjacent to 
a semi-infinite porous medium using finite difference 
techniques. Pop et al [8] extended the analysis of 
Vynnycky for the mixed convection flow. 
     The CHT problems associated with the heat 
generating plate washed by laminar forced convection 
flow were studied by Karvinen [9], Sparrow  and Chyu 
[10] and Garg  and Velusami [11] using an approximate 

method. Moreover, analytical and numerical solutions 
were performed for the CHT problem associated with the 
forced convection flow over a conducting slab sited in an 
aligned uniform stream by Vynnycky et al [12]. 
     In the present article, the natural convection flow 
along a vertical flat plate considering the conduction and 
heat generation effects is studied. The governing 
boundary layer equations are transformed into a non 
dimensional form and the resulting non linear partial 
differential equations are solved numerically using the 
implicit   finite difference method together with the 
Keller box technique [13, 14]. The temperature 
distributions, velocity profiles, skin friction coefficients 
and the heat transfer rates are presented graphically. 
 
2. MATHEMATICAL ANALYSIS 
     A time independent natural convection flow of a 
viscous incompressible fluid along a vertical flat plate of 
length l and thickness b (Figure 1) is considered. A 
greater temperature Tb than the ambient temperature T∞ is 
maintained constant at the outer surface of the plate. 
The governing equations of such flow under the usual 
boundary layer and the Boussinesq approximations in the 
presence of heat generation can be written as 
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The term ( )∞−TT
c

Q
f

pρ
0 , Q0 being a constant, 

represents the amount of generated or absorbed heat from 
per unit volume. Heat is generated or absorbed from the 
source term according as Q0 is positive or negative. 
 
The physical situation of the system suggests the 
following boundary conditions [15, 16, 17,  18] 
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∞→→ TTu f,0 as 0, >∞→ xy  (4b) 
The governing equations and the boundary conditions 
 (Equation 1-4) can be made dimensionless by using the 
following dimensionless quantities: 
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where l is the length of the plate, Gr is the Grashof 
number and θ  is the dimensionless temperature. The 
non-dimensional momentum and the energy equations 
can now be written as: 
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where ( ) ( )2/12
0 GrclQQ pµ= is the dimensionless heat 

generation  parameter and ( ) fpc κµ=Pr is the  Prandtl 
number . 
The boundary conditions in dimensionless forms are 
obtained as: 

y
pvu
∂
∂

=−==
θθ 1,0  on 0,0 >= xy  (9a) 

0,0 →→ θu as 0, >∞→ xy  (9b) 

where ( )( ) 4/1// Grlbkkp sf=  is the conjugate 
conduction parameter. 
 
     The described problem is governed by the coupling 
parameter p. In actual fact, magnitude of O (p) depends 
on b/l and

sf κκ , Gr1/4 being the order of unity. Since l is 
small, the term b/l becomes greater than one. For air, 

sf κκ  attains very small values if the plate is highly 
conductive and reaches the order of 0.1 for materials 
such as glass. Therefore in different cases p is different 
but not always a small number. In the present 
investigation we have considered p = 1. 
 
To solve the equations (7) and (8) subject to the boundary 
conditions (9), the following transformations are 
introduced :   
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here η  is the dimensionless similarity variable and ψ is 
the stream function which satisfies the equation of 
continuity and xvyu ∂∂−=∂∂= /,/ ψψ  and ( )xh ,η  
is the dimensionless temperature. 
 
Substituting (10) into equations (7) and (8) we get the 
following transformed non-dimensional equations. 
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Fig 1: Physical model and coordinate system. 
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In the above equations the primes denote partial 
differentiation with respect toη. 
The boundary conditions (9) then take the following 
form: 
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3. METHOD OF SOLUTION 
     To get the solutions of the parabolic differential 
equations (11) and (12) along with the boundary 
condition (13), we shall employ a most practical and 
accurate solution technique, known as implicit finite 
difference method together with Keller- box elimination 
technique. 
 
4. RESULTS AND DISCUSSION 
     The main objective of the present work is to analyze 
the flow of the fluid and the heat transfer processes due to 
the conjugate heat transfer for a vertical flat plate. The 
values of the Prandtl number are considered 4.24, 1.74, 
1.0 and 0.73 for the simulation that correspond to sulfur 
dioxide, water, steam and air, respectively. Detailed 
numerical results of the velocity, temperature, rate of 
heat transfer and skin friction coefficient for different 
values of the heat generation parameter and the Prandtl 
number are presented graphically. 
     The temperature and the velocity fields obtained from 
the solutions of the Equation 11 and 12 are depicted in 
Figure 2 to Figure 5. Figure 2 and Figure 3 illustrate the 
temperature distributions and the velocity profiles for 
different values  of heat generation parameter with Pr = 
0.73. It can be seen from Figure 2 and Figure 3 that the 
temperature profiles and the velocity profiles increase 
due to the increase of heat generation parameter. The 
increased value of the heat generation parameter means 
that more heat is produced and eventually increases the 
fluid motion. Moreover, the maximum values of the 
temperature are 0.8542, 0.8710, 0.8841 and 0.8932 for Q 
= 0.01, 0.05, 0.08 and 0.10, respectively and each of 
which occurs at the surface. It can be seen that the 
temperature increase by 4.366% as Q increases from 0.01 
to 0.10. On the other hand, the maximum values of the 
velocity are 0.4895, 0.5026, 0.5127 and 0.5295 for Q = 
0.01, 0.05, 0.08 and 0.10, respectively and each of which 
occurs at  η = 1.3693. It is observed that the velocity 
increase by 5.775% when Q increases from 0.01 to 0.10.  
Temperature variation at the interface is also observed 
due to the conduction within the wall.  
     In Figure 4 and Figure 5, different values of Prandtl 
number with Q = 0.01 are considered for the velocity and 
temperature distributions.  It can be seen from Figure 4 
that the temperature profile decreases with the increasing 
Pr. The overall temperature profiles shift downwards 

with the increasing Pr. The physical fact that the thermal 
boundary layer thickness decreases with increasing Pr 
supports the result. Furthermore, the maximum values of 
the temperature are 0.8542, 0.8307, 0.7892 and 0.7240 
for Pr = 0.73, 1.00, 1.74 and 4.24, respectively and each 
of which occurs at the surface. It can be observed that the 
temperature decrease by 15.242% as Pr increases from 
0.73 to 4.24.  From Figure 5, it is seen that the velocity 
within the fluid decreases when the value of Prandtl 
number, Pr, increases. The peak velocity decreases as 
well as its position moves toward the interface with the 
increasing Pr.  Moreover, the maximum velocities are 
0.4895, 0.4403, 0.3609 and 0.2541, respectively which 
occur at η = 1.3693 for the first and second maximum 
values and at η = 1.3025 for the third maximum value 
and at  η = 1.1752 for the last maximum value. It is 
observed that the velocity decreases by  48.089% as Pr 
increases from 0.73 to 4.24. 
     The variation of the local skin friction coefficient Cfx 
and local rate of heat transfer Nux with Pr = 0.73 for 
different values of Q at different positions are illustrated 
in Figure 6 and Figure 7, respectively. The heat 
generation accelerates the fluid flow, as mentioned 
earlier, and increases the shear stress at the wall. The 
increased skin friction coefficients with the increasing Q 
represent this phenomenon as illustrated in Figure 6. 
Moreover, the heat transfer rate depends on the gradient 
of temperature. As the gradient decreases with the 
increasing Q [Figure 2], the heat transfer rate also 
decreases as revealed in Figure7.  
     Skin friction coefficients and heat transfer rates at 
different positions along the plate surface for the 
variation of Pr with Q = 0.01 are illustrated in Figure 8 
and Figure 9, respectively. From Figure 8, it is seen that 
the skin friction co-efficient decreases with the 
increasing Pr. Moreover, the skin friction increases along 
the plate for a particular value of Pr. The opposite 
situation is observed from Figure 9 for the rate of heat 
transfer. 
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Fig 2: Variation of temperature profiles for different 

values of Q with Pr = 0.73  
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Fig 3: Variation of velocity profiles for different 

values of Q with Pr = 0.73 
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Fig 4: Variation of temperature profiles for different 

values of Pr with Q = 0.01 
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Fig 5: Variation of velocity profiles for different 

values of Pr with Q = 0.01 
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Fig 6: Variation of skin friction coefficients for  

different values of Q with Pr = 0.73 
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Fig 7: Variation of rate of heat transfer for  

different values of Q with Pr =0.73 
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Fig 8: Variation of skin friction coefficients for  

different values of Pr with Q = 0.01 

0.0 4.0 8.0 12.0 16.0 20.0 24.0
x

0.0

0.1

0.2

0.3

0.4

0.5

H
ea

tt
ra

ns
fe

r,

Pr = 0.73
Pr = 1.00
Pr = 1.74
Pr = 4.24

N
u x

 
Fig 9: Variation of rate of heat transfer for  

different values of Pr with Q = 0.01 
 

5. CONCLUSIONS 
     A steady, two-dimensional, laminar natural 
convection flow is analyzed considering conduction and 
heat generation effects. The transformed partial 
differential equations together with the boundary 
conditions are solved numerically by implicit finite 
difference method. The effects of the heat generation 
parameter and Prandtl number are studied on the fluid 
flow and at the solid-fluid interface. The velocity of the 
fluid and the skin friction at the interface increase with 
the increasing heat generation parameter while they 
decrease with the increasing Prandtl number. The 
temperature of the fluid increases with the increasing 
heat generation parameter and the decreasing Prandtl 
number. Furthermore, the rate of heat transfer decreases 
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with the increasing heat generation parameter and the 
decreasing Prandtl number. 
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7. NOMENCLATURE 
 

Symbol Meaning Unit 
b   Plate thickness  (cm) 
Cp   Specific heat  (J/KgK) 
f   Dimensionless stream  

  function 
g   Acceleration due to gravity  (cm/s2) 
l   Length of the plate  (cm) 
Tf   Temperature of the flow fluid  (K) 
Tb   Temperature at outside of the   

  plate 
 (K) 

T∞   Temperature of the ambient   
  fluid 

 (K) 

vu ,    Velocity components  (cm/s) 
u,v   Dimensionless velocity   

  components 
yx,    Cartesian coordinates  (cm) 

x,y   Dimensionless Cartesian   
  coordinates 

β   Co-efficient of thermal   
  expansion 

ψ   Dimensionless stream   
  function 

η   Dimensionless similarity   
  variable 

 

ρ   Density of the fluid inside the  
  boundary layer    

 (kg/m3) 

ν   Kinematic viscosity   (m2/s) 
µ   Viscosity of the fluid   (N.s/m2) 
θ   Dimensionless temperature  

fκ    Thermal conductivity of the  
  ambient fluid 

 (kW/mK) 

sκ    Thermal conductivity of the  
  ambient solid 

 (kW/mK) 

 
 

 
 


