
REtriever:

String Maching Engine For Publish/Subscribe Systems

Daisy Zhe Wang and Hans-Arno Jacobsen
University of Toronto

October 25, 2004

Abstract

In this paper, we will first present REtriever, a DFA-based engine for solving the string matching
problem in publish/subscribe systems. For the current stage, REtriever supports a subset of regular
expression, which can be used to specify XPath language, subscriptive continuous stream queries and
string-based rules. We then will discuss experimental evaluation of the performance of REtriever as
compare to the nfa-based and the naive string matching engines.

1 Introduction

The string matching problem is important for a number of application domains, including XML filtering
and classification, continuous query over streams, and content-based routing. REtriever aims at solving
the string matching problem in the publish/subscribe (pub/sub) systems context, where applications
have to manage large numbers of string-based subscriptions. REtriever can be adpated to be used for
XML filtering and continuous queries on streams.

The REtriever uses a deterministic finite automata(DFA) based structure and further develops the
idea of shared-path-prefix processing in YFilter. It uses keyword matching and recombination tech-
niques to realize the regular expression (RE) matching in a DFA-based structure, and it also developed
algorithms to increase the shared processing of overlaps in subscriptions. Our experiments show that
REtriever achieves 50 percent of performance enhancement relative to the nfa-based matching engine,
which uses an NFA-based structure and only share the processing of prefix overlaps in subscriptions.

The remainder of this paper is organized as follows. Section 2 presents the language models for
subscriptions and publications in pub/sub systems, the data structures of REtriever and the two design
issues. Then we describe various REtriever algorithms in detail in Section 3. In Section 4, we analyze
the experimental results of the performance of different algorithms in REtriever relative to nfa-based
and naive approaches.

2 Overview of REtriever

REtriever is designed for string matching in pub/sub systems. Different from any previous work, RE-
triever uses DFA-based keyword matching and recombination techniques to solve our subscription match-
ing problem, which is given an arbitrary incomming publication p, a set of subscriptions, S = {s|s matches
p} can be retrieved quickly and efficiently. In this section, we first present the language model of an
entirely string-based pub/sub system. Then, we present the data structure underlying REtriever. Based
on the design principles behind any DFA-based structure, REtriever develops its own novel techniques
to further reduce the size of the DFA by splitting algorithms to exploit general overlaps, which can be

1

any sub-string in a subscription. We will highlight these new techniques in Section 2.3, deferring the
details of our solutions to Section 3.

2.1 Language Models for Pub/Sub System

A string-based subscription language model consists of an alphabet Σ and a set of operators Γ. Σ can
be a random set of literals. In the context of this paper, we choose Σ to be the English alphabet. In
addition, we have two wildcard operaters: Γ = {?, *}, each of which has its own instantiation. “?”
can be instantiated to any one literal over Σ; “*” can be instantiated to any sequance of literals over
Σ. A subscription is a sequence of literals and operators, and its instantiation is the concatenation of
literals and the instantiations of each operators in sequence. For example, “a?b” can be instantiated
to {aAb| A ∈ Σ}; “a*b” can be instantiated to {aSb|S is any string over Σ}. The number of instan-
tiations of a subscription can be finite, as in the first example, as well as infinite as in the second example.

The publication language model simply consists of the same alphabet Σ as in the subscription lan-
guage model. A publication is a string of literals over Σ. A publication with finite length is a string
publication, whereas publication with infinite length is a stream publication.

A publication matches a subscription when part of the publication is an instantiation of the subscrip-
tion. For example, publication “aabcbaaabc” matches subscriptions “aaa”, “a?b”, “b*b”, but does not
match subscription “bb”.

2.2 Data Structure of REtriever

For each subscription S, we tokenize it into phrases using operators Γ as deliminators, and insert each
phrase into a DFA structure. The transition functions of the DFA structure are literals over Σ. For
example, in DFA1 in Figure 1, subscription “song?blue” is tokenized into phrases “song” and “blue”,
which are inserted into the DFA saparately. Each node in the DFA has a state data structure which
consists of the components shown in Table 1. (The concept of accept and half accept will be introduced
in Section 3.2)

Data Structure of a state
component content
id unique identifier of the state in DFA
key transition key to s
parent parent state
shareDegree number of times s is shared by different subscriptions
transitions a hashtable of (key, nextState) transition pairs
acceptSet a hashtable of acceptRecords, representing subscriptions

that is accepted in this state
halfAcceptSet a hashtable of halfAcceptRecords, representing subscriptions

that is half accepted in this state
Table 1: Data Structrue of state

The initState is a special state that represents the root of the DFA, which corresponds to state0 of
DFA1 in Figure 1. All other states can have one or more of the three following runtime state – shared,
accepted, half accepted. For example, in DFA1 of Figure 1, state4 is a halfAcceptState of subscription1

“song?blue”, and state8 is the acceptState of the same subscription. Also, state5 is shared by subscription
“song?blue” and “berry”.

Features of state s in DFA of REtriever
feature meaning
shared s is shared by two or more subscriptions
accepted s accept one or more subscriptions
half accepted s half accept one or more subscriptions

2

song?blue

pie*tea

berry

0

1

 s

5

 b

9

 p

12

 t

2

 o

6

 l

15

 e

10

 i

13

 e

3

 n

7

 u

16

 r

11

 e

14

 a

4

 g

8

 e

17

 r

18

 y

song?blue

pie*tea

berry

applepie

blueberrypie

0

1

 s

5

 b

9

 p

12

 t

19

 a

2

 o

6

 l

15

 e

10

 i

13

 e

20

 p

3

 n

7

 u

16

 r

11

 e

14

 a

21

 p

4

 g

8

 e

17

 r

22

 l

18

 y

23

 e

Figure1: REtriever DFAs before and after inserting “applepie” and “blueberrypie”

Table 2: State features in DFA of REtriever

In addition, a subscription hashtable stores all subscriptions as tuples of (id, acceptState, accep-
tRecord, subscription), and a result hashtable stores all the resulting subscriptions in publication match-
ing.

2.3 Design Issues

At a higher level, the main goal in designing REtriever is to minimize the time to find all subscriptions
to which a given publication match. The first design issue is whether to use a DFA-based or nondeter-
ministic finite automata (NFA) based structure. While NFA-based structure takes more time to execute,
DFA-based structure theoretically might has exponential number of states. The second design issue is
how to make use of the overlaps in subscriptions to share as much processing as possible.

To address the first design issue, we first adapted YFilter to a nfa-based algorithm, which is able to
process our subscription language. The nfa-based algorithm, like YFilter, shares the processing of the
prefix overlaps in subsriptions by using a combined-NFA structure. Because of multiple active states
at one time, the matching time for the nfa-based algorithm is slower than using corresponding DFA.
However, if we translate the NFA to DFA using the standard canonical method, we might get expo-
nential number of states. We found that (1) wildcard operators Γ are expensive to evaluate because
they introduce multiple active states; (2) NFA built from a keyword, a substring of subscription with-
out wildcard operator Γ, is essentially a DFA. Thus, as introduced in the data structure, our approach
tokenizes each subscriptions to phrases using Γ as deliminators. We use DFA-based keyword matching
for each phrase matching, and recombine the results to get the matching result of the subscription. The
resulting DFA has less number of states than the corresponding NFA. We will present the DFA-based
keyword matching and recombination techniques along with the three main operations: insert, match
and delete of REtriever in Sections 3.2 and 3.3.

Above described is the no-splitting algorithm in REtriever. In order to reduce the size of the DFA, we
want to exploit not only the prefix but all general overlaps in those phrases. We designed two splitting
algorithms called: singleSplit and multipleSplit, which can split each phrases into words, whose prefixes
are overlaps in the subscriptions. Each words are inserted separately into the DFA, and because they

3

have common prefix, the size of the DFA is reduced. REtriever is referred to as no-splitting, single-
splitting and multi-splitting algorithms, depends on whether we use the splitting algorithm and which
splitting algorithms we use. We will discuss the two splitting algorithms as how they split phrases to
discover general overlaps in detail in Section 3.1.

3 Algorithms

In this section we will first present two splitting algorithms: singleSplit and multipleSplit, which exploit
the general overlaps in subscriptions to further reduce the size of the DFA. In Section 3.2, new data
structures and algorithms for keyword matching and recombination will be described. Lastly, we will
present three key operations of REtriever: insert, delete and match in Section 3.3.

3.1 Splitting algorithms

The goal of our splitting algorithms is to find a way to split a phrase into words, so that when inserting
each words saparately into the DFA, more states are shared. This will reduce the size of the DFA.

3.1.1 Algorithm getScore

Before introducing the two splitting algorithms, function getScore should be explained first. getScore(sub,
startPos, endPos) calculates the score, which is the number of states that can be shared in the existing
DFA if we insert part of the subscription from startPos to endPos into the DFA.

getScore (sub, startPos, endPos)
1 curState← initState
2 score← 0
3 for curPos← startPos . . . (endPos− 1) do
4 if (sub[curPos], nextState) pair is present in the transitions table of curState then
5 score← score + 1
6 curState← nextState
7 endif
8 endfor
9 return score

For example, the score of “blueberrypie” as a whole with the existing DFA1 in Figure 1 is 4; while
the score of “blueberrypie” from the 5th literal to the end with DFA1 is 5.

3.1.2 Algorithm singleSplit(phrase)

The singleSplit evaluates the score, s0, of an input phrase with no splitting point, and evaluates the
scores, si, of the phrase with splitting point at every possible position. The score of a phrase with a
single splitting point is the sum of the scores of the first and second part of the phrase. If sj = MAX(si)
and sj has a bigger score than s0, then j is chosen as the splitting point. MIN WORD LEN is the
minimum length of a word. MIN SPLIT SCORE is the minimum increment in score if we decide to
split.

singleSplit (phrase)
1 if (lenth of phrase) >= (MIN WORD LEN ∗ 2) then
2 maxScore← getScore(sub, 0, ((length of phrase)))
3 splitPos← 0
4 for i←MIN WORD LEN . . . ((length of phrase) −MIN WORD LEN) do
5 score← 0
6 curState← initState
7 score← getScore(phrase, 0, i) + getScore(phrase, i, (length of phrase))
8 if score > (maxScore + MIN SPLIT SCORE) then
9 maxScore← score
10 splitPos← startPos

4

For example, we want to insert “applepie” into DFA1 in Figure 1. Because the scores of each possible
splitting point in “applepie” are [5, 2, 3, 3, 4, 8, 5, 5, 5], we should split between “e” and “p”.

3.1.3 Algorithm multipleSplit(phrase)

The multipleSplit is a dynamic programming algorithm, which split a phrase into multiple words. The
score of phrase or prefix of phrase, phrase(i), with multiple splitting points is the sum of scores of words
generated from splitting the phrase or phrase(i). multipleSplit finds out the set of splitting points which
results in max score of the input phrase. The algorithm is structured and proved as follows.

1)Define array splits(i) and scores(i) for 0 < i <(length of prase) by
phrase(i) = {prefix of phrase from 0 to i}
score(i) = {max score of phrase(i) with multiple splitting points}
splits(i) = {optimum last splitting point before i}
splits(length of phrase) holds the last splitting point of the phrase; if it is not 0, then splits(splits(length

of phrase)) holds the second last splitting point of the phrase, etc.

2)Recurrence relationship
For 0 <= i <MIN WORD LEN∗2

splits(i) = 0; score(i) = getScore(phrase, 0, i);
For MIN WORD LEN ∗ 2 <= i <(length of phrase)

scores(i) = MAX(scores(j)+getScore(phrase, j, i)); (MIN WORD LEN<= j < i)
splits(i) = j; ((scores(j)+getScore(phrase, j, i)) == scores(i))

3)Proof
For every step i, we try to decide the optimum position of the last splitting point before i. When

0 <= i < MIN WORD LEN ∗ 2, we do not split, thus splits(i)=0, and score(i) is score of phrase(i)
with no splitting point. When MIN WORD LEN∗2 <= i <(length of phrase), the optimum position j
(j < i) is where the sum of scores(j), max score of phrase(j) with multiple splitting points, and score of
part of phrase from j to i takes on the maximum value.

multipleSplit (phrase)
1 if (length of phrase) >= (MIN WORD LEN ∗ 2) then
2 for i← 1 . . . (MIN WORD LEN ∗ 2) do
3 splits[i− 1]← 0
4 scores[i− 1]← getScore(phrase, 0, i)
5 endfor
6 for i← (MIN WORD LEN ∗ 2 + 1) . . . (length of phrase) do
7 maxScore← getScore(phrase, 0, i)
8 splitPos← 0
9 for j ←MIN WORD LEN . . . (i−MIN WORD LEN) do
10 score← scores[j − 1] + getScore(phrase, j, i)
11 if (score > (maxScore + MIN SPLIT SCORE)) or ((score > maxScore) and (splitPos! = 0)) then
12 maxScore← score
13 splitPos← j
14 endif
15 endfor
16 split[i]← splitPos
17 score[i]← maxScore

For example, we want to insert “blueberrypie” into DFA1 in Figure 1. with MIN WORD LEN=2
and MIN SPLIT SCORE=2, splits array is [1, 2, 3, 4, 4, 6, 7, 8, 9, 10, 11, 12] and scores array is [0, 0,
0, 0, 0, 4, 4, 4, 4, 9, 9, 9]. Thus the multiple splitting positions are 4 and 9.

5

3.2 DFA-based Keyword Matching and Recombination

Before we get to the key operations of REtriever, we first present additional data structures that are
used in DFA-based keyword matching and recombination.

By tokenizing a subscription using operators Γ as delimiters, we get a set of phrases. Then, we either
do not split, or split each phrases into words using single-splitting or multi-splitting algorithms, and
insert each word separately into the DFA. acceptState is the accept state for inserting the last word of
the subscription; halfAcceptState is the accept state for inserting other words of the subscription.

acceptRecord is a tuple of (halfAcceptState, halfAcceptRecord, sub, numQuestion, hasStar) and
halfAcceptRecord is a tuple of (preHalfAcceptState, preHalfAcceptRecord, sub, numQuestion, hasStar,
numMatch, matchEnd, matchStart). halfAcceptState and preHalfAcceptState point to the accept state
of the previous word. halfAcceptRecord and preHalfAcceptRecord point to the halfAcceptRecord of the
subscription in the accept state of the previous word. numQuestion is the number of question whildcard
and hasStar is a Boolean value of whether star wildcards exist between the previous word and this word.
numMatch is the number of times the word is matched in the publication, and (matchStart, matchEnd)
pairs record the start and end matching position of the word in the publication.

Data Structure of acceptRecord and halfAcceptRecord
component content
halfAcceptState/preHalfAcceptState pointer to the accept state of the previous word
halfAcceptRecord/preHalfAcceptRecord pointer to the halfAcceptRecord/preHalfAcceptRecord

of the subscription in the accept state of the previous word
numQuestion the number of question whildcard
hasStar a boolean value of whether star wildcards exist

between the previous word and this word
numMatch the number of times the word is matched in the publication
(matchStart, matchEnd) record the start and end matching positions

of the word in the publication
Table 3: Data Structure of acceptRecord and halfAcceptRecord

In order to match, we have to recombine the matching result of all the words in a subscription.
When a halfAcceptState of a subscription is reached, matching position pair has to be added to all
halfAcceptRecords. When the acceptState of a subscription is reached, all previous halfAcceptStates
of this subscription are traversed in reverse order, and matching position pairs are checked to see if
one of them is the right matching positions. By right matching positions we mean: the matchEnd of
the previous word and the matchStart of this word should be separated by exactly numQuestion num-
ber of literals if hasStar==0, or by a number of literals that is greater than numQuestion if hasStar==1.

Correspondingly, data structure of acceptRecord and halfAcceptRecord has to be established at
insert time. Moreover, delete operation cannot be executed in a top down mechanism, but a bottom up
mechanism, which will be explained in detail in the next section.

3.3 Algorithms for REtriever Operations

3.3.1 Algorithm insert(sub)

The insert operation is done in several steps:
1) tokenize a subscription to phrases
2) either no-splitting the phrases (noSplit) or split each phrases to words using singleSplit or multipleSplit
3) insert each word separtely in to existing DFA
4) increase shareDegree of existing state and set up acceptRecord or halfAcceptRecord for newState

6

5) set up acceptState in subscription hashtable

insert (sub)
1 tokenize sub using wildcard operators as delimiters, and generate a list of phrases
2 for each phrase p do
3 noSplit/singleSplit/multipleSplit p to a list of words
4 for each word w do
5 curState← initState
6 i← 0
7 while (word[i++], nextState) pair is present in the transitions table of curState do
8 increase shareDegree of curState
9 endwhile
10 for i← i . . . (length of word) do
11 add newState with word[i] as key
12 if (word[i] is the last literal in the last word of the last phrase in sub) then
13 add acceptRecord to newState.acceptSet
14 add (sub, curState) pair to hashtable of subscription
15 else
16 add halfAcceptRecord to newState.halfAcceptSet

For example, after inserting the splitted “applepie” and “blueberrypie” , we get DFA2 in Figure 1.

3.3.2 Algorithm match(pub)

The match operation is done by sliding windows one literal to the right each time, for each window prefix
match all subscriptions by executing DFA. For each state, the execution of DFA is done as follows.
1) DFA execution begins at the initial state.
2) look up the incomming character c in the transitions hashtable of current state.
3) if transition exist for c in current state

i) add match position pairs to all halfAcceptRecords in current state
ii) for all subscriptions which has acceptRecords in current state, recombine matching positions of all

halfAcceptRecord and acceptRecord of the subscription. If right matching positions exists in all records,
we add the subscription to the result hashtable.

iii) proceed to the next state

match (pub)
1 for i← 1 . . . (length of pub) do
2 curState← initState
3 for j ← i . . . (length of pub) do
4 for every halfAcceptRecord hr in curState.halfAcceptSet do
5 increase numMatch and add new match position pairs ((i-1), (j-1)) to hr
6 endfor
7 for every acceptRecord ar in curState.acceptSet do
8 preHalfAcceptRecord← acceptRecord.halfAcceptRecord
9 hasStar ← acceptRecord.hasStar
10 numQuestion← acceptRecord.numQuestion
11 sub← acceptRecord.sub
12 startPos← (i− 1)
13 while preHalfAcceptRecord! = null do
14 for everymatchpositionpairs(matchStart, matchEnd) do
15 endPos← 1 + matchEnd + numQuestion
16 if ((hasStar == 1)and(startPos >= endPos))or((hasStar == 0)and(starPos == endPos)) then
17 add sub to result list
18 startPos← matchStart
19 endif
20 endfor
21 hasStar ← preHalfAcceptRecord.hasStar
22 numQuestion← preHalfAcceptRecord.numQuestion

7

Graph 1: Illustration of window switching in match function

23 preHalfAcceptRecord← preHalfAcceptRecord.preHalfAcceptRecord

For example, suppose the publication is “welikeapplepieandtea” and the DFA of all subscriptions is
DFA2 in Figure 1. In Window7(see Grpah 1), we matched “apple”, and matched position pair is (7, 11);
in Window12, we matched “pie”, and the matched position pair is (12, 14); in Window18, we matched
“tea”, and the matched position pair is (18, 20). In addition, in Window12, we get to the acceptState of
subscription “applepie”, and find the match pair in its halfAcceptState state23 is (7, 11) which is a right
matching position, and state23 is the only halfAcceptState for subscription “applepie”, thus ”recombina-
tion” is successful and “applepie” is matched. Another match is “pie*tea” while the matching positions,
(12, 14) and (18, 20) is right matching positions, because hasStar==1 and 18>12. On the other hand,
even though the acceptState state11 of “blueberrypie” is also reached, there is no right matching position
in its halfAcceptState state18 and state4, thus it is not a match. So the matching subscription set for
publication “welikeapplepieandtea” is “applepie”, “pie*tea”.

3.3.3 Algorithm delete(sub)

The delete operation is done with following steps: (note that all deletions are done in bottom up manner,
i.e starting from the accept state of each word to the initState)
1) get acceptState and acceptRecord of the subscription
2) delete all acceptRecord and halfAcceptRecord of the subscription in the accept state for each word
3) decrease shareDegree for all states on the path to the accept state of each word. If shareDegree of
one state drops to zero, delete the state.

delete (sub)
1 find (sub, acceptState, acceptRecord) pair in hashtable of subscriptions
2 curState← acceptState
3 while curState! = null do
4 delete acceptRecord or halfAcceptRecord of sub in curState
5 while curState! = initState do
6 decrease shareDegree of curState
7 if shareDegree == 0 then
8 delete curState
9 endif

8

10 endwhile
11 curState← preHalfAcceptState

For example, in order to delete subscription “applepie”. First, we find its acceptState – state11, and
decrease the shareDegree of state 11, 10 and 9. Then, we trace to its halfAcceptState, state23, and by
decreasing the shareDegree of states 23, 22, 21, 20 and 19, we find that all shareDegree of those states
drops to zero. Thus, we delete states 23, 22, 21, 20 and 19, and after deletion of “applepie”, DFA2 in
Figure 1 transform back to DFA1.

4 Experiments and Analysis

In this section, we first present the setup for our experiments to measure the performance of different
string matching engines. Secondly, we analyze performance differences between three different algorithms
in REtriever – noSplit, singleSplit, multipleSplit, and with the nfa-based and the naive string matching
engine.

4.1 Experiment Setup

All experiments were conducted on a 1600MHz Intel Pentium III machine with 1.0 GB memory, 30
GB Hard Disk running Windows XP. We will next introduce our workload generator, which generate
subscriptions and publications.

In the workload generator, we define the alphabet to be the English alphabet. The probability of each
letter to appear in a subscription or publication is pre-defined. A string consists of subStrLen (see Table
4) number of letters. A subscription consists of numSubStr strings with numStar, numQuestion wildcard
operators. Among numSubStr strings, numOverlapStr is drawn from an overlap string pool, which
consist of numOverlap strings. We can specify the position of overlaps to be prefix, suffix or general.
A publication is constructed from numMatch number of subscriptions drawn from the numSubscription
subscriptions we generated. Then replace the wildcards in subscriptions with appropriate literal or
string, and concatenate those subscriptions with extra strings in between them.

Parameters for Workload Generator
parameter controled value
numSubscription number of subscriptions to be inserted to DFA
numPublication number of publication to be matched
numOverlap number of total overlap strings
numStar number of star operators in each subscription
numQuestion number of question operators in each subscription
numOverlapStr number of overlap strings in each subscription
numMatch number of subscription matches each publication has
numSubStr number of strings in each subscription
subStrLen length of each string
overlapPos whether overlap is suffix, preffix or general

Table 4: Parameters for workload generator

4.2 Results and Analysis

In this section, we will present a set of preliminary experimental results. In most of these experiments,
we vary one parameter of the workload generator, while all other parameters remain the same. With all
experiments, the following parameters are fixed values.

9

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 10 100 1000 10000 100000

M
a

tc
h

 T
im

e
(m

s
e

c
)

Number of Records

naive
nfa-based

no-splitting
single-splitting
multi-splitting

 0

 100

 200

 300

 400

 500

 600

 700

 10 100 1000 10000 100000

M
a

tc
h

 T
im

e
(m

s
e

c
)

Number of Records

nfa-based
no-splitting

single-splitting
multi-splitting

Figure 2-1: Vary Number of Subscriptions (with naive) Figure 2-2: Vary Number of Subscriptions

Parameters with fixed values
parameter fixed value
numPublication 100
numOverlap:numSubscription ratio 1:50
numMatch 3
subStrLen 4

Table 5: Parameters with fixed values through out all experiments

4.2.1 Vary The Number Of Subscriptions

In experiment 1, we increase the number of subscriptions from 100 to 100,000, while each subscription
consists of 1 star and 1 question mark operator and 3 strings among which 1 of them are general overlap.

In Figure 2-1, line “naive” denotes the matching time performance for the naive string matching
engine. As we can see, the matching time for the naive algorithm increase much faster than all other
algorithms when we scale the number of subscriptions. Thus, the naive algorithm is not scalable as
compared to the others. In the rest of our presentations, we exclude the performance of this algorithm
from the rest of the results.

Figure 2-2 is a zoom-in graph of Figure 2-1, without the naive algorithm. The line “yfilter” denotes
the matching time performance for yfilter, while line “no-splitting”, “single-splitting”, “multi-splitting”
denotes the performance for matching engines without splitting, and with singleSplit or multipleSplit al-
gorithms. As we can see, at each data point, the matching time is halved using the REtriever algorithms
from the time used for yfilter. The matching time for one publication matching 100,000 subscriptions
with length 14 is 650 ms for yfilter, 350 ms for nosplit, 300 ms for multisplit and 250 ms for singlesplit.
Results also show that REtriever algorithms are scalable with an increase in the number of subscriptions.

4.2.2 Vary The Length Of Subscriptions

In experiment 2, we increase the length of the subscriptions from consisting of 8 to 32 characters, while
keeping numSubscription at 10000, numOverlap at 200, and each subscription has 1 star, 1 question
wildcard operator and 2 overlap strings. Results show that the matching time for the nfa-based algorithm
is increasingly longer than the others . It is interesting to note the crossing point of performance lines
for singleSplit and multipleSplit, which illustrate the tradeoff of more splitting point to share more

10

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25 30 35

M
a

tc
h

 T
im

e
(m

s
e

c
)

Length of Records

nfa-based
no-splitting

single-splitting
multi-splitting

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 1.5 2 2.5 3

M
a

tc
h

 T
im

e
(m

s
e

c
)

Number of Star Wildcards

nfa-based
no-splitting

single-splitting
multi-splitting

Figure 3: Vary Length of Subscriptions Figure 4: Vary Number of Star Operators in Subscriptions

common processing and the overhead of recombination of matchings. When the subscriptions are short,
singleSplit use less time to match, while the length of each subscription is greater than 16, multipleSplit
performs much better than singleSplit. This is because, when the subscription is short, a single splitting
point is enough to exploit the general overlap strings, and more splitting points which further reduce the
number of states, also increase the overhead of recombination, which becomes the dominant factor when
the subscription is short. But when the subscription is long, multipleSplit algorithm performs better.
(See Figure 3)

4.2.3 Vary The Number Of Star Operators In Each Subscription

We design this experiment to show the benefit of using DFA-based structure in our algorithms. With
numPublication = 100000, numOverlap = 200, and each subscription consists 6 strings with 3 general
overlap strings. We increase the number of star operator from 1 to 3, and as seen in Figure 4, yfilter’s
matching time increases very fast, while the matching time of REtriever algorithms keep roughly the
same. This experiment demonstrates that star wildcard operator is expensive in evaluation, which is the
key reason why we use keyword matching with recombination technique for our subscription matching.

4.2.4 Vary The Position Of Overlaps In Each Subscription

In this experiment, we vary the positions of overlap strings in each subscriptions: general, prefix, suffix.
We set numPublication to 10000, numOverlap to 200, each subscription has 6 strings with 1 overlap
string, and 1 star, 1 question wildcard operators. For all three kinds of positions of overlap strings, the
REtriever algorithms all outperform the nfa-based engine. While the REtriever algorithms have roughly
the same matching time for all overlap positions, the nfa-based engine performs worse in general and
suffix overlap compare with prefix overlap, which demonstrates that the REtriever does exploit general
overlaps, while the nfa-based engine only exploits the prefix overlap.

4.2.5 Vary The Number Of Overlap Strings In Each Subscription

This experiment aimes to demonstrate the performance variance while increase the percentage of overlap
strings in each subscriptions. We generate 200 general overlaps, 10000 subscriptions, each with 5 strings
and 1 question mark wildcard operator. As we can see in Figure 6, the matching time for yfilter keeps
at 190 ms for one publication, but for singlesplit, it drops from 160 ms to 110 ms, and multisplit drops

11

 60

 80

 100

 120

 140

 160

 180

 1 1.5 2 2.5 3

M
a

tc
h

 T
im

e
(m

s
e

c
)

Overlap Positions: General 1, Prefix 2, Suffix 3

nfa-based
no-splitting

single-splitting
multi-splitting

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70 80

M
a

tc
h

 T
im

e
(m

s
e

c
)

Percentage of Overlap Strings in Subscriptions

nfa-based
no-splitting

single-splitting
multi-splitting

Figure 5: Vary Positions of Overlaps in Subscriptions Figure 6: Vary the Percentage of Overlaps

from 83ms to 62ms. The reason why multisplit perform still very well with zero overlap strings in the
subscription is because, shorter overlap strings are prevalent in the subscription even though we specify
no overlap string of length=4 in the subscription and multisplit is good in exploiting these short overlaps
and thus reduce the machine size and matching time. On the other hand, singlesplit only allows one
splitting point, thus with longer overlap strings, it will perform much better.

12

