
A Distributed TCAM Coprocessor Architecture
for Integrated Longest Prefix Matching,
Policy Filtering, and Content Filtering

Zhiping Cai, Member, IEEE, Zhijun Wang, Kai Zheng, Senior Member, IEEE, and

Jiannong Cao, Senior Member, IEEE

Abstract—Longest Prefix Matching (LPM), Policy Filtering (PF), and Content Filtering (CF) are three important tasks for Internet

nowadays. It is both technologically and economically important to develop integrated solutions to the effective execution of the three

tasks. To this end, in this paper, we propose a distributed Ternary Content Addressable Memory (TCAM) coprocessor architecture.

The integrated solution exploits the complementary lookup load and storage load requirements of the three tasks to balance the lookup

load and storage load among the TCAMs. A prefix filtering-based CF algorithm is designed to reduce the lookup load and a novel

cache system is developed to dynamically handle the lookups from overloaded TCAMs. Simulations based on real-world traffic traces

show that the proposed solution can perform all three tasks given a 10 Gbps line rate using only the resources required to perform just

the CF task given a 10 Gbps line rate.

Index Terms—Longest prefix matching, policy filtering, content filtering, intrusion detection

Ç

1 INTRODUCTION

THE survivability of the future Internet largely depends
on whether it will be able to successfully address both

security and performance issues. The Internet becomes
more and more vulnerable due to the fast spreading of
worms and other malicious attacks. It is under great stress
to meet the ever-growing application demands while
having to sustain 10 gigabit or even higher forwarding
performance [1].

Traditional approaches to guarantee both security and
high forwarding performance are in general complex and
costly. For example, network intrusion detection systems
are typically implemented by using specialized hardware
(e.g., dedicated chips or separate boxes) for Content
Filtering (CF), rather than standard components in an
Internet router, adding complexity and integration/man-
agement costs. Packet classification has long been identified
as one of the most critical and time-consuming data path
functions, creating potential bottlenecks for high-speed
packet forwarding.

To remove the potential bottlenecks, various algorithmic
and hardware approaches have been developed, attempting

to meet the targeted performance for different single packet
forwarding or packet classification tasks, such as Longest
Prefix Matching (LPM) or Policy Filtering (PF). However,
implementing different solutions to execution of the multi-
ple tasks is rather costly and sometimes even infeasible due
to various resource constraints. Hence, it is desirable to
develop integrated solutions for LPM, PF, and CF, matching
10 gigabit line rate or even higher.

It is a promising approach to integrate packet forwarding
and packet classification tasks with Ternary Content
Addressable Memory (TCAM). A TCAM-based solution is
generally applied to different packet classification tasks. It
allows parallel rule matching against all the rules in a rule
table, offering the highest possible packet classification
performance. As a result, TCAM coprocessors are widely
used in the industry to perform multiple packet forwarding
and classification tasks, which includes LPM [2], [3], [4], [5],
[6], PF [7], [8], [9], and CF [10], [11], [12], [13]. However, the
existing TCAM-based solutions have some drawbacks. On
one hand, the solutions with a single-TCAM coprocessor
cannot keep up with multigigabit line rate when perform-
ing multiple packet classification tasks. On the other hand,
the existing distributed TCAM architectures are designed
for single packet forwarding or classification task, and the
expensive hardware hasn’t been utilized efficiently to
implement multiple packet classification tasks.

This paper aims at developing a distributed TCAM
architecture to enable fast and integrated LPM, PF, and CF
to match 10 gigabit line rates. Note that there are significant
requirement diversities in terms of both lookup load and
storage load among LPM, PF, and CF. For example, in the de

facto CF engine Snort [14], there are about 5,000 distinct
rules which typically require less than 1 Mbits TCAM
storage, but it requires up to 1.25G lookups per second for

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 3, MARCH 2013 417

. Z. Cai is with the Department of Network Engineering, School of
Computer, National University of Defense Technology, Changsha, Hunan
410073, P.R. China. E-mail: zpcai@nudt.edu.cn.

. Z. Wang and J. Cao are with the Department of Computing, Hong Kong
Polytechnic University, Mong Man Wai Building, Hung Hom, Kowloon,
Hong Kong. E-mail: {cszjwang, csjcao}@comp.polyu.edu.hk.

. K. Zheng is with the System Research Group, IBM China Research
Laboratory, Bldg 19 (the Diamond Building), Zhongguancun Software
Park, No. 8 Dongbeiwang West Road, Haidian District, Beijing 100193,
P.R. China. E-mail: zhengkai@cn.ibm.com.

Manuscript received 11 Mar. 2011; revised 29 Nov. 2011; accepted 6 Dec.
2011; published online 22 Dec. 2011.
Recommended for acceptance by A. Shvartsman.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-03-0169.
Digital Object Identifier no. 10.1109/TC.2011.255.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

10 Gbps wire-speed inspection. In a typically firewall (i.e.,
PF engine), hundreds of thousands of (5-tuple) rules are
usually required, occupying tens of Mbits TCAM storage;
only less than 25M lookups per second (note that only
packet headers will be inspected in the PF task) is needed.
For LPM, it requires only one TCAM lookup per packet,
whereas the size of a prefix table is in general at least one
order of magnitude larger than that of a rule table in PF.

Without an integrated solution, in order to match 10 Gbps
wire speed, 13 TCAMs is needed. Each is capable for
100 million lookups per second (MLPS) [11], and several
(depending on number of rules and IP prefixes)10 Mbits
TCAMs for PF and LPM, respectively. But in an integrated
solution, 13 TCAMs with 100 MLPS each and 2 Mbits storage
can provide lookup bandwidth and storage space for all the
LPM, PF, and CF tasks. Obviously, it is cost efficient to
integrate these tasks together.

Our proposed solution exploits the complementary
characteristics of the three tasks, namely LPM, PF, and
CF, and executes them simultaneously. The prefixes, policy
rules, and intrusion patterns are distributed to a set of
TCAMs with balanced lookup load and storage load. We
developed a prefix filtering algorithm to reduce the lookup
load for CF, and a novel prefix-group (PG)-based cache
scheme to dynamically handle CF lookups from overloaded
TCAMs. Simulation results show that the integrated
solution can significantly reduce the overall cost and still
maintain a reasonable throughput.

The rest of the paper is organized as follows: Section 2
describes some related works. The details of the proposed
integrated solution are given in Section 3. Section 4 presents
the performance evaluation of the proposed solutions.
Finally, the conclusions are drawn in Section 5.

2 RELATED WORK

Significant research efforts have been made on the devel-
opment of algorithms for efficiently using TCAM copro-
cessors for high-speed packet classification such as LPM
and PF, and intrusion detection systems. TCAM is used to
perform packet classification at wire speed has become the
de facto technology for high-speed routers [15].

The research issues on TCAM coprocessor include power
consumption [16], [17], throughput [18], database update
[10], storage efficiency [2], [7], [9], [19], [20], [21], and new
applications. Significant research efforts have been made to
the optimize TCAM storage efficiency. Recently, multi-
matching classification and policy table compacting pro-
blems were addressed in [2], [3] and [11]. Zheng et al. [6]
proposed a distributed TCAM coprocessor architecture for
LPM that matches OC-768 line rate. Spitznagel et al. [22]
extended the LPM to general packet classification by
organizing the TCAM as a two-level hierarchy. It can
deliver high performance for even large filter sets.
Faezipour and Nourani [3] designed a TCAM that can find
all or multiple highest matches in a packet filter set to
reduce the multimatch packet classification time.

Except LPM and policy filtering, another promising
application of TCAM coprocessors is high-speed signature
matching for intrusion detection [23]. The existing intrusion
detection systems, such as the software-based solutions

cannot keep up with gigabit line rates [23], [24]; those which
are based on ASIC and FPGA [25], [26], [27] may incur large
processing latencies for databases with a large number of
signature patterns.

The Bloom filter is a kind of space efficient algorithm for
pattern matching. It has also been proposed for intrusion
detection in [28], [29], and [30]. However, due to the
variable length of intrusion patterns, a large number of
Bloom filters with different length may need to be
constructed, thus making them unscalable.

Yu et al. [13] proposed a gigabit rate pattern matching
system with a single-TCAM coprocessor. The system can
handle up to 2 Gbps line rates. Our work builds upon their
work and addresses one shortcoming of their system, the
need to lookup every W -byte (W is the TCAM slot width)
string in a TCAM.

Weinsberg et al. [31] designed a Rotating TCAM (called
RTCAM). The RTCAM algorithm enables the network
intrusion prevention system to work at several gigabit line
speed. Recently, Meiners et al. [32] proposed a hardware-
based regular expression matching approach that uses
TCAMs for intrusion detection. The method can achieve a
potential high speed. To the best of our knowledge, there is
no integrated solution allowing both multitask packet
classification and intrusion detection simultaneously.

3 THE INTEGRATED SOLUTION

3.1 Distributed TCAM Coprocessor Architecture

The proposed distributed TCAM coprocessor architecture
for integrated LPM, PF, and CF is shown in Fig. 1. It
includes multiple TCAMs, an LPM TCAM Selector (LPMS), a
Policy rule TCAM Selector (PRS) and a Content Preprocessor

(CP) which is composed of a PRefix Filter (PRF), caches and
queues. Each TCAM has a forwarding table, a policy rule
table, and a pattern table. A CP includes a PRF, an on-chip
Static Pattern Cache (SPC), and an on-chip Dynamic Pattern

Cache (DPC). The cache can be implemented by using small
and fast on-chip TCAM.

418 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 3, MARCH 2013

Fig. 1. A distributed TCAM coprocessor architecture for integrated three
tasks.

In this paper, we present a general architecture and use
the prefix filter as an example scheme for CF, any other
alternative schemes for CF, PF, and/or LPM such as the
schemes proposed in [32] can be incorporated into the
proposed architecture.

When an incoming packet arrives, the 5-tuple in the
header is parsed and sent to a PRS to select the corresponding
TCAM for its PF. At the same time, the packet header is also
parsed and sent to an LPMS to select the corresponding
TCAM for its LPM. Meanwhile, the packet content is passed
to a CP. 2-byte is inspected (prefix filtering) at a time, and the
returning index indicates whether the byte stream needs to
be looked up in a TCAM or not. If not, shift one byte and do
the prefix lookup again, otherwise, the returned index shows
which TCAM or cache should be looked up against for the bit
stream starting at the 2-byte.

3.2 TCAM-Based Solutions for Content Matcher

Two challenges have been identified in the distributed
TCAM coprocessor architecture design: 1) how to effec-
tively reduce the number of TCAM lookups; and 2) how to
distribute and balance the lookup load and storage load
among TCAMs. In the following sections, we will design a
CP and a set of rule/pattern distributing algorithms to
handle the two challenges.

3.2.1 Pattern Prefix Group

We adopt the method proposed in [13] to arrange the
patterns in the TCAMs. For the case of W -byte slot, each
pattern is partitioned into multiple W -byte subpatterns (if
the pattern has less thanW bytes, just expand wildcard bytes
to the end). For example, assume that there are three patterns
abcdefg, de1, and ababab. To put the patterns into a TCAM
with 4-byte slot, the patterns are cut to subpatterns (called
prefix or suffix): abcd, defg, de1�, and abab. Here, � represents
a wildcard byte. The 2-byte prefix of the four subpatterns are
ab�, de�, de� and ab�, respectively, only two of which are
distinct prefixes, i.e., ab and de. In the remaining part of the
paper, we use pattern to represent both pattern and
subpattern for the sake of simplicity. When a pattern is
longer than W -byte, multiple TCAM lookups are needed.
The process is as follows: when a prefix pattern is matched at
the ith position of the packet, it is recorded in memory. When
a suffix pattern is matched at position iþ jð0 < j �WÞ later,
check if the matched prefix and suffix form a long pattern.

Definition 1 (Prefix Group and PG IDentity (PGID)). A
Prefix Group is composed of a set of patterns which have the
same 2-byte-long prefix; the common 2-byte prefix of the
patterns is denoted as the PG IDentity.

In the previous example, the patterns are grouped into
two prefix groups: the PG with PGID ab including patterns
abcd and abab, and the PG with PGID de including patterns
defg and de1�.

For an incoming string to be inspected, it may match
some patterns in a PG only if its 2-byte prefix matches the
PGID; if no PGID is matched, no further lookup will be
needed. If a prefix pattern is matched at the ith position of
the packet, it is recorded in the pattern hit list. If a suffix
pattern is matched at position iþ jð0 < j �WÞ later, check

if the matched prefix and suffix form a long pattern. If no
more possible suffix can be merged for a previous matched
pattern, the pattern is deleted from the pattern hit list.

In the proposed design, a PRF is composed of a direct
accessible memory such as SRAM. All the patterns from a
PG should be stored in the same TCAM. The PGID is used
as an index to address the corresponding TCAM. For 2-byte
PRF, only 64 KB memory is needed. The entry value of an
index is set to 0 when the 2-byte string does not match a
PGID of any PG implemented in the TCAMs or caches;
otherwise, the value is set to the identity of the TCAM or
the cache in which the PG is stored. For example, suppose
there are only two PGIDs ab and de, and PG with PGID ab is
stored in TCAM #1 and PG with PGID de is stored in
TCAM #2, then in the PRF, the entry of ab and de will be set
to be 1 and 2, respectively, and all the other entries will be
set to be 0.

3.2.2 Patterns Distributing Schemes

The 2-byte prefixes are used as the PGIDs. All patterns with
the same PGID will be grouped together. Then, all the PGs
are distributed to K TCAMs with balanced lookup load and
storage load. For clarity, we first describe the mathematical
notation of the pattern distributing problem.

Let S be the set of PGs and N be the number of PGs; Qk

be the set of PGs placed in TCAM #kðk ¼ 1; 2; . . . ; KÞ;
L½i�ði ¼ 1; . . . ; NÞ be the lookup load of PG½i�; S½j�ðj ¼
1; . . . ; NÞ be the number of patterns in PG½j�; LL½k� be the
lookup load that is assigned to TCAM #k, namely,
LL½k� ¼

P
PG½i�2Qk

L½i�. SL½k� be the storage load that is
assigned to TCAM #k, namely, SL½k� ¼

P
PG½i�2Qk

S½i�.
The optimization problem for patterns distributing

schemes is given by:
To find a K-division fQk; k ¼ 1; . . . ; Ng of PGs that:
Minimize: Maxk¼1;...;KLL½k� and Maxk¼1;...;KSL½k�
Subject To: Qk � S,

S
k¼1;...;K Qk ¼ S.

Note that the distribution scheme is a two-objective
optimization problem, i.e., balancing the lookup load and
the storage load. Consider each PG as an object and each
TCAM as a knapsack, the pattern distribution problem is
actually a variance of Knapsack problem, which can be
proven to be NP-hard. Hence, we simplify the original two-
objective optimization problem into a single-objective one
by varying the priority of the two objectives. Then, a
heuristic algorithm is developed to solve the problem.

Algorithm 1 depicts the pseudocode of the PGs distribu-
tion algorithm. The number of TCAM chips, K, is an integer
number, which should be no less than dðSCF þ SPF þ
SLPMÞ=STCAMe, where SCF , SPF , and SLPM are the size of
patterns, policy rule sets and IP prefixes, respectively, while
STCAM is the storage space of each TCAM. This will
guarantee that the requested storage space for integrated
tasks is met. Also note that a larger K value may result in
system design flexibility for the further application, but also
in higher cost.

Algorithm 1. The PGs Distribution Algorithm

Input:

The number of PGs, N ;

The number of TCAMs, K;

The cost function of PG gi, CostðiÞ;

CAI ET AL.: A DISTRIBUTED TCAM COPROCESSOR ARCHITECTURE FOR INTEGRATED LONGEST PREFIX MATCHING, POLICY FILTERING,... 419

Output:

The set of PGs distributed to the kth TCAM, Qk;

The sum of cost function in the kth TCAM, G½k�;
1: for k ¼ 1 to K do

2: Qk ¼ 0;G½k� ¼ 0;

3: end for

4: Sort gifi ¼ 1; . . . ; Ng in decreasing order of CostðiÞ;
5: for i ¼ 1 to N do

6: sort Qkfk ¼ 1; . . . ; Ng in increasing order of G½k�;
7: for k ¼ 1 to K do

8: G½k� ¼ G½k� þ CostðiÞ;
9: Qk ¼ Qk

S
gi;

10: end for

11: end for

12: return Qkðk ¼ 1; . . . ; KÞ and G½k�ðk ¼ 1; . . . ; KÞ
The algorithm applies the greedy heuristic to distribute

patterns to TCAMs. The scheme chooses a TCAM with
minimum cost to load the next selected PG which has the
maximum cost among all the undistributed PGs. The cost
function varies with different optimized objectives. By
considering the lookup load first, the cost function of a
PG sums the lookups of all the patterns in a PG, while by
considering the storage load first, the cost function sums the
sizes of all the patterns in a PG.

The PG distribution algorithm distributes patterns to
TCAMs with balanced lookup load or storage load based on
history statistics. However, the statistical data are obtained
from long-term history traces. So, it may not balance well
for burst traffic. Hence, an on-chip Dynamic Pattern Cache is
introduced to handle the lookup load from overloaded
TCAMs.

3.2.3 Pattern Cache

Although the PG distribution algorithm can evenly allocate
the average TCAM lookup load among the TCAMs, the
short-term lookup load may be very dynamic and unba-
lanced. Hence, we design two caches for CP, i.e., Static Pattern
Cache and Dynamic Pattern Cache, to handle burst traffic. The
SPC is used to store the long-time popular PGs. For example,
the string 00 is the highest occurrence among all the test
traces in our experiments. Hence, the PG with PGID “00” is
considered as a long-time hot PG and should be placed in the
SPC. Note that the PGs in a SPC are not absolutely static,
which have a considerable slow updating rate.

DPC is designed to handle the short-time burst lookups
in a TCAM. Our experiments show that the TCAM lookup
overflow cannot be avoided by increasing the number of
TCAMs only. This is due to that some patterns may have
rather high-frequency appearances in a very short time, but
it may not be very popular in the long time. Such transient
burst patterns may lead to a TCAM lookup load overflow.
Higher performance cache is needed to handle with the
burst patterns.

The traditional cache scheme may not be appropriate
here to reduce the lookup load. For example, the cache
scheme designed in [10] for LPM has a high cache hit ratio
and can significantly reduce the number of TCAM lookups.
But that method cannot be used here due to the rather low
hit ratio in the cache for CF. For CF, the normal traffic has
rather low probability to match an attacking pattern. Even

for dirty packets with attacking patterns, they could only
match a few attacking patterns, hence the pattern matching
ratio may not be high either.

In our solution, for a byte string, we first do a 2-byte prefix
filtering in a PRF. If the entry value is 0, we shift one byte for
next string prefix lookup. Otherwise, the W -byte streaming
is put to the queue indicated by the returned value. For each
queue, we set two thresholds; if the number of bytes in a
queue exceeds the first threshold, we count the frequency of
the prefixes in the queue, and if the queue is over the second
threshold (called “queue over limit”), the most popular PGs
in the queue are copied to the DPC, the index in the PRF will
be updated accordingly. The incoming string with matched
PGID will only be looked up in the DPC. But this scheme
needs to update the PRF whenever the cache is updated;
moreover, updating PRF needs to suspend PRF lookup, thus
significantly reducing the PRF lookup throughput.

We use another way to eliminate the update in the PRF.
In our method, when a TCAM has over limit queue, all the
byte strings sent to this TCAM are first looked at the DPC. If
the string does not match any pattern, it will be looked up
in the TCAM. As mentioned earlier, the hit ratio of
matching an exact pattern is considerable low; hence, the
cache filtering effect is low. In order to overcome the
problem of low hit ratio, we introduce a delegate entry into
each prefix group. The delegate entry of a group is a W -byte
string starting with the first 2 prefix bytes and followed by
W � 2 wildcard bytes *. The delegate entry has the lowest
matching priority in a prefix group. If a W -byte string
matches a delegate entry, it means that the byte string has
been matched against all the patterns in the prefix group,
and no matching pattern is found, therefore no more lookup
is needed. When the queue length is below the first
threshold, the bit string is directly looked up in the TCAM,
the DPC is left for other over limited TCAMs.

Let us look at an example. Supposing a PG with PGID ab
has two patterns (ab12 and ab34), the delegate entry ab�� is
introduced. A string ab12abcdabef comes, the 4-byte string
in this PG: ab12, abcd and abef , are filtered out by the DPC,
and no more TCAM lookups are needed. Here, ab12
matches the exact pattern, abcd and abef match the
delegated entry ab��. Without the delegated entry, the
strings abcd and abef need to be looked up in the TCAM
after the DPC lookup.

A lock-free TCAM update algorithm [18] is used for the
DPC updating. In this updating scheme, the DPC updating
is through a different interface from the data path interface
so that the lookup process does not need to be intercepted
during the updating.

The PGs in the DPC is updated when a newly counted
PG in the over limited queue becomes more popular than
some PGs in the DPC. The DPC is shared by all the TCAMs.
This means when more than one queue are overflowed, the
most popular PGs coming from these TCAMs can be stored
in the DPC, and all the byte strings going to these TCAMs
are first looked up in the DPC. Although the DPC is shared
by all the TCAMs, it is only shared by few TCAMs at a time.
This happens due to the fact that the total number of
lookups in a unit time is upper bounded, when the lookup
is significantly increased in one or two TCAMs, the other
TCAMs should have reduced lookup load.

420 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 3, MARCH 2013

Note that the DPC could be extremely tiny in size.
According to the analysis of the Snort patterns, the average
size of a PG is about four patterns. The cache may hold a few
PGs at the same time. This is due to the unbalanced lookup
load which usually comes from a few prefixes getting high
matches. If many PGIDs get high matching rate, it is with
high possibility that these PGs are distributed to different
TCAMs; thus, the lookup load can still be balanced. But for a
few prefixes that get high matches, the lookup load may be
unbalanced among the TCAMs, and loading them to DPC
can significantly reduce the lookups in that TCAM.

3.3 Policy Rule Group and IP Prefix Group
Distribution

The policy rule sets and the IP prefixes are also needed to be
partitioned to different groups so that they can be
distributed to different TCAMs.

First, by appropriately selecting the ID bits, a large rule
set is partitioned into several Key-ID groups of similar sizes.
The key-ID bits can be selected from the destination IP,
source IP, and the protocol fields. The full set can be
partitioned into 16, 32, or 64 groups with 4, 5, or 6 bits key-
ID, respectively. Second, by applying certain load balancing
and storage balancing heuristics, the rules (Key-ID groups)
are distributed evenly to several TCAM chips. As a result,
multiple packet classifications corresponding to different
Key-ID groups can be performed simultaneously, which
significantly improves the throughput performance without
much additional cost.

For grouping the IP prefix, we directly use its left-most
bits to be the selector index. For example, if using the first
8-bit of an IP prefix to be the index, the prefixes can be
grouped into 256 groups. Applying certain load balancing
and storage balancing heuristic algorithms, the grouped
IP prefixes are distributed evenly to several TCAM chips.

3.4 Integrated Solution for Longest Prefix Match,
Policy Filtering and Content Filtering

The three tasks, LPM, PF, and CF, compete for TCAM
lookup resource. They are related on the lookup requests.
For traffic with small packets, it needs more LPM and
PF lookups but less CF lookups (less content bytes). For line
speed R and packets with minimum size 40 bytes (no
content), the number of LPM and PF lookups is R=40, while
no CF lookup is needed. For packets with maximum size M,
the number of LPM and PF lookups is R=M, and the
number of CF is ðR�R � 40=MÞ. For packets with 200 bytes
content, the number of CF lookups is 200 times as that of the
LPM and PF lookups. Hence, the TCAM lookup loads
mainly depend on the CF task. On the other hand, the size
of IP prefix tables is in general at least one order of
magnitude larger than those of the policy rule sets and
intrusion patterns. The IP prefix tables will take a large
portion of the TCAM storage space. Hence, the integrated
solution must take advantage of such lookup and storage
demands.

According to the sizes of patterns, policy rule sets and IP
prefixes, the number of requested TCAM chips can be
calculated. Then, all the PGs, policy rules, and IP prefixes are
distributed to K TCAMs with balanced lookup load and
storage load. We first describe the mathematical model of the

distributing problem as following: Let SCF , SPF , and SLPM
be the set of PGs, policy rules, and IP prefixes, respectively.
Qk
CF , Qk

PF , and Qk
LPM be the set of the PGs, policy rules, and

IP prefixes placed in TCAM #kðk ¼ 1; . . . ; KÞ. Let SLCF ½k�,
SLPF ½k�, and SLLPM ½k� be the storage load assigned to
TCAM #k for the PGs, policy rules, and IP prefixes,
respectively; LLCF ½k�, LLPF ½k�, and LLLPM ½k� be the lookup
load assigned to TCAM #k for PGs, policy rules, and
IP prefixes, respectively.

The optimization problem to find a K-division of PGs,
policy rules, and IP prefixes is stated as below:

Minimize: Maxk¼1;...;KðSLCF ½k� þ SLPF ½k� þ SLLPM ½k�Þ
and Maxk¼1;...;KðLLCF ½k� þ LLPF ½k� þ LLLPM ½k�Þ

Subject To:

Qk
CF � SCF ;

[K

k¼1

Qk
CF ¼ SCF ;

Qk
PF � SPF ;

[K

k¼1

Qk
PF ¼ SPF ;

Qk
LPM � SLPM;

[K

k¼1

Qk
LPM ¼ SLPM:

The optimization problem of distributing PGs, policy
rules, and IP prefixes is a generalized problem for only
distributing PGs. We may duplicate the some popular PGs
to every TCAM to balance the lookup load, but the burst
lookups from unpopular PGs may still cause TCAM
overflow as shown in the simulation later. The optimization
problem can be shown to be also NP-hard. We designed
three distribution algorithms to solve this optimization
problem. The first and second algorithms distribute these
tables according to their lookup load and storage load,
respectively. The third algorithm takes both lookup load
and storage load into account. The lookup load and storage
load can be obtained from the history traces or the
dynamically measured statistical data.

The pseudocodes of the three algorithms are shown in
Algorithm 2 (the LF algorithm), Algorithm 3 (the SF
algorithm), and Algorithm 4 (the LS algorithm), respec-
tively. Here, M is the number of PF rule groups, and L is
the number of IP prefix groups; T ½k�, P ½k�, and R½k� are the
sets of PGs, PF rule groups, and IP prefixes distributed to
the kth TCAM, respectively; gi, pi, and ri are the ith PG, PF
rule group, and IP prefix group, respectively, and CostðÞ is
the cost function.

Algorithm 2. Distribution Algorithm based on the Balance-

Lookup-Load-First (LF)

1: Set G½k� to be the storage load of the kth TCAM;

2: Call the PGs Distribution Algorithm to get T ½k�;
3: Sort mfm ¼ 1; . . . ;Mg in decreasing order of pm lookup

load; If exists multiple pm being equal, sort these P ½k� in
increasing order of storage load;

4: for m ¼ 1 to M do

5: Sort kfk ¼ 1; . . . ; Kg in increasing order of G½k�;
6: for k ¼ 1 to K do

7: G½k� ¼ G½k� þ CostðpmÞ;
8: P ½k� ¼ P ½k�

S
pm;

9: end for

CAI ET AL.: A DISTRIBUTED TCAM COPROCESSOR ARCHITECTURE FOR INTEGRATED LONGEST PREFIX MATCHING, POLICY FILTERING,... 421

10: end for

11: Sort lfl ¼ 1; . . . ; Lg in decreasing order of rl lookup

load; If exists multiple rl being equal, sort these rl in

increasing order of storage load;

12: for l ¼ 1 to L do

13: Sort kfk ¼ 1 . . . ; Kg in increasing order of G½k�;
14: for k ¼ 1 to K do

15: G½k� ¼ G½k� þ CostðrlÞ;
16: R½k� ¼ R½k�

S
rl;

17: end for

18: end for

19: return P ½k�fk ¼ 1; . . . ; Kg; T ½k�fk ¼ 1; . . . ; Kg,
R½k�fk ¼ 1; . . . ; Kg.

Algorithm 3. Distribution Algorithm based on the Balance-

Storage-Load-First (SF)
1: Set G½k� to be the storage load of the kth TCAM;

2: Sort mfm ¼ 1; . . . ;Mg in decreasing order of pm storage

load; If exists multiple pm being equal, sort these pm in

increasing order of lookup load;

3: for m ¼ 1 to M do

4: Sort kfk ¼ 1; . . . ; Kg in increasing order of G½k�;
5: for k ¼ 1 to K do

6: G½k� ¼ G½k� þ CostðpmÞ;
7: P ½k� ¼ P ½k�

S
pm;

8: end for

9: end for

10: Sort lfl ¼ 1; . . . ; Lg in decreasing order of rl storage

load; If exists multiple rl being equal, sort these rl in

increasing order of lookup load;

11: for l ¼ 1 to L do

12: Sort kfk ¼ 1 . . . ; Kg in increasing order of G½k�;
13: for k ¼ 1 to K do

14: G½k� ¼ G½k� þ CostðrlÞ;
15: R½k� ¼ R½k�

S
rl;

16: end for

17: end for

18: Sort ifi ¼ 1; . . . ; Ng in decreasing order of gi storage

load; If exists multiple gi being equal, sort these gi in

increasing order of lookup load;
19: for i ¼ 1 to N do

20: Sort kfk ¼ 1; . . . ; Kg in increasing order of G½k�;
21: for k ¼ 1 to K do

22: G½k� ¼ G½k� þ CostðgiÞ;
23: T ½k� ¼ T ½k�

S
gi;

24: end for

25: end for

26: return P ½k�fk ¼ 1; . . . ; Kg; T ½k�fk ¼ 1; . . . ; Kg,
R½k�fk ¼ 1; . . . ; Kg.

The LF algorithm balances the lookup load first, and its
cost function counts the lookup load. Only considering the
lookup load balance, it distributes CF patterns as a single
CF task, similar to the PG distribution algorithm given in
the Section 3.2.2.

The SF algorithm balances the storage load first, and its
cost function counts the storage load. It distributes the CF
patterns, PF rules, and IP Prefixes based on their storage
load. According to the both algorithms, the three tasks are

considered as a single task, and the patterns (rules, patterns
or prefixes) are only distributed as their lookup or storage
requests. The algorithms may balance one request (lookup or
storage) well, but may perform poorly for the other request.

To well balance both look up load and storage load, we

propose the LS algorithm with considering the lookup load

of CF, but the storage load of PF and LPM. Due to the high

lookup request of CF, the LS algorithm distributes PGs on

the basis of their lookup load. On the other hand, the PF

and LPM need low lookup load but high storage load;

hence, the LS algorithm distributes the policy rules and the

IP prefixes on the basis of their storage load. Algorithm 4

shows the LS algorithm.

Algorithm 4. Distribution Algorithm based on both the

Balance Lookup-load and Storage-Load (LS)

1: Set G½k� to be the storage load of the kth TCAM;

2: Set cost function CostðÞ to count the lookup load;

3: Sort ifi ¼ 1; . . . ; Ng in decreasing order of gi storage

load; If exists multiple gi being equal, sort these gi in

increasing order of lookup load;

4: for i ¼ 1 to N do

5: Sort kfk ¼ 1; . . . ; Kg in increasing order of G½k�;
6: for k ¼ 1 to K do

7: G½k� ¼ G½k� þ CostðgiÞ;
8: T ½k� ¼ T ½k�

S
gi;

9: end for

10: end for

11: Set G½k� to be the storage load of the kth TCAM;

12: Set cost function CostðÞ to count the storage load;
13: Sort mfm ¼ 1; . . . ;Mg in decreasing order of pm storage

load; If exists multiple pm being equal, sort these pm in

increasing order of lookup load;

14: for m ¼ 1 to M do

15: Sort kfk ¼ 1 . . . ; Kg in increasing order of G½k�;
16: for k ¼ 1 to K do

17: G½k� ¼ G½k� þ CostðpmÞ;
18: P ½k� ¼ P ½k�

S
pm;

19: end for

20: end for

21: Sort lfl ¼ 1; . . . ; Lg in decreasing order of rl storage

load; If exists multiple rl being equal, sort these rl in

increasing order of lookup load;

22: for l ¼ 1 to L do

23: Sort kfk ¼ 1; . . . ; Kg in increasing order of G½k�;
24: for k ¼ 1 to K do

25: G½k� ¼ G½k� þ CostðrlÞ;
26: R½k� ¼ R½k�

S
rl;

27: end for

28: end for

29: return P ½k�fk ¼ 1; . . . ; Kg; T ½k�fk ¼ 1; . . . ; Kg,
R½k�fk ¼ 1; . . . ; Kg.

4 PERFORMANCE EVALUATION

In this section, we evaluate and analyze the key perfor-

mance metrics of the proposed integrated solution, includ-

ing the effects of 2-byte prefix filtering, the pattern cache

schemes, and the distribution algorithms. We also use the

422 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 3, MARCH 2013

synthetic data traces to analyze the ability of handling
attacking packets, which is generated by randomly insert-
ing attacking patterns into the packets.

4.1 Experiment Setup

We use a cycle-accurate system simulation. A cycle time is set
to 10�10 second, i.e., one second has 10G cycles.When a packet
arrives, the destination IP and the five-tuple rule are extracted
from the head and are sent to the corresponding TCAM for
lookup. The first 2-byte content are looked up in the prefix
filter, if no prefix is matched, one byte is shifted. Otherwise,
theW -byte string is sent to the corresponding TCAM or cache
queue. If the queue is overflowed, a bypass is counted.

We first use the traffic traces from “1999 DARPA
Intrusion Detection Evaluation Data Set” provided by MIT
[33]. We choose three traces. Each of them has about one
millions of packets with contents. The first week and third
week of the training data do not contain any attacks. The fifth
week data contains 56 types of attacks. For simplicity, the
first week (325 Mbytes), the third week (446 MBytes), and the
fifth week (468 MBytes) traces are denoted as Traces #1, #2,
and #3, respectively. These packets are inserted back-to-back
with full line speed without considered their time stamps.

The pattern set from Snort 2.9 [14] (dated July 2011,
including 5,038 distinct patterns) is used in the experiments.
There are 7,553 8-byte patterns for the Snort pattern set, and
1,563 2-byte prefixes which are obtained from these 8-byte
patterns. The policy rules are generated by using Class-
Bench [34] for evaluation. The route tables are obtained
from RouteViews [35] in January 2011.

In the simulations, the proposed solution has a 256 MLPS
SPC, a 256 MLPS DPC, and four 100 MLPS TCAMs. Each
TCAM has 4 Mbits memory. The data bus is supposed to be
64 bits in width. The SPC is designed to store the most
popular prefixes. As the 0x000 and 0x2020 are the most
popular prefixes in the statistic data, they are stored in SPC.
The others subpatterns are distributed to four TCAMs using
the PG distribution algorithm.

In the proposed prototype, the maximum packet process
delay is limited to 1 ms and the queue size is set to be 100K
search key1 (i.e., 8-byte strings). The first and second thresh-
olds are set to be 75K and 80K 8-byte strings, respectively.

4.2 Effect of Prefix Filtering

Without prefix filtering, the number of TCAM lookups of a
trace approximately equals to the number of the content
bytes in the trace [10]. With the prefix filter, 61.4, 60.1, and
56.7 percent lookups can be filtered out in Traces #1, #2, and
#3, respectively. It indicates that the TCAM lookup
requirement can be reduced significantly with prefix
filtering, and thus saving the TCAM lookups as well as
TCAM power consumption.

4.3 Effect of the Distribution Algorithms

Now, we generate 100K (i.e., 10.4 Mbits) policy rules using
ClassBench [34] for evaluation. Six bits (i.e., 64 policy rue
groups) selected from the first, third and fifth bits of
destination IP, the second and fourth bit of source IP, the
fifth bit of the protocol fields, are used as the identity to
locate the TCAM in which the rule is stored. The IP prefixes
were obtained from RouteViews in January 2011. It includes
about 133,761 (4.28 Mbits) route entries. The first byte is
selected as the index for IP prefix distribution, i.e., there are
256 IP prefix groups. The lookup load distribution is
measured with Trace #1.

We distribute the PGs, policy rules, and IP prefixes to
four TCAMs, respectively, according to the three algorithms
described on Section 3. The lookup load and storage load
distributions are shown in Tables 1 and 2, respectively.
Although the lookup load distribution is based on Trace #1,
very similar distribution can be observed in other two traces.
The LF algorithm achieves the best lookup load balance but
the worst storage load balance. The SF algorithm achieves
the best storage load distribution but results in the worst
lookup distribution. The SF algorithm considering both the
balance lookup load and storage load can achieve both the
close to best lookup load and storage load distribution. It is
due to most of lookup load coming from CF task, and most
of storage load coming from the policy rules and IP prefixes.
Hence, it can achieve good balance for both lookup load and
storage load among the TCAMs.

4.4 Effect of Static Cache and Dynamic Cache

In this case, we first examine the cache effect and then
evaluate the performance of the whole system. We set the
proposed prototype with four TCAMs, a SPC and a DPC

CAI ET AL.: A DISTRIBUTED TCAM COPROCESSOR ARCHITECTURE FOR INTEGRATED LONGEST PREFIX MATCHING, POLICY FILTERING,... 423

TABLE 1
Lookup Distribution among TCAMs for Three Algorithms

1. The maximum packet size is assumed to be Lmax ¼ 1;518 bytes, i.e.,
the same as the Ethernet Maximum Transmission Unit. The process delay
for a packet with L byte includes: 1) the header processing delay; 2) the
prefix matching delay and cache lookup delay, 2�ðL�W þ 1Þ=P , where P
is the matching speed for 10 Gbps link rate and P ¼ 1:25 Gps; 3) TCAM
lookup delay, ðL�W þ 1Þ=S, where S is the TCAM working frequency;
4) queue delay Q, i.e., the maximum queuing delay of a W -byte waiting in
the buffer. Hence, the total delay is 2ðL�W þ 1Þ=P þ ðL�W þ 1Þ=S þQ.
For L ¼ Lmax ¼ 1518, W ¼ 8, P ¼ 1:25G, and S ¼ 100M, and assuming
that the maximum total delay budget is 1 ms (considering the constraints
of the applications like VoIP), the maximum queue delay allowed is
conducted to be Q ¼ 0:983 ms. So, the queue size is estimated to be
0:983 ms=ð1=100 MHzÞ � 100K 8-byte slots.

TABLE 2
Storage Distribution among TCAMs for Three Algorithms

(the total capacity is 4 � 100M þ 2 � 256M ¼ 912M) and a

counterpart system with 10 TCAMs but without SPC and

DPC (called Pure TCAM system). After prefix filtering of

CF, the average TCAM lookup load is less than the lookup

capacity in the both two systems. We use Trace #1 as the

input data, which has 468 Mbytes, transmitted with 10 Gbps

wire speed, or 1.25 GBytes per second. The Trace lasts for

468M=1:25G ¼ 0:3744 seconds. We count the number of

TCAM lookups in every 3.744 milliseconds.
Figs. 2 and 3 show the lookup load distribution of

TCAMs #1 and #2 in every 3.744 millisecond intervals,

respectively. Note that a TCAM lookup capacity in such a

period is 100M� 0:003744 ¼ 374;400 times. From Figs. 2

and 3, we know that in both TCAMs #1 and #2, the lookup

load is always less than the capacity (red solid line) at all the

time for the system with caches, but it is over the capacity at

sometime for both TCAMs #1 and #2 in the system without

cache. The results show that only increasing the number of

TCAMs cannot avoid TCAM lookup overflow, which is due

to the short-time transient burst patterns. However, this

transient burst patterns can be effectively handled by cache

(its lookup capacity is 894,327 lookups in the period), hence

the lookup load in TCAM remains reasonably low even

when such burst patterns appear.
When the buffers of TCAMs overflow, the incoming

contents cannot be inspected and have to be bypassed, thus

incurring the risk of those undetected attacks. The content

bypass ratio, defined as the ratio of the number of bypassed

content bytes to the total number of content bytes passing

through the system, is used as the key metric to evaluate the

performance of the proposed cache mechanism.

We increase the number of TCAMs in the Pure TCAM
system from 4 to 10. For each number of TCAMs, the PGs,
policy rules, and IP prefixes are redistributed according to
the LS Algorithm.

In all the test traces, the proposed prototype has zero
bypass ratio, and its bypass ratio is not shown here. The
bypass ratio of Pure TCAM system without duplicated
patterns is shown in Fig. 4. From Fig. 4, we know that the
bypass ratio decreases as the number of TCAMs increases.
But it cannot be zero even if the number of TCAMs reaches
10. For 10 TCAMs, the total lookup capacity is 1,000 MLPS
which exceeds the capacity of the proposed prototype
(912 MLPS), its bypass ratio is still 3.8 percent. This happens
due to the fact that the burst lookup load goes to a few PGs
which may be stored in the same TCAM, hence purely
adding TCAMs cannot handle such burst lookups.

To balance the lookup load of the prefix groups with
high matched ratio, we duplicate the most popular PGs to
every TCAM in Pure TCAM system (called duplicated
scheme). When these prefix groups come, the selector can
choose the TCAM with lightest lookup load to handle them.
Fig. 4 (lower blue curve) shows that the duplicated scheme
can reduce the bypass ratio, but the ratio still cannot reach
zero, i.e., still cannot avoid overflow. This happens due to
the fact that the burst lookup load coming from some
unpopular PGs (i.e., a PG has very low lookup ratio in all
the traces, but very high in a short period). So, the DPC is
very useful to dynamically balance the lookup load,
particularly for short-time burst lookup load coming from
some unpopular PGs.

4.5 Distributed Parallelism versus Straightforward
Parallelism

To evaluate the performance of the distributed scheme, we
compare it to a straightforward duplicating scheme. In the
straightforward duplicating scheme, all CF patterns are
duplicated to every TCAM. So, it can process multiple string
lookup in parallel. Four 100 MLPS TCAMs are used for the
three tasks. We inspect the bypass ratio of the two schemes in
10 Gbps line speed. Table 3 shows the performance of them.
As our expectation, the bypass ratio of the straightforward
duplicating scheme is lower than that of the distributed
scheme. As the burst patterns appear, all the four TCAMs can
deal with the burst pattern. But it still cannot obtain enough
high performance to zero bypass ratio without caches. The

424 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 3, MARCH 2013

Fig. 2. Time-varying lookup load distribution for TCAM #1.

Fig. 3. Time-varying lookup load distribution for TCAM #2.

Fig. 4. Bypass ratio of pure TCAM system by varying the number of
TCAMs.

lower bypass ratio costs more TCAM storage, and hence high
power consumption for lookups. In this case, the distributed
scheme only needs about 48 Kbits storage (as the current
Snort rule size), while the straightforward one needs about
192 Kbits storage. As the pattern size expands, more storage
for straightforward one is needed. From the results, we can
also see that the cache is effective in reducing the TCAM
lookups. The distributed scheme can achieve the same effect
as the straightforward duplicating scheme by using cache. As
a result, the distributed scheme with cache outperform the
straightforward one in both the storage and power con-
sumption while achieving the same bypass ratio.

4.6 Throughput

We generate some synthetic data to evaluate the overall
packet inspection throughput and the ability of handling
attack packets of the proposed prototype. The throughput is
defined as the number of bits which can be handled by a
system in a second. The attack patterns of Snort rules are
randomly chosen as the attacking patterns. The attack
patterns are inserted into every packet of Trace #1 and the
dirty data percentage is defined as the ratio of attack pattern
bytes to packet content bytes. We set an allowable upper
bounded bypass ratio here. We vary the dirty data
percentage by 39, 47, and 59 percent. These percentages
correspond to inserting 5, 10, and 15 attacking patterns to
each packet, respectively.

The four curves in Fig. 5 depict the inspection throughput
by setting the upper bounded bypass ratio as 0, 1, 2, and
5 percent, respectively. The results show that the proposed
solution can handle up to 18.2 Gbps line rate with 0 percent
bypass ratio for normal traffic. The lookup throughput is
reduced to about 6.1 Gbps for 60 percent dirty data traffic. To
handle OC-192 line rate, it can suffer more than 35 percent
dirty data with four 100 MLPS TCAMs plus 256 MLPS SPC

and DPC. In the real world, the attack data ratio is usually
just a few percentages (most traffic are normal traffic), hence
the proposed solution with four TCAMs plus SPC and DPC
can support OC-192 line rate.

4.7 Test on the Real Recent Internet Trace

The traces in the above experiments are old. As the Internet
changes dramatically, the traffic patterns may have signifi-
cant differences. Here, we downloaded some recent traffic to
evaluate the proposed solution. We use the real Internet trace
from HuNan Province, China, which have 3.7 GBytes size. It
includes a 30-minutes data collected from 10 Gbps backbone.

We study the bypass ratio and the throughput on the basis
of the recent Internet traffic in this case. Similarly, the
proposed solution has zero bypass ratio, which is not shown
in the Fig. 6. Compared the results in Fig. 6 with those in Fig. 4,
we can conclude that the bypass ratio is about 2 percent
higher for recent traces than that for the old traces. This may
be due to that the recent normal traffic have some more
patterns matching some attack pattern prefixes.

Fig. 7 shows the throughput of the proposed solution
varying with the percentage of bypass ratio. From the figure,
it could be seen that the throughput is almost the same as
that in the old traces. The results show that the proposed
architecture is able to be used in the current Internet for
executing the integrated tasks.

4.8 Cost Analysis

Consider a system with Np bytes policy rules, Nc bytes
attacking patterns, Nr route entries, R Gbps line speed, and

CAI ET AL.: A DISTRIBUTED TCAM COPROCESSOR ARCHITECTURE FOR INTEGRATED LONGEST PREFIX MATCHING, POLICY FILTERING,... 425

Fig. 5. Throughput by varying the dirty data percentage and bypass ratio.

Fig. 6. Bypass ratio of pure TCAM system by varying the number of
TCAMs for recent Internet traffic.

Fig. 7. Throughput by varying the dirty data percentage and bypass ratio.

TABLE 3
Bypass Ratio for Straightforward

Parallelism versus Distributed Parallelism

TCAMs with S byte storage, the speed of L lookups per

second. Suppose that the PF lookup can be handled by a

single TCAM and the storage of CF can be loaded to a single

TCAM. For PF only, it needs Tp ¼ dNp=Se TCAMs to store all

the rules, and for CF, it needs Tc ¼ dR=8Le TCAMs to handle

the lookups. For LPM, it needs TR ¼ dNr � 4=Se. The total

number of TCAMs for nonintegrated solution isTp þ Tc þ TR.
Suppose the cache system can efficiently deal with the

worst case, and the prefix hit ratio is �. The number of

needed TCAMs can be reduced to T
0

c ¼ d�R=8Le. For the

integrated solution, the number of TCAMs is the

max{Tp; T
0

c; TR}. Hence, the saved number of TCAMs for

the integrated solution is Tp þ Tc þ TR �maxfTp; T
0
c; TRg.

For example, suppose there are 2,000 patterns with 40 bytes

each, and 1 million policy rules, 155K IP prefixes. For

10 Gbps line rate, using TCAM with 100 MLPS and 10 Mbits

storage, the number of TCAMs needed is reduced from 31

to 13. If the percentage of lookups reduced by the prefix

filter is no less than 60 percent, the number of needed

TCAMs will be reduced to 11.
The total storages of TCAMs for the proposed distrib-

uted architecture will be reduced from 265 to 11 Mbits. So,

the proposed architecture for the integrated three tasks is

much more cost effective.

5 CONCLUSIONS

We proposed a novel distributed TCAM coprocessor

architecture for the integration of LPM, PF, and CF. First,

a prefix filter is introduced to reduce the TCAM lookups for

CF. Then, a set of algorithms is proposed to balance the

lookup loads among the TCAMs, including a novel cache

system and several heuristic algorithms. The cache system

includes a SPC and a DPC to adaptively balance the long-

time and the short-time lookup load, respectively. The

proposed heuristic algorithms distribute patterns/rules to

the TCAMs to balance the lookup load, as well as the

storage load. The integrated solution exploits the comple-

mentary characteristics of the three tasks and significantly

reduces the overall cost. Simulations based on the real-

world traffic traces show that the proposed solution can

match 10 Gbps line rate for all the three tasks simulta-

neously with similar cost as that of executing CF task only.

For the next step, we will extend our design to integrate

more tasks such as address resolution.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science

Foundation of China under Grant Nos. 61070198, 61070037,

61170288, 61170287, and 60903040.

REFERENCES

[1] V. Paxson, K. Asanovic, S. Dharmapurikar, J. Lockwood, R. Pang,
R. Sommer, and N. Weaver, “Rethinking Hardware Support for
Network Analysis and Intrusion Prevention,” Proc. USENIX
Workshop Hot Topics in Security, pp. 1-6, 2006.

[2] A. Bremler-Barr and D. Hay, “Space-Efficient TCAM-Based
Classification Using Gray Coding,” IEEE Trans. Computers,
vol. 61, no. 1, pp. 18-30, Jan. 2012.

[3] M. Faezipour and M. Nourani, “Wire-Speed TCAM-Based
Architectures for Multimatch Packet Classification,” IEEE Trans.
Computers, vol. 58, no. 1, pp. 5-17, Jan. 2009.

[4] M. Akhbarizadeh, M. Nourani, R. Panigrahy, and S. Sharma,
“TCAM-Based Parallel Architecture for High-Speed Packet For-
warding,” IEEE Trans. Computers, vol. 56, no. 1, pp. 58-72, Jan. 2007.

[5] K. Zheng, H. Che, Z. Wang, and B. Liu, “PPC-RE: TCAM-Based
Distributed Parallel Packet Classification Algorithm with Range-
Matching,” IEEE Trans. Computers, vol. 55, no. 8, pp. 947-961,
Aug. 2006.

[6] K. Zheng, C. Hu, H. Lu, and B. Liu, “TCAM-Based Distributed
Parallel IP Lookup Scheme and Performance Analysis,” ACM/
IEEE Trans. Networking, vol. 14, no. 4, pp. 863-875, Aug. 2006.

[7] R. Cohen and D. Raz, “Simple Efficient TCAM Based Range
Classification,” Proc. IEEE INFOCOM, pp. 461-465, Mar. 2010.

[8] O. Rottenstreich and I. Keslassy, “Worst-Case TCAM Rule
Expansion,” Proc. IEEE INFOCOM, pp. 456-460, Mar. 2010.

[9] Y. Chang, C. Lee, and C. Su, “Multi-Field Range Encoding for
Packet Classification in TCAM,” Proc. IEEE INFOCOM, pp. 196-
200, Apr. 2011.

[10] H. Che, Z. Wang, K. Zheng, and B. Liu, “DRES: Dynamic Range
Encoding Scheme for TCAM Coprocessor,” IEEE Trans. Compu-
ters, vol. 57, no. 7, pp. 902-915, July 2008.

[11] A. Bremler-Barr, D. Hay, D. Hendler, and R. Roth, “PEDS: Parallel
Error Detection Scheme for TCAM Devices,” IEEE/ACM Trans.
Networking, vol. 18, no. 5, pp. 1665-1675, Oct. 2010.

[12] Z. Wang, H. Che, J. Cao, and J. Wang, “TCAM-Based Solution for
Integrated Traffic Anomaly Detection and Policy Filtering,”
Computer Comm., vol. 32, no. 17, pp. 1893-1901, Nov. 2009.

[13] F. Yu, R. Katz, and T. Lakshman, “Gigabit Rate Packet Pattern
Matching Using TCAM,” Proc. IEEE Int’l Conf. Network Protocols
(ICNP), pp. 174-183, 2004.

[14] SNORT system, http://www.snort.org, 2012.
[15] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,

“Algorithms for Advanced Packet Classification with Ternary
CAMs,” Proc. ACM SIGCOMM, pp. 193-204, 2005.

[16] V. Ravikumar, R. Mahapatra, and L. Bhuyan, “EaseCAM: An
Energy and Storage Efficient TCAM-Based Router Architecture
for IP Lookup,” IEEE Trans. Computers, vol. 54, no. 5, pp. 521-533,
May 2005.

[17] W. Lu and S. Sahni, “Low-Power TCAMs for very Large
Forwarding Tables,” IEEE Trans. Networking, vol. 18, no. 3,
pp. 948-959, June 2010.

[18] Z. Wang, H. Che, M. Kumar, and S. Das, “CoPTUA: Consistent
Policy Table Update Algorithm for TCAM without Locking,” IEEE
Trans. Computers, vol. 53, no. 12, pp. 1602-1614, Dec. 2004.

[19] A. Liu, C. Meiners, and E. Torng, “TCAM Razor: A Systematic
Approach Towards Minimizing Packet Classifiers in TCAMs,”
IEEE/ACM Trans. Networking, vol. 18, no. 2, pp. 490-500, Apr. 2010.

[20] R. McGeer and P. Yalagandula, “Minimizing Rulesets for TCAM
Implementation,” Proc. IEEE INFOCOM, pp. 1314-1322, Apr. 2009.

[21] H. Hwang, S. Ata, K. Yamamoto, K. Inoue, and M. Murata, “A
New TCAM Architecture for Managing ACL in Routers,” IEICE
Trans. Comm., vol. E93-B, no. 11, pp. 3004-3012, 2010.

[22] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification
Using Extended TCAMs,” Proc. IEEE Int’l Conf. Network Protocols
(ICNP), pp. 120-131, Nov. 2003.

[23] L. Foschini, Stateful Intrusion Detection in High-speed Networks: A
Formalization and Analysis of High-speed Stateful Signature Matching
for Intrusion Detection. VDM Verlag, 2009.

[24] C. Kruegel and F. Valeur, “Stateful Intrusion Detection for High-
Speed Networks,” Proc. IEEE Symp. Research on Security and
Privacy, pp. 285-293, 2002.

[25] C. Lin, C. Huang, C. Jiang, and S. Chang, “Optimization of Pattern
Matching Circuits for Regular Expression on FPGA,” IEEE Trans.
Very Large Scale Integration (VLSI) Systems, vol. 15, no. 12, pp. 1303-
1310, Dec. 2007.

[26] H. Wang, S. Pu, G. Knezek, and J. Liu, “A Modular NFA
Architecture for Regular Expression Matching,” Proc. Ann. ACM/
SIGDA Int’l Symp. Field Programmable Gate Arrays (FPGA), pp. 209-
218, Feb. 2010.

[27] I. Sourdis, D. Pnevmatikatos, and S. Vassiliadis, “Scalable Multi-
gigabit Pattern Matching for Packet Inspection,” IEEE Trans. Very
Large Scale Integration (VLSI) Systems, vol. 16, no. 2, pp. 156-166,
Feb. 2008.

426 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 3, MARCH 2013

[28] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep Packet Inspection Using Parallel Bloom Filters,” IEEE
Micro, vol. 24, no. 1, pp. 52-61, Jan./Feb. 2004.

[29] P. Lin, Y. Lin, Y. Lai, Y. Zheng, and T.-H. Lee, “Realizing a Sub-
linear Time String-Matching Algorithm with a Hardware Accel-
erator Using Bloom Filters,” IEEE Trans. Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 8, pp. 1008-1020, Aug. 2009.

[30] A. Goel and P. Gupta, “Small Subset Queries and Bloom Filters
Using Ternary Associative Memories, with Applications,” Proc.
ACM SIGMETRICS Int’l Conf. Measurement and Modeling of
Computer Systems (SIGMETRICS), pp. 143-154, 2010.

[31] Y. Weinsberg, S. Tzur-David, D. Dolev, and T. Anker, “High
Performance String Matching Algorithm for a Network Intrusion
Prevention System (NIPS),” Proc. Workshop High Performance
Switching and Routing, pp. 151-157, June 2006.

[32] C. Meiners, J. Patel, E. Norige, E. Torng, and A. Liu, “Fast Regular
Expression Matching Using Small TCAMs for Network Intrusion
Detection and Prevention Systems,” Proc. 19th USENIX Conf.
Security, pp. 111-126, Aug. 2010.

[33] “MIT DARPA Intrusion Detection Data Sets,” http://www.ll.
mit.edu/mission/communications/ist/corpora/ideval/data/
1999data.html, 2012.

[34] D. Taylor and J. Turner, “ClassBench: A Packet Classification
Benchmark,” IEEE/ACM Trans. Networking, vol. 15, no. 3, pp. 499-
511, June 2007.

[35] RouteViews: http://archive.routeviews.org/, 2011.

Zhiping Cai (M’08) received the BS, MSc, and
PhD degrees in computer science from National
University of Defense Technology, Changsha,
China, in 1996, 2002, and 2005, respectively.
Now, he is an associate professor of the School
of Computer, National University of Defense
Technology. His current research interests
include network security and network virtualiza-
tion. He is a member of the IEEE.

Zhijun Wang received the PhD degree in
computer science and engineering from The
University of Texas at Arlington, 2005. Now, he
is an assistant professor of the Department of
Computing, The Hong Kong Polytechnic Uni-
versity. His current research interests include
high-speed network, network security, traffic
control, data management in mobile networks
and peer-to-peer networks.

Kai Zheng (M’02) received the MS and PhD
degrees both in computer science from Tsinghua
University, Beijing, China, in 2003 and 2006,
respectively. He is currently working with IBM
Research China, as a research staff member. His
research interests include high-speed packet
forwarding, network intrusion detection system,
and data center networking. He is currently
working on novel data center network control
models and new security service models. He is a
senior member of the IEEE.

Jiannong Cao received the BSc degree in
computer science from Nanjing University,
China, and the MSc and PhD degrees in
computer science from Washington State Uni-
versity, Pullman. He is currently a chair profes-
sor and the head in the Department of
Computing at Hong Kong Polytechnic Univer-
sity. His research interests include mobile and
pervasive computing, computer networking,
parallel and distributed computing, and fault

tolerance. He has published more than 250 technical papers in the
above areas. He is a senior member of the China Computer Federation,
the IEEE, the IEEE Computer Society, and the IEEE Communication
Society, and a member of the ACM. He has served as an associate
editor and a member of editorial boards of several international journals,
including the IEEE Transactions on Parallel and Distributed Systems,
Pervasive and Mobile Computing, and Wireless Communications and
Mobile Computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CAI ET AL.: A DISTRIBUTED TCAM COPROCESSOR ARCHITECTURE FOR INTEGRATED LONGEST PREFIX MATCHING, POLICY FILTERING,... 427

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

