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Project Proposal  

1. Motivation & Challenges in Discovering Gene Regulatory Relationships  
 

Living organisms are complex systems to understand. Biologists and medical scientists have been 

pushing the frontiers of genomics to understand the evolutionary mechanisms and study biological problems 

in organisms ever since the discovery of Watson-Crick’s DNA model. Activities within an organism are 

normally understood at the molecular biology and cell level where proteins form the backbone of the entire 

machinery. It is through the production of different proteins and binding between them that a cell carries out 

its particular functionalities, and it is through the collective efforts of the cells that an organism carries out 

daily functions. Therefore, one step towards the understanding a life form amounts to understanding the 

interactions between different protein molecules. However, because of the complex structure of protein 

molecules, it is often easier to analysis the interactions by looking at the genes that encodes protein, and 

instead analyze how expressions of genes relates to each other, or in a biological term, the regulatory 

relationships between genes.   

In the current state, regulatory relationships are found by doing experiments in the lab. For example, 

biologist may manually put two proteins together and see if they interact. It often takes one year to find the 

regulatory function of one gene. With the recent development of DNA Microarray technique to 

simultaneously measure thousands of gene’s expression activity, researches start to apply systematic 

algorithms such as Bayesian network [3] [1] and regression tree model [7] to automatically discover the 

regulatory mechanisms from the vast amount of data obtained. These studies have only been carried out in 

the past 3-4 years, and the regulatory network for organisms, as simple as yeast, is far from fully understood.  
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Our project “Generative models for Analyzing Molecular Biology Data” is different from these previous 

researches in that we will not only look at the gene-expression profile, but will consider three different 

datasets in conjunction. These datasets profile from different perspectives, the possible interactions that 

exists in Saccharomyces Cerevisiae (yeast), namely, how the absence of one gene affects the expression of 

other genes, how transcriptional factors binds to the DNA sequences, and how any two protein molecules 



interacts. We will use machine learning algorithms on these data to identify known regulatory relationships 

and discover previously unknown relationships between genes & proteins in yeast.  

The main challenges in this project are a) the biological data that we have are noisy and have many 

missing values, b) very little prior knowledge is known about the true interactions between genes and c) the 

inherent complexity of interactions between genes in living organism allows many possible way of 

interpreting the data and therefore, inferring the true underlining interactions becomes difficult.  Machine 

learning techniques such as clustering method will be used in early stage of the project to understand some 

of the patterns in each individual dataset, and a confidence measure will be adopted in the later stage to 

account for the probabilistic nature of the data. 

2. Regulatory Network Representation 

The ultimate goal of this project is to infer a graph showing the regulatory mechanism of genes in yeast 

and to develop software for visualizing this graph. Such a graph shall provide a comprehensible view of the 

complex interactions among the genes and also allow for systematic methods such as graph traversal 

algorithms to be applied directly for extracting relevant information for both biological and biomedical 

purposes. To achieve this goal, we will adopt a representation of the regulatory graph based on the ones used 

in [2][3][4], with some enhancements.  
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The network will be a directed graph with each node representing individual gene; all other form of 

molecules such as proteins are mapped to their corresponding genes.  An edge in the graph indicates that the 

expression level of the gene in the source node will have a direct effect on the expression of the gene in the 

target node. Figure 1 shows a mock up of the representation we have in mind. A (+) sign on the edge shows 

that the effect is activation, while (-) means inhibition. In the case that the type of effect is not inferable from 

the dataset, we will denote it by a question mark. Furthermore, the width of an edge indicates our confidence 

of its presence, with the darkest and widest ones indicate the most confidence.  We define the confidence of 

an edge by how well its existence can be justified by the data: the edge can on one extreme be supported 

strongly by all three datasets while on another extreme weakly by only one dataset.  



In the software we will develop, the network will be shown on the screen, and supporting information 

for each edge will be shown when the user clicks on that edge of the network. 

 

Figure 1: Illustration of A regulatory Network. 
The node Y1, …,Y5 represents the gene, and 
edges represents the relationship. For example, 
presence of gene Y1 will inhibit the expression of 
gene Y3 (an edge with (-) sign), while activate the 
production of Y2 (an edge with (+) sign). 
Thickness of the edge indicates the confidence of 
such a link. For example, we are more confident 
about Y1’s inhibition effects on Y3 than its 
activation effect on Y2.  

Y1 

Y2
Y3 

Y5 
Y4 

It is possible that several alternative paths exist in the network and each of them is a valid path given the 

data set. In the final visualization of the network, animation will be used to show all the possible 

configurations of the network by switching periodically from one to another.  

3. Network Structure and Parameter Inference 
 

The three datasets we will consider in this project are gene knock-out dataset [5], ChIP chip data for 106 

regulatory factors [6], and BIND dataset for protein-protein interactions. In this section, we will outline the 

methods to be used to construct the network described in section 2 from a computational point of view.  

3.1 Data pre-processing and filtering:  
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For knock-out dataset and protein-DNA dataset, we will remove the genes that have missing value > 5% 

out of the 300 knock-out experiments performed. The missing values in the dataset will be substituted using 

the K-NN (K=7) impute method. The data will also be centered so that each array has zero mean. The same 

gene removal criterion and missing value imputation will be used for the ChIPchip data. In addition, we will 

convert the data to a 0-1 matrix by setting all measurements with p-value<1e-4 to 1, indicating that a 

binding exists between the corresponding regulator and gene exists, while all others to 0, indicating the 

opposite. The BIND dataset will be converted to an NxN matrix where N is the number of proteins, while 

each entry aij = 1 if protein i interacts with protein j.  



3.2 Data Exploration and Sub-network Construction 

By the end of this step, we aim to build three independent regulatory networks, in a form similar to the 

final network described in section 2, each for one of the datasets. For knock-out data, we will explore the 

pattern by two hierarchical clustering analysis first on the genes and secondly on the arrays (or experiment), 

using only measurements that have p-value (indicating the uncertainty of a measurement different from zero) 

below a certain threshold (e.g. 0.01). We will examine significant clusters and make observations about 

groups of co-expressed genes and down-regulated/up-regulated relationships between groups. We will 

summarize our findings in a network in which the node represents a cluster of genes and edges denote the 

regulatory relationship between groups. Constructing the sub-networks for ChIPchip data and BIND dataset 

is straightforward by including an edge for every ‘1’ entry in the data matrices. For the ChIPchip data, the 

direction of the edge always points from the node representing the protein to the node representing the gene. 

However, we cannot infer the type of the regulatory effect (activation/inhibition) from the ChIPchip data. 

From the BIND dataset, neither the direction nor the type of the edge can be inferred. The final networks for 

the two datasets will be absent of the pieces of information mentioned above.  

3.3 Sub-network Combination 

We will combine the three sub-networks obtained from the above step into a single network. To do this, 

we will map all the protein names to its corresponding gene name and find the genes that are present in any 

pairs of the three data sets (hereafter referred as linkage gene). We will also identify genes in each dataset 

that have behaviour similar to the linkage genes (hereafter referred as semi-linkage genes). The sub-

networks will be combined by first including in it all the nodes for the linkage genes, and then augmenting it 

by adding edges selected from the three sub-networks. The edges from the sub-network are considered in 

the following order: firstly, the edges between linkage genes, secondly, the edges between linkage and semi-

linkage genes, and between two semi-linkage genes, and lastly the edges that connect genes unique to one 

dataset.  
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Adding edges from BIND dataset and ChIPchip data is straightforward (simple additions). For each edge 

(edges both between clusters and within cluster links) in the graph from knock-out data, we will examine the 

two end nodes against the existing network, and choose a path that the nodes will likely be on; “likely” in 

the sense that product of the confidence measure of edges in this path is the highest. The confidence 

measure for each edge will be calculated using the formula  

Conf(e) = w1*c1+ w2*c2+ w3*c3 

where w1, w2,w3 represents the weight assigned to each sub-network, and c1,c2,c3 represents how well 

such edge is supported in the sub-network. An edge will be included in the final network if it has a 

confidence measure above a certain threshold. We will try different possible ways of assigning the value for 

c’s and w’s. One approach is to assign c1 for knock-out data as proportional to the log10(ratio) 

measurements, while c2 and c3 for BIND and ChIP-chip data are binary numbers reflecting the existence or 

non-existence of an edge. Several combinations of the network weight “w” are also possible, including 

making them all the same (i.e.,w1=w2=w3), or favouring the BIND and ChIP-chip dataset( i.e, w1<w2=w3).  

The ultimate goal of these different assignments is to find a network configuration that can best describe the 

regulatory relationship in the data. If time permits, we will also consider sequencing information to add 

more useful links to the final network. 

3.4 Network Robustness and Correctness Evaluation 

The combined network will be evaluated by looking at the number of false-positive edges and false-

negative edges. The former can be found by randomly reordering the data samples and seeing if the network 

still shows some links, while the latter can be found by comparing the network with annotated data (e.g. the 

TRANSFAC® database) of known relationships. In addition, Professor Hughes has agreed to perform 

knock-out experiments for us, which is an additional way of verifying the correctness of the network.  
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4. Work Plan 
 

Data pre-processing will be done before any analysis is carried out on the datasets. The construction of 

three sub-networks will be done in parallel by three different group members and the evaluation program to 

evaluate the correctness of the sub-networks will be developed by the fourth member in the meantime. Both 

the sub-networks and the final regulatory networks will be represented in MATLAB as an array of edges, 

each edge is a tuple consisting of source node name, destination node name, edge type and confidence 

measure. 

Preliminary visualization will be done in parallel with the network combination step. The visualization 

tool will be developed using MATLAB GUI which provides a graphical interface to all the functions from 

data pre-processing to the sub-networks combination. The visualization tool will also contain input areas for 

user to adjust some parameters used in the computation such as threshold used for filter the data, weights 

assigned to each sub-networks when combining the networks. In addition, as we inserting edges to the final 

network, we will also populate a table, arranged by edge index, which records the evidences that support a 

particular edge. Some examples of such evidences are “protein 1 encoded by gene A binds to the promoter 

region of gene B”, and “the knock-out of gene A, cause gene B to be down-regulated”.  

In case of failure in combining the sub-networks, we will focus our attention on the common genes 

among all the three datasets, and try to construct a network only for those common genes. Since the number 

of common genes will be significantly less than the entire datasets, we can design algorithms much simpler 

than that in the original case. Another alternative is to adopt the existing method as presented in Yeang et. 

al.[10]  or the Bayesian approach as presented in [3] to construct the network. In any cases, we are still be 

able to successfully obtain three sub-networks, since the method we based on for constructing them are well 

researched and well practiced.   

The testing of the sub-networks will be carried out as soon as they are constructed. The evaluation will 

be focused on computational correctness by testing it on a small set of data of some known relationships. 

For example, we will choose the genes from knockout data that are known to encode regulators, and the 
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genes that are known to be bind by those regulators. In this case, we know the links and their direction 

among these genes, and we therefore can verify manually that the sub-network constructed include these 

links correctly. The evaluation of the final network will be done by testing for false-positive and false-

negative edges as described in section 3.4. In addition, we will also adjust parameters used when 

constructing the network, and for each resulting network configuration, plot an ROC curve with false-

positive links/total number of links on x-axis and false-negative links/total number of links on y axis. The 

objective is to find the best set of parameters with which the final network constructed is able to find out a 

majority (e.g. 60-70%) of the known links among the same set of genes, while the ratio of false-negative 

edge to all the edges is relatively small (e.g. below 10-15%). 

This project involves data mining, algorithm design, MATLAB programming, graphics design and 

biological analysis. The four members of the team, Charudutt, Qian, Daisy and Jian Ye, and have combined 

abilities to engage work in the aforementioned areas. Charudutt has previous experiences in DNA 

microarray experiments and are very familiar with different databases for yeast genome. He will be mainly 

responsible for biological interpretation and evaluation part of the project. Daisy has solid background in 

database systems, and has excellent mathematical and problem-solving skills. Qian is experienced in 

MATLAB programming, and familiar with several different machine learning algorithms such as clustering. 

Daisy and Qian will work together for design algorithms to construct the network. Jian Ye is good at 

graphics design, and will be mainly responsible for developing visualization tool for the network. A 

complete breakdown of the works is shown in the table below, where R means responsible and A means 

assisting. A Gantt chart is provided on page no. 10 outlining the estimated timelines for each tasks and 

milestones.  

 Tasks/Milestones J.Y. Lin C. Shah D. Wang Q.Y. Tang
1 Researches in respective areas: gene regulatory 

network and clustering algorithm 
  R R 

2 Collecting datasets and understand the meaning 
of the numerical measurements in each dataset. 

A R  A 
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 Tasks/Milestones J.Y. Lin C. Shah D. Wang Q.Y. Tang

3 Data preprocessing, including data import, 
conversion to matlab matrix, and missing value 
imputation. 

R 

 

  A 

4 Clustering Analysis on knock-out dataset A   R 

5 Constructing networks for BIND dataset and 
ChIPchip dataset 

 A R  

6 Explore the regulatory relationships in the 
clusters of the knock-out dataset, and construct a 
network for the dataset. 

  A R 

7  Three sub network testing and verification  R A  

8 Visualization tool development R A   

9 Analysis of the connection between three sub-
networks in terms of common nodes and edges 

  R A 

10 Network combination with different 
combination of network weights and confidence 
measurement assignments 

 A  R 

11 Integrating the visualization GUI with the 
computational modules 

R  A  

12 Collecting and processing annotated data for 
evaluating the network 

A R   

13 Design programs for testing the networks 
robustness and correctness 

A  R  

14 Collecting and summarize testing data R   A 

15 Gene-sequencing information analysis (motif), 
and improve the network based on this 
information 

 R  A 

16 Report and poster preparation A A A R 
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5. Financial Plan 
 

The bulk of the costs for our project are performing biological experiments such as gene-knock out 

experiments. We intend to build software, develop algorithms and create the graphs using open-source code 

and non-proprietary software.  License for MATLAB and computational resources for the project have been 

secured through Prof. Frey’s Laboratory and IPL group at University of Toronto.  The following two tables 

show a rough budget for our project and the possible sources of obtaining those supports.  

 

        Table 1: Expected cost for completing the project 
 
Projected Expenses 

Unit Price Quantity Total  

Gene Knock-Out Experiments (Complimentary 
-Courtesy Prof. Hughes from Banting and Best
Institute) 

 ̀  10  $0  

Gene Knock-out Experiments  $100  5  $500  
Poster Board (Presentation) $15  2  $30  
Pamphlets (Demo) $0.06  250  $15  
Miscellaneous -   $100  
Supplies -   $55  
Other $0  0  $0  

Subtotals     $700  

Total Expenses     $700  
 

       Table 2: estimated source of monetary supports  

Sources of Income      

Personal Contribution     0  
     - Daisy Wang     $50  
     - Charudutt Shah     $50  
     - Qian Ying     $50  
     - Jason Lin     $50  
Support from Design Centre     $300  
Other sources of funding (Research Groups/
Departments) 

     $200  

Other     -    

Total Income     $700  
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6. Technical Risks and Risk Mitigation 

There are several risks that we will be confronted with as we move forward trying to complete our 

project. One of the risks is that the datasets we obtained contain many missing gene expression 

measurements and the corresponding p-values, due to the limitations of Microarray technology. To mitigate 

this risk, we will resort to mathematical approaches such as KNN-impute for missing value and gene 

selection methods based on maximizing the variations in gene expression level across the array.  Such 

methods are followed in the industry and have proven to successfully address the problem. The second risk 

is the variations, and possibly conflicts, in data due to different collection methods and different 

experimental techniques followed by various labs. We will address this problem by introducing a weight to 

each of the dataset, reflecting our confidence of the information obtained from each dataset [9]. A larger 

weight means more likelihood of the correctness of the measurement while a smaller weight means the 

opposite. In this way, we can bias toward the information contained in one dataset over others. A closely 

related risk is that inherent noises in biological data make the inference of correct relationships difficult. It is 

possible that many relationships that we will discover are effects of noise and in fact they do not exist. To 

combat this problem, we will adopt a probabilistic measure (detailed description are included in section 3.3) 

for each relationship, and set a threshold on this measure to select the most likely relationships.  The 

algorithm we propose may not work correctly. We will mitigate this risk by using small subset of the 

database to evaluate our algorithms and to modify our algorithm accordingly before applying to the entire 

datasets. In the worst case however, we will still be able to identify one-to-one causal relationships and form 

minimal connected sub-networks.  

Failure to implement a fool-proof visualization tool either due to the large size of the network or the 

difficulties in interfacing to the MATLAB programs may also impede our progress. To minimize the risk of 

such failure, we will develop the software in parallel with algorithm design and implementation and 

interface to the functions as soon as they are written.  As a back up plan, we will design a simplified search 

tool, instead of a full visualization for viewing the relationships found.    
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7. Market Analysis and Benefits to Canada or Society 

The market value and social impact of the project come from two folds. First, the regulatory interactions 

we will discover between genes in yeast can contribute to the current knowledge and study in scientific 

community. Secondly, the approaches used in this project can be extended to analyze mouse and human 

genome; in which case, the regulatory interactions discovered could be used in drug discovery and could 

result substantial benefits in health care.  

The visualization software that we develop will facilitate biologists and biomedical researchers for 

efficient finding of regulatory mechanisms in genes. The discovery of causal relationships from gene 

expression data in long term will have huge impacts on the society particularly in areas of drug discovery, 

disease diagnosis and disease treatments. The identification and discovery of new interactions between 

genes will provide pharmaceutical firms with means to identify drug targets.  In addition, such software has 

great market potentials. It is estimated that current market value for a full-fledged extension of our software 

is worth $25millon CAD (IOBIO Informatics http://www.iobion.com), and such demand is very likely to 

grow rapidly within the next decades.    
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Self-Assessment 
 

1. UNDERSTANDING OF THE TECHNICAL PROBLEM AND ITS APPLICATION 
CONTEXT  

 
D) The team has completed a detailed analysis of both the context and the scope of the technical problem 
that demonstrates a full understanding of the problem. The team has clearly used this analysis and the basis 
for the panning of the project.  
 
Our team has researched the project well in advance and fully understands the complexity of the issue facing 

biologists and how machine-learning techniques can assist them in identifying relationships between genes 

and proteins. In addition, we have also done many researches in the current state of this problem, and 

reviewed the papers on existing methods.  

 
2. PROPOSED SOLUTION: ADVANCING THE STATE OF THE ART  

 
C) A significant advancement of more than one aspect of technologies or an application area. 
 
Previous project are often focused on one dataset, however, we will look at three different datasets from 

different sources. Although similar in regulatory network representation as previous project, our project will 

differ from others with a regulatory network containing more information such as the evidence, and the 

confidence for each edge. Also, the animation feature of the visualization tool will be unique to our project.  

 
3. TECHNICAL METHODOLOGY 

 
C) An evaluation of a range of methodologies and the presentation of a framework for use of a feasible set 
of state of the art methodologies applied in an effective manner, which are likely to resolve the technical 
problem. 
 
Our methodology involves preprocessing of data in order to minimize the effects of noise. Several machine 

learning algorithms exists however only some would work better over the other. Our approach to choosing 

such methodologies as k-nearest neighbor clustering or classification algorithms requires use to evaluate 

several methodologies and apply one that is most effective.  

 
 
 

 14
 



4. WORK PLAN (Milestones) 
 
C) A detailed, comprehensive and achievable plan that is cost effective, and includes a WBS and a Gantt 

Chart outlining the scheduled work.  

 
A detailed work plan is provided in section 4 and a Gantt chart is included on page 10. The nature of the 

project is such that each one of us requires having some basic biology which we have acquired over the 

summer. The remainder of tasks is split equally based on capabilities and preferences.  We believe our 

methodology lays a clear path to take and outlines detailed procedures towards achieving the end goals.  

 

5. FINANCIAL PLAN 
 

B) Some financial information provided and an indication that project costs have been identified. 
 

 
There are not many cost components to the project. Hence only brief tables with sources of funding and 

expected expenses are listed under section 5.  

 

6. TECHNICAL RISKS, INCLUDING RISK MITIGATION 
 

C) The proposal has identified the technical-risks likely to be faced by the project. The team has 
demonstrated a clear understanding of the nature and likelihood of the described risks, within the context of 
the current state of the art and the proposed technological innovation. The proposal presents a credible plan 
for the mitigation of the identified risks. 
 
In this project we anticipate problems when combining the three different sources of data. As highlighted in 

the risks section we are concerned about generating false positives and evaluating the sensitivity of our 

results. Filling missing information and inconsistencies with known / annotated relationships is a risk that 

will help us evaluate the accuracy of prediction and generation of models.  

 
7. MARKET ANALYSIS, BENEFITS TO CANADA/SOCIETY: 

 
D) Demonstrates an understanding that the project has a significant new and enduring, high-value social 
benefit to Canada. 
 

 15



The project is a student-based project and clearly the contribution of this project to the society and market 

was a big motivation in choosing this project. We know that the tool will great assist scientist and people in 

R&D in field of bioinformatics an drug discovery. We have identified some research groups on campus that 

could benefit from our tool however we have not explored and concrete market opportunities. The entire 

field is in its infancy and hence it is unclear at this time of the sales & marketing advantages of our project. 
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Glossary/ Terminology 
 

BIND: Biomolecular Interaction Network Database (http://www.bind.ca) 

ChIP : Chromatin Immuno Precipitation  

DNA: DeoxyRiboNucleic Acid 

KNN: K Nearest Neighbors Algorithm  

RNA: RiboNucleic Acid 

ROC Curve:  Receiver Operating Characteristic curve   

P-value: Probability value is probability that is measure of how much evidence we have against the null 

hypotheses. It is the probability of wrongly rejecting the null hypothesis that the two genes do 

not interact when in fact they do.  

TRANSFAC: A database on eukaryotic transcription factors, their genomic binding sites and DNA-   

binding profiles available on http://www.gene-regulation.com/  
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