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A Secure and Practical Mechanism of Outsourcing
Extreme Learning Machine in Cloud Computing
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Abstract—The enlarging volume and increasingly complex
structure of data involved in applications makes Extreme Learn-
ing Machine(ELM) over large-scale data a challenging task. The
paper presents a secure and practical mechanism for outsourcing
ELM in cloud computing, named Partitioned ELM, to reduce
the training time while assuring the confidentiality of the input
and the output. The cloud server is mainly responsible for
calculating the Moore-Penrose generalized inverse which is the
heaviest operation computationally. The inverse also serves as
the correctness and soundness proof in result verification. We
analyze the confidentiality theoretically and the experimental
results demonstrate that the proposed mechanisms can effectively
release customer from heavy computations. The customer can
further speedup the ELM by outsourcing multiple ELM problems
simultaneously in cloud computing.
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I. INTRODUCTION

Extreme Learning Machine(ELM) [1], [2], [3], [4] , is a
newly proposed learning algorithm for generalized Single-
hidden Layer Feedforward Neural networks(SLFNs). The en-
larging volume and increasingly complex structure of da-
ta involved in applications makes Extreme Learning Ma-
chine(ELM) over large scale data a challenging task. To ad-
dress the challenge, researchers have proposed many enhanced
ELM variants[5], [6]. However, users who own the large scale
data may not have abundant computing resources or distributed
computing frameworks in hand. Instead, we can outsource the
expensive computation of ELM in cloud computing to utilize
the literally unlimited resources in a pay-per-use manner at
relatively low prices.

To the best of our knowledge, we are the first to outsource
Extreme Learning Machine algorithms in cloud computing
while assuring the confidentially of the input training samples
and the output results. ELM problems, in which the parameters
of hidden nodes in ELM are assigned randomly and the desired
output weights can be determined analytically, are suitable for
being outsourced in cloud computing, i.e., the input training
samples can be well protected without additional encryption.
The confidentiality can be instinctively assured.

This paper proposes a secure and practical outsourcing
mechanism, named Partitioned ELM to address the challenge
of performing ELM over large scale data. It explicitly decom-
poses ELM algorithm into public part and private part. The
public part is executed in the cloud server, mainly responsible
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for the calculation of Moore-Penrose generalized inverse,
which is the most time-consuming calculations of ELM. The
private part consists of generations of random parameters
and some light matrix operations. The generations of random
parameters are associated with the confidentiality of input
data. With the random parameters, the customer calculates the
output matrix of the hidden layer from which cloud server
cannot mine out sensitive information. The cloud computing
calculates the Moore-Penrose generalized inverse of the matrix
and sent it back to the customer. Then the customer transforms
it to the desired result while preserving the security and privacy
of the input training samples and the desired output.

Extensive experiments are conducted to evaluate the per-
formance of the proposed mechanism. And the experimental
and analytical results show that the proposed mechanisms can
save considerable training time of the ELM. When the size
of the ELM problem increases, the speedups achieved by the
proposed mechanism are also getting larger.

II. BRIEF REVIEW OF ELM
ELM is first proposed by Huang et al [1], [2], [3], [4].

It has been proved that adjusting the input weights w and
the biases b iteratively is not necessary. Instead, they can be
randomly assigned if the activation functions in the hidden
layer are infinitely differentiable. The output weights β can
be determined analytically through simple generalized inverse
operation of the hidden layer output matrices.

The N arbitrary distinct samples are modeled by matrixes
(X,T ), whose dimensions are N ×n and N ×m respectively,
where n denotes the number of input attributes and m denotes
the number of target labels. The weight parameters (w,b)
are assigned randomly and the smallest norm least-squares
solution of the output weights β = H†T where H is the
output matrix of the hidden layer and H† is the Moore-Penrose
generalized inverse of matrix H[7].

III. OUTSOURCING ELM IN CLOUD COMPUTING

A. Threat Model of Cloud Computing
In order to reduce the time used for training or executing

ELM on large scale data, it is intuitional to outsource the
bottle-neck computation to cloud computing with abundant
resource. However, outsourcing ELM in cloud is also relin-
quishing user’s direct control of their data and application, in
which sensitive information might be contained.

The threats of confidentiality in the outsourcing of ELM
mainly stem from the cloud computing. The cloud computing
may behave in “honest-but-curious” model, which is also
called semi-honest model that was assumed by many previous
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Fig. 1: Architecture of Outsourcing ELM in Cloud Computing

researches[8]. The cloud server may be persistently interested
in analyzing the data to mine more information for various
purposes, either because it intends to do so or because it is
compromised. In this paper, we assume that the cloud servers
may behave unfaithfully, beyond semi-honest model, i.e., it
may cheat to the customer to save power or reduce executing
time while hoping not to be caught at the same time. To enable
secure and practical outsourcing ELM in cloud computing, the
proposed mechanisms should be ingeniously designed so as to
ensure the confidentiality of ELM problems while guaranteeing
the correctness and soundness. We firstly assume that the
cloud server performs the computation honestly and discuss
the verification of correctness and soundness later.

B. Architecture of Partitioned ELM

There are two different entities involved in the outsourcing
ELM in cloud computing: the cloud customers and the cloud
servers in the cloud computing. The former entity has sev-
eral computationally expensive large scale ELM problems to
outsource in cloud computing, and the latter one has literally
unlimited resources and provides utility computing services.
The architecture for outsourcing ELM in cloud computing is
illustrated in Figure 1.

To focus on the outsourcing ELM in cloud computing, we
assume that the communication channels between the cloud
server and the customers are reliably authenticated and en-
crypted, which can be achieved in practice with little overhead.
So the authentication processes are omitted in this paper.

It explicitly decomposes ELM algorithm into public part and
private part, as the name Partitioned ELM indicates. The public
part is executed in the cloud server, mainly responsible for
the calculation of Moore-Penrose generalized inverse, which
is the most time-consuming calculations of ELM. The private
part consists of generations of random parameters and some
light matrix operations. The generations of random parameters
are associated with the confidentiality of input data. With the
random parameters and randomly chosen activation functions,
the customer calculates the output matrix of the hidden layer
from which cloud server cannot mine out sensitive information.
Besides, the customer multiply the inverse with the target
matrix to calculate the desired output weights.

C. Encryption of Training Samples
ELM determines the parameters for the neural networks

at different steps. The ELM is instinctively suitable for out-
sourcing in cloud computing while assuring the confidentiality
of the training samples and the desired parameters of neural
networks.

In the private part, more specifically, the parameters (w,b)
are assigned randomly which are a part of the desired outputs
of the training neural networks. These parameters must be
assigned by the cloud customer but not the cloud server.

The universe of infinitely differentiable activation functions
is infinite. Without any knowledge of the activation function or
the parameters, the cloud server can not obtain any knowledge
about the exact X or (w,b) from H . So the encryption of the
X is embedded in the ELM and the confidentiality of the input
training samples and training neural network’s parameters
(w,b) is achieved by the randomly generated parameters and
randomly chosen activation functions.

For convenience, we denote H = g(H0). Noting that even
with the knowledge of the infinitely differentiable activation
functions associated with the hidden nodes, the cloud server
cannot exactly figure out X,w, or b from the mediate matrix
H0. Therefore, we also can outsource the computation of the
activation functions in cloud computing. The communication
overhead between the customer and the cloud server can be
further reduced using pipeline parallelization, i.e., the cloud
server calculates the activation functions and receives H0 in a
pipeline manner.

D. Calculation of Output Weights
The cloud server receives the mediate matrix H0 and then

calculate the output matrix of the hidden layer. Thereafter,
it calculate the Moore-Penrose generalized inverse, whose
execution time dominates the training time of the original ELM
problem and sends the Moore-Penrose generalized inverse
back to the customer. Finally, the customer calculates the
output weights β by multiply the inverse H† and the target
output T of the training samples locally.

In the whole process, the parameters ((w,b, β) of the
training neural networks are kept out of the reach of the cloud
server. The cloud server cannot mine out special information
about the original ELM problems and the trained neural
networks, such as the training samples (X,T ) and the desired
parameters.

In this paper, we only focus on outsourcing the basic ELM
algorithm in cloud computing. It is worth noting that, the
proposed mechanisms are not limited to a specific type of ELM
and can be employed for a large variety of ELMs. Applying
our outsourcing mechanisms to various ELM variants is one
of our future works.

E. Result Verifications
Till now, we have been assuming that the server is honestly

performing the computation, while being interested learning
information. However, the cloud server might behave unfaith-
fully. Therefore, the customer must be enabled to verify the
correctness and soundness of the results.
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TABLE I: Performance over Part of the CIFAR-10 Dataset

M toriginal(s) toutsource(s) tcustomer(s) tcloud(s) λ
500 12.65 6.19 2.70 3.48 4.69
1000 53.94 17.07 5.07 12.00 10.64
1500 114.29 33.62 7.46 26.16 15.32
2000 347.02 57.840 10.10 47.74 34.36
2500 485.30 89.78 12.58 77.20 38.58
3000 1055.95 135.74 14.79 120.95 71.40
3500 1513.80 191.40 17.29 174.11 87.55

In our mechanism, the returned inverse itself from the
cloud server can also serve as the verification proof. From
the definition of Moore-Penrose generalized equations we can
verify whether the returned matrix is the desired inverse.
Therefore, the correctness and soundness of the results can
be verified while incurring few computation overhead or extra
communication overhead.

IV. PERFORMANCE EVALUATION

We use toriginal to denote the training time of the original
ELM and toutsource to denote that of the proposed mechanism.
In the Partitioned ELM, the time cost at the customer side
and at the cloud server side are denoted as tcustomer and
tcloud, respectively. Then we define the asymmetric speedup
of the proposed mechanism as λ =

toriginal

tcustomer
. The physical

meaning of λ is the savings of the computing resources for
the customer. The asymmetric speedup is independent on how
resourceful the cloud server is and directly related with the
size of ELM problems. Through outsourcing the calculation of
Moore-Penrose generalized inverse in cloud computing with
resourceful computing power(e.g., CPU, memory), the time
cost at the customer side would be reduced dramatically.

In the series of experiments, the customer computations in
our experiments are conducted on a workstation with an Intel
Xeon Quad Processor running at 3.60GHz with 2GB RAM and
1GB Linux swap space while the cloud server computations
on a workstation with an Intel Core Duo Procession running at
2.50GHz with 4GB RAM and huge enough Windows Virtual
Memory. Through outsourcing the bottle-neck computation
of ELM from a workstation with lower resource to another
workstation with more computing power, we can evaluate
the training speed of the proposed mechanisms without a
real cloud environment. Our proposed mechanism focus on
improving the training speed through outsourcing while the
training accuracy and testing accuracy are not affected.

We test the Partitioned ELM over a large scale dataset
named CIFAR-10 [9] which consists of 50000 32×32 training
color images and 10000 testing images in 10 classes. There
are 5000 training images and 1000 testing images per class.
To reduce the number of attributes, we transform the color
images into gray images. We conduct 5 trials for each M , and
randomly choose 2 classes from the 10 classes as the training
samples and testing samples for each trial.

The results are listed in Table I. With the increase of M ,
memory is becoming the dominant computing resource when
solving the ELM problem. And the asymmetric speedup is also
increasing. It means that the larger the problems’s size, the

larger speedups the proposed mechanism can achieve. When
M is substantially large, the original ELM will terminate due
to the memory limit.

The training accuracy is also inclining steadily from 83%
to 95% along the number of hidden node while the testing
accuracy changes between 80% and 84%. To find specific M
for the ELM problem with best testing accuracy, one may wish
to test multiple experiments under different values of M . Then
the resourceful computing power of the cloud computing can
be more fully utilized in the way that the cloud server tests
multiple ELM problems with different M simultaneously to
reduce the overall training time.

V. CONCLUSION

The Partitioned ELM explicitly decomposes ELM problems
into two parts to address the challenge of performing ELM
over large scale dataset. The customer assigned the input
weights and the bias of the training neural networks locally.
The cloud server is mainly responsible for calculating the
Moore-Penrose generalized inverse, which also serves as the
verification proof. Thereafter, it is sent back to the customer
who multiplies it with target matrix locally to get the output
weights. The experimental results show that Partitioned ELM
can release the customer from heavy burden of expensive
computations, achieving higher asymmetric speedup for the
larger ELM problems.
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