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Abstract

We analyze the importance of productivity dispersion for evaluating a tax versus

a regulatory standard on emission. The model has a continuum of plants each pro-

ducing a dirty good with emission as the by-product. The plants are heterogeneous

in productivity, and the dirty-goods sector is monopolistically competitive. We show

that if no technology is available for emission abatement, then the tax generates

higher welfare than the standard for any given target on aggregate emission. With

an abatement technology, the standard can yield higher welfare than the tax if the

plants have sufficiently large market power and sufficiently similar productivity.
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1 Introduction

The economics of climate change has attracted increasing attention, especially after the

publication of the Stern (2006) Review. There is wide disagreement on how stringent the

emission target should be in order for the world to avoid a large loss that can be caused by

climate change. In this paper, we address a different question: Given a target on aggregate

emission, is it more desirable to achieve it by imposing a tax or a nontradable standard

on emission? With a model of monopolistic competition, we demonstrate that the answer

depends critically on the extent of productivity dispersion in the economy.

Regulatory standards and market-based instruments are two common forms of envi-

ronmental policy. A regulatory standard specifies with a certain degree of precision the

actions that a firm or individual must take to achieve environmental objectives. Such a

standard cannot be met by trading in the market. In contrast, instruments like emission

taxes and tradable emission quotas or permits work through the market. Traditionally,

regulatory standards were predominant. Starting from the 1970s, however, opinions have

been shifting to favor market-based instruments. For example, the Stern Review (part IV,

p310) states that “a common price signal is needed across countries and sectors to ensure

that emission reductions are delivered in the most cost-effective way...... [Both] taxes and

tradable quotas have the potential to deliver emission reductions efficiently.”1

We contribute to this policy debate by demonstrating the importance of productivity

dispersion among firms. Although the literature on environmental policy has discussed

firm heterogeneity, it has not focused on rich dispersion in productivity across firms.2 This

lack of focus is problematic. First, how environmental policy shifts resources between firms

or regions that differ in productivity should be important for policy evaluation. Second,

rich dispersion in productivity is important in accounting for trade flows and the effects

1Freeman and Kolstad (2007) document the past twenty years of experience in using market-based

instruments, in comparison with command-and-control policies such as regulatory standards.
2On firm heterogeneity, some papers have incorporated cost heterogeneity, but they have restricted

heterogeneity to only a few values in the context of duopoly or oligopoly (e.g., Simpson, 1995, Shaffer,

1995, Carraro and Soubeyran, 1996, and Fischer, 2011). In contrast, our model has a continuum of

monopolistically competitive firms and a continuous distribution of productivity levels across the firms.
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of trade policies (e.g. Eaton and Kortum, 2002, and Melitz, 2003). One should expect

productivity dispersion to be even more important for environmental policies. Emission

creates externalities globally, not just to the region where emission is produced. With

this world-wide view, it is easy to recognize that different countries have vastly different

levels of productivity. Even if an environmental policy is applied to all countries with

no leakage, its effect on emission and welfare should depend critically on how firms with

different productivity respond to the policy in a general equilibrium.

To uncover the importance of productivity dispersion, we introduce emission and en-

vironmental policies into a model of monopolistic competition. There are two types of

consumption goods: a clean good and a dirty-goods composite. The clean good generates

no emission and is produced by a perfectly competitive sector. The dirty-goods compos-

ite aggregates a continuum of imperfectly substitutable varieties. The dirty-goods sector

is monopolistically competitive, with each plant producing a distinct variety. A plant’s

productivity is a draw from a continuous distribution over a wide range of values. The

production of a dirty good generates emission as a by-product, and aggregate emission

reduces the households’ utility. A plant’s emission increases with its input and, hence,

with its output. However, a more productive plant has a lower emission intensity, i.e., a

lower emission-output ratio. A plant may undertake emission abatement.

We evaluate two environmental policies. One is a standard that requires a plant’s

emission-intensity not to exceed a given level, and the other is a tax imposed on each

unit of emission.3 4 Given any target on the aggregate level of emission, we compare the

equilibria under the two policies. To isolate the role of productivity dispersion, we first

examine the economy where no abatement technology is available and then introduce an

abatement technology. In each economy, we determine equilibrium quantities and prices

3The regulatory standard examined here is a performance standard instead of a technology standard

(see IPCC, 2007). A technology standard mandates specific pollution abatement technologies or production

methods, such as specific CO2 capture and storage methods on a power plant. A performance standard

mandates specific environmental outcomes per unit of product (or input) such as a certain number of

grams of CO2 per kilowatt-hour of electricity generated.
4We do not examine tradable emission permits or quotas because they are equivalent to the emission tax

in our model. In fact, the price of such tradable permits is equal to the tax rate. Monnet and Temzelides

(2011) examine more elaborate emission trading mechanisms.
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of goods produced in the two sectors. We rank the two policies with the representative

household’s utility as the welfare function.

A critical difference between the two policies is their effect on the average productivity

in the dirty-goods sector. The tax does not change the average productivity, because it

increases all plants’ marginal costs by the same proportion and reduces each plant’s input

and output by the same proportion. In contrast, the standard constrains low-productivity

plants more severely because low-productivity plants have a higher emission intensity.

This uneven constraint across the plants shifts resources from low-productivity to high-

productivity plants. A natural conjecture is that this shift increases the average produc-

tivity in the sector, which may make the standard a better policy than the tax. Surprisingly,

the opposite is true: The shift in resources reduces the average productivity.

This result arises from the feature that the variety produced by a plant with higher pro-

ductivity has a lower marginal contribution to the dirty-goods composite because this mar-

ginal contribution is diminishing. The average productivity in the economy is a weighted

sum of the plants’ productivity, where the weights for a plant are the variety’s marginal

contribution to the composite.5 This “value-weighted” marginal productivity is equalized

across all operating plants in the equilibrium as a result of perfect mobility of resources

across the plants. When the standard shifts resources from low-productivity plants to

high-productivity plants, it increases output of the plants whose output is already high

and whose marginal contribution to the composite is low. Thus, the average productivity

is lower under the standard than under the tax. This result holds regardless of whether or

not the abatement technology is available. Without the abatement technology, the tax is

unambiguously better than the standard. The higher average productivity under the tax

not only allows the average price to be lower and output of the dirty-goods composite to

be higher, but also induces more varieties of the dirty goods to be produced under the tax.

With the abatement technology, the average productivity is still higher under the tax

than under the standard. However, if productivity dispersion is small, the standard may

5The marginal contribution is used as the weights for a variety in calculating the average productivity

because there is a continuum of varieties, each of which contributes only marginally to the composite.
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induce a smaller increase in the marginal cost of production than the tax, as we will explain

in section 4.3. If this cost advantage is sufficiently large to outweigh the disadvantage in the

average productivity, then the standard generates higher output of the dirty goods than the

tax, at the expense of the clean good. The quantity of the dirty goods is significantly higher

under the standard than under the tax only if a relatively small saving in the marginal

cost translates into a large increase in output. This is the case when the plants have

sufficiently high market power. Thus, the relative advantage of the two policies depends

on productivity dispersion and market power. For the standard to generate higher welfare

than the tax, the plants need to have both sufficiently high market power and sufficiently

similar productivity. If either market power is small or productivity dispersion is large,

then the tax dominates the standard. Moreover, when productivity dispersion exceeds a

certain level, the tax is superior to the standard for all values of market power.

Our analysis implies that the wider the sector or region that an emission target is

intended to cover, the more likely that the tax achieves higher welfare than the standard.

Especially, when a target covers many countries or the entire world, the vast dispersion in

productivity can render the tax a far better policy than the standard. Thus, after all, the

shift of opinions in the last four decades or so in favor of market-based instruments does

have a justification on the ground of productivity dispersion.

Productivity dispersion is modeled here similarly to the Eaton-Kortum-Melitz trade

model. As such, the modeling builds a link between environmental and international

economics. Despite this link, we should caution that environmental issues are different from

trade issues such as tariffs and quotas (e.g., Young and Anderson, 1980). First, emission

generates a negative externality to the society which has no apparent counterpart in the

trade literature. Second, emission is a by-product of production. An emission policy is

imposed on this by-product rather than on the regular goods as are tariffs and trade quotas.

Third, the producers can reduce emission by abatement without affecting output of the

regular goods, and different environmental policies affect the abatement choice differently.

Our paper is related to the literature originated from the seminal paper of Weitzman
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(1974) that addresses the question whether it is more desirable to control the price or the

quantity of emission.6 The main issue in our paper is not price-versus-quantity, since we

fix the quantity of aggregate emission at any arbitrary target. Moreover, the price-versus-

quantity literature evaluates one group of market (price) instruments against another group

of market instruments (e.g., tradable quotas). In contrast, we evaluate a market instrument

(the tax) against a nontradable instrument (the standard). Finally, while uncertainty is

the main character in this literature that determines whether a price or a quantity control

is superior, we abstract from aggregate uncertainty and focus, instead, on productivity

dispersion among the plants and its interaction with abatement.

Since the plants have monopoly power on a variety, our model is related to the literature,

originated from Buchanan (1969), that analyzes the importance of the market structure in

determining optimal corrective policy in the presence of externalities. The main insight of

this literature is that when market power causes output to be inefficiently low, a tax on

firms exacerbates the distortion by further reducing output, in which case policies that do

not directly target prices (such as a standard) may be better in correcting the inefficiency.7

In contrast to this literature, we focus on productivity dispersion rather than market power.

Rich dispersion in productivity changes the main results significantly. In particular, when

an abatement technology is not available, the tax always generates higher welfare than the

standard no matter how high market power is. When an abatement technology is available,

market power can yield an advantage to the standard over the tax that is consistent with

the above insight, but this advantage exists only if productivity dispersion is small. When

productivity dispersion exceeds a critical level, the tax, again, generates higher welfare

than the standard regardless of how large market power is.

Let us clarify our focus further. First, we assume that a government can only choose

6We do not survey this literature here. For some examples, see Laffont (1977) for incorporating subjec-

tive uncertainty, Yohe (1978) for examining additional sources of uncertainty and informational difficulty

within a regulated heirarchy, and Kelly (2005) for a general-equilibrium framework. Other examples are

Pizer (2002), Hepburn (2006) and Mandell (2008).
7See Requate (2005) for a survey. The early examples in this literature are Baumol and Oates (1975)

and Barnett (1980). Some later examples are Simpson (1995), Shaffer (1995), Carraro and Soubeyran

(1996) and Holland (2009).

5



either the emission tax or the emission-intensity standard, instead of a cocktail of policies,

and the tax revenue is rebated to consumers through lump-sum transfers.8 Second, we

compare the two policies under any given emission target instead of the optimal target.

However, our results hold even if the target is optimally set. If one policy is better than

another policy under all arbitrarily given emission targets, it is also better if the target is

chosen optimally. Third, we abstract from many other factors such as emission monitoring

when producers have private information (see Montero, 2005) and practical difficulties

or leakages in implementing a policy (see Stern, 2006). Such abstraction is intended to

focus on productivity dispersion whose role is not well understood in the literature in the

evaluation of environmental policies.

2 Model Environment

Consider a one-period economy that is populated by a unit measure of households. Each

household is endowed with one unit of resource that can be supplied in production and

receives dividends from a diversified portfolio of the plants. A household’s utility function

is (), where  is consumption of a clean good,  consumption of a composite of

the dirty goods, and  the aggregate level of emission per household. Define

() =
2()

1()
,

where the subscripts of  indicate partial derivatives.

Assumption 1 (i) 1  0, 2  0, 11  0 and 22  0; (ii) 3  0; (iii) 3() ≤ 0.

Part (i) of the assumption is standard. Part (ii) says that emission generates a negative

externality on households. Part (iii) says that emission (weakly) increases a household’s

desire for the clean good relative to the dirty goods.

8This assumption eliminates the need for government revenue as a potential difference between the tax

and the standard. It also eliminates output-based refunding schemes and the so-called double dividend of

a policy that arises from using the revenue of the policy to reduce other distortions in the economy. See

Stern (2006, Part IV), Gersbach and Requate (2004) and Fischer (2011) for more discussions.
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The clean good is homogeneous and its production does not generate emission. The

technology of producing the clean good is , where  is the input and   0 is a

constant. For the sake of simplicity, we lump all types of inputs into one so that the

production function is linear in this input. There is perfect competition in the clean-good

sector, and so the price of the resource in terms of the clean good is equal to the constant

. The clean good serves as the numeraire in this model.9

The dirty-goods sector is monopolistically competitive and produces varieties in the

continuum, [0 1]. Each variety is produced by at most one plant, and the range of varieties

produced in the equilibrium is endogenous. All plants in the dirty sector are identical

ex ante. Ex post, they are heterogeneous because of their choice of the variety and a

random draw of productivity. At the beginning of the period, each plant can choose at

most one variety to produce. It is optimal for different plants to choose distinct varieties.

After this choice, the plant draws a productivity level  from the distribution (cdf) (),

with a support [∞). Then, a plant chooses whether or not to operate. If a plant with
productivity  operates, its output is

() = (), (1)

where () is the plant’s input. Because the plant is the only producer of the variety, it

takes the demand curve for the variety, not the price of the variety, as given. We refer to

a plant with productivity  as plant .

Whether a plant chooses to operate or not can depend on the environmental policy in

place. Hence, the set of productivity levels in operation, denoted as , may not necessarily

be the same as the support of the distribution . The composite of the dirty goods that

enters a household’s utility function is:

 =

∙Z
∈

[()]
−1
 ()

¸ 
−1
, 1   ∞. (2)

9The assumption that the clean-good sector is perfectly competitive and generates no emission is made

without loss of generality. Including the clean good in the model enables us to capture a policy’s general-

equilibrium effect of shifting resources between the two sectors. Also, it enables us to model all fixed costs

and taxes in terms of the clean good, thereby simplifying the accounting in the model.
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The constant  is the elasticity of substitution between any two varieties. A plant’s “market

power”, 1(− 1), is finite because   1, and positive because  ∞. It is important to
bear in mind that two plants can draw the same  but they necessarily produce different

varieties. The output levels of different plants are not additive in the aggregator (2),

regardless of whether they draw the same or different productivity.10

Production of a dirty good generates emission as a by-product. In the baseline model,

the amount of emission of plant  obeys the following process:

() =  ()   0. (3)

In an extended model, we will introduce emission abatement. Let us express the abatement

level, , in terms of the input so that the abatement cost is . A plant  that chooses

abatement () has the following level of emission:

() =  ()

µ
1 +

()

()

¶− 1


,   0. (4)

The effectiveness of the abatement technology can be measured by 1. In the limit  → 0,

even a tiny amount of abatement can eliminate the plant’s emission; in the opposite limit

 → ∞, abatement does not reduce emission. We refer to the ratio ()() as the

emission intensity, and to the ratio ()() as the abatement intensity.

This emission process captures two general and realistic features. First, given the same

abatement intensity, a high- plant has a lower emission intensity than a low- plant,

although the level of emission increases in  as output does. The use of this feature

will become apparent below. Second, the emission intensity is decreasing and convex in

the abatement intensity. It is intuitive that the emission intensity is a function of the

intensity, rather than the level, of abatement. This function should be decreasing in order

for the abatement intensity to have a positive marginal contribution to the reduction in the

emission intensity, and convex in order for this marginal contribution to be diminishing.

Although our main results can continue to hold with more general emission processes that

have these features, the simple form above maintains tractability.

10The quantity () is not total output of all plants that draw the same , but rather the output of each
of these plants. The same clarification applies to all plant-specific notation, such as ().
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We evaluate two environmental policies: (i) an emission tax  that requires a plant

to pay  (in terms of the clean good) for every unit of emission, and (ii) an emission

standard  that requires a plant’s emission intensity not to exceed . The revenue from

the tax is rebated to the households through lump-sum transfers. Note that the emission

standard is on a plant’s emission intensity rather than the level. This specification makes

sense when the plants are heterogeneous in productivity. A standard on the emission level,

instead, would constrain a high-productivity plant more than a low-productivity plant.

Similarly, the presence of heterogeneous productivity is the reason why we assume that a

plant’s emission intensity is a decreasing function of . If a plant’s emission intensity is

an increasing function of productivity, instead, then a standard puts an upper bound on

productivity below which a plant can operate. Since a standard in this case prevents more

productive plants from operating, it does not seem to be a good policy.

Another commonly debated policy is one that requires a plant to obtain an emission

permit for each unit of emission. We do not examine this policy separately here because

it is equivalent to the tax in our model, as stated below:

Remark 2 When an emission permit is tradable in a competitive market, it is equivalent

to an emission tax, with the price of the permit being equal to the tax rate.

Moreover, a standard can be interpreted as a nontradable permit that is granted free to

the plants whose emission intensity does not exceed the constant . Thus, an emission tax

differs from an emission standard in two ways. One is that the tax is a market instrument

but the standard is nontradable. The other is that the tax directly affects a plant’s marginal

cost of production, but the standard affects the marginal cost only indirectly through the

abatement choice and/or equilibrium effects.11

Note that uncertainty does not play an important role in this model, in contrast to the

literature on price versus quantity. Although a plant’s productivity is random, it is realized

11Another policy is to issue a production permit (license) that a plant needs to produce dirty goods and

that can be sold in the market at a competitive price. In contrast to an emission tax or standard, such

production permits do not directly restrict a plant’s emission, because a plant that obtains a production

permit can produce as much as it wants. For this reason, a production permit cannot affect a plant’s

choice of the abatement technology.

9



before the plant chooses input, output and abatement. Moreover, the continuum of plants

ensures that there is no aggregate uncertainty. Specifically, the supply curve of the dirty-

goods composite, total input, total abatement, and total emission are all deterministic.

3 Equilibrium and Policies without Abatement

It is important to isolate the role of productivity dispersion in policy evaluation. For this

purpose, we first examine the economy where an abatement technology does not exist so

that emission follows (3). Section 4 will incorporate an abatement technology. In the

current section, we unify the notation for the equilibrium when both policies are present.

3.1 A household’s decisions

A household chooses consumption of the clean good, , and consumption of the dirty goods,

(())∈ , where () is the demand for the variety of each plant that draws productivity

. Let () be the price of the variety produced by plant . The household’s optimal

choices maximize () subject to (2) and the following budget constraint:

+

Z
∈

()()() ≤  +

Z
∈

()() +  .

Here, () is the dividend from plant  and  the lump-sum transfer from the government.

This maximization problem yields the following optimality conditions:

() = 

µ
()



¶−1
, (5)

2()

1()
=  , (6)

where  is the following price of the composite :

 =

∙Z
[()]1−()

¸ 1
1−
. (7)

3.2 Plants’ decisions

Consider a plant  in the dirty-goods sector that chooses to produce. The plant’s profit is:

() = ()()− ()− ().
10



The plant faces the demand curve for its product, given by (5). It chooses the input, (),

to maximize profit, taking as given the demand for the composite, , and the price index,

 . Substituting () from (5), () from (1), and () from (3), we get:

() = 
1
 [()]

−1
 − ( + )().

It is easy to verify that the plant’s optimal input is

() =  (−1)
µ
(− 1)
( + )

¶

. (8)

The plant’s output is () = () and its emission is () = (). The price of the

plant’s product, given by (5), can be written explicitly as

() =


− 1( + )−. (9)

The term ( + )− is the plant’s effective marginal cost, which is the marginal cost

adjusted for the plant’s productivity and the emission tax. Thus, the price is a constant

markup 1
−1 over the effective marginal cost. Moreover, the plant’s maximized profit is:

() =
 


(−1)

µ
− 1

( + )

¶−1
. (10)

A plant’s decision on whether or not to operate follows a cutoff rule; that is, there exists

0 ∈ [∞) such that a plant  operates if and only if  ≥ 0. The cutoff 0 depends

on the policy. Under the emission tax, since ()  0 for all , then 0 = ; that is, all

plants choose to operate. Under the emission standard, a plant  can operate if and only

if  ≥ ()() = −; that is, 0 = ln(). We summarize these two cases:

0 =

½
ln(), with the emission standard
, with the tax.

(11)

The set of productivity levels observed in the economy is  = [0∞).

3.3 Aggregation and equilibrium

Let us denote total input in the dirty-goods sector as  =
R∞
0

()() and the average

productivity in the dirty-goods sector as  = . Substituting () from (8) to compute 
11



and () from (1) to compute, we can express the average productivity in the dirty-goods

sector as  = (0) where

(0) =

∙Z ∞

0

(−1)()
¸ 1
−1
. (12)

Substituting (9) into (7) reveals that the price index of the dirty-goods composite is:

 (  ) ≡ 

− 1(
 + 


). (13)

If the operating plants’ effective marginal costs, ( + )−, are aggregated in the same

way as the varieties’ prices are aggregated for the price index, then the average effective

marginal cost is (+). According to (13), the price level of the dirty-goods composite

is a constant markup over the average effective marginal cost.

Let us refer to (   ̄  ) as the policies, where ̄ is the target level of aggregate

emission. An equilibrium under the policies (   ̄  ) consists of the set  = [0∞),
the functions (() () ())∈ , and the aggregate levels (  ) that satisfy the

following requirements: (i) Given the functions (())∈ , a household’s demand for the

clean good, , and the demand for each dirty good, (), satisfy (5) and (6); (ii) Given

() and the demand function (5), a plant operates if and only if  ≥ 0, where 0 satisfies

(11), and if a plant operates, its choices of input and output satisfy (8) and () = ();

(iii) The levels of () satisfy (13),  =  and  = , where  is given by (12);

(iv) The resource market clears, i.e.,  = 1− ; (v) The market of the clean good clears,

i.e.,  = , and the markets of the dirty goods clear; (vi) The policy  or  ensures

aggregate emission not to exceed the target ̄ , i.e.,  ≤ ̄ , while the transfer  satisfies

 =  under the tax and  = 0 under the standard.

We examine the relevant case where the emission target ̄ is binding, i.e., where the

economy would produce   ̄ if there were no policy. In this case,  = ̄ in the

equilibrium. An equilibrium can be determined as follows. Part (iii) above gives  = ̄,

 = ̄ and  =  (  ), while parts (iv) and (v) give  = (1 − ̄

). With these

results, (6) required by part (i) becomes



µ
 − 

̄


 

̄


 ̄

¶
=  (  ), (14)
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where  = (0). Equation (14) determines the tax or standard that is needed to implement

the emission target ̄ . Note that the emission standard enters the equation through (0),

because 0 is a function of . For any target ̄ , let (̄) denote the tax, and (̄) the

standard, that achieves the target.

Lemma 3 Suppose that an abatement technology does not exist. Assume that [()]

is strictly increasing in  for any given () and that lim→0 () = 0. The target ̄

is binding if and only if ̄  max, where max is defined by



µ
 − 

max


 ()

max


max

¶
=  (0 ()). (15)

There is a unique equilibrium under each policy. Moreover,  0(̄)  0 and 0(̄)  0.

The proof of this lemma appears in Appendix A. In addition to existence and unique-

ness of an equilibrium, the lemma states the intuitive feature that the tax can be lower

and the standard can be less stringent when the emission target is higher.

3.4 Comparing the two policies

Let us add the subscript  to (0    ) under the tax and the subscript  under

the standard. The following proposition compares the equilibrium under the tax with the

equilibrium under the standard (see Appendix A for a proof):

Proposition 4 Assume that an abatement technology does not exist. Given any binding

emission target ̄ , the following results hold: (i)  =  and  = ; (ii) 0  0,

  ,    and   ; (iii)   .

Result (i) is not surprising. Since a plant’s emission is proportional to the plant’s

input, total emission is proportional to total input in the dirty-goods sector. Given the

same emission target, the emission process (3) implies that total input in the dirty-goods

sector must be the same under the two policies. As a result, total input in the clean-good

sector and, hence, consumption of the clean good must also be the same under the two

13



policies. If the plants were homogeneous, this result would imply that the two policies were

equivalent, because they induce the same resource allocation between the two sectors.

The two policies are not equivalent when the plants are heterogeneous in productivity,

as stated in (ii) and (iii) above. They induce different allocations within the dirty-good

sector. Relative to the standard, the tax induces a larger set of varieties of the dirty

goods to be produced, higher consumption of the dirty-goods composite, a higher average

productivity and a lower price of the dirty-goods composite. We will explain these effects

below. Since the tax generates higher consumption of the dirty-goods composite and the

same level of consumption of the clean good, the tax dominates the standard in welfare.

The outcome 0  0 in (ii) above means that more varieties of the dirty goods are

produced under the tax than under the standard. This outcome arises from the difference

in how the two policies affect a plant’s marginal cost and emission. The tax increases every

plant’s effective marginal cost of production, thereby reducing every plant’s input, output

and emission. However, since each plant charges a price that is a constant markup over

the effective marginal cost, every plant’s profit is still positive after the tax. In contrast,

the standard does not affect a plant’s effective marginal cost and emission, provided that

the plant can meet the standard. To meet the emission target at the aggregate level, some

plants must shut down. These are the plants with low levels of . As a result, fewer

varieties are produced under the standard than under the tax.

More importantly, the two policies differ in the effect on the average productivity. As is

clear from (12), the tax does not change the average productivity, because the tax reduces

total input in the dirty-goods sector and output of the dirty-goods composite in the same

proportion. In contrast, the standard shuts down low- plants, and the input released from

low- plants is shifted to high- plants. A priori, one would guess that this shift should

increase the average productivity. Surprisingly, the opposite is true, as (12) clearly shows

that the average productivity falls as 0 increases. Thus, the average productivity is lower

under the standard than under the tax.
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How can it be the case that moving the input from low- plants to high- plants reduces

the average productivity? The key to answering this question is to understand that a variety

is valued by its marginal contribution to the composite, . This value-weighted marginal

productivity of the input is the same for all . To verify this statement, note that the sum

of the input in all plants with the same  is 0()(). Using (2), (5), (9), and (13), we

can compute the marginal contribution of this input to  as:



0()[()]
= 

µ


()

¶1
=



− 1
 + 


= (0).

Since this is independent of , the value-weighted marginal productivity is equalized across

the plants. The driving force for such equalization is perfect mobility of the resource.

Although a low- variety has a lower productivity than a high- variety, a smaller amount

of a low- variety is produced. Since consumers value all varieties and the marginal utility

of a variety is diminishing, a low- variety generates a higher marginal utility (and hence

a higher price) than a high- variety. Precisely, productivity  is weighted by [()]1

in the formula above, and the ratio () is decreasing in . Weighted by the marginal

value in , productivity is the same in all varieties.

When low- plants shut down under the emission standard and the resource is re-

allocated to high- plants, output of the remaining plants increases. This higher quantity

reduces the marginal contribution of each remaining variety to , because this marginal

contribution is diminishing. In the new equilibrium, the marginal contribution of the input

is equalized at a lower level across the remaining plants. We can see this loss in productivity

by rewriting the average productivity equivalently as

1



Z ∞

0



0()()
[()0()] =



0()()
.

As the marginal productivity of each remaining variety (i.e., the right-hand side) falls, so

does the average productivity.

Now it is easy to understand the results    and   . The price level is

a constant markup of the average effective marginal cost, ( + ). Since the average

productivity is higher under the tax than under the standard, the average effective mar-

ginal cost is lower and, hence, the price level is lower under the tax. Moreover, higher
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productivity under the tax directly translates into higher output of the composite, because

total input in the dirty-goods sector is the same under the two policies. It is worthwhile

emphasizing that the tax has such superiority over the standard for all values of market

power, i.e., for all   1.

4 Equilibrium and Policy Analysis with Abatement

Now let us introduce an abatement technology through (4). The main purpose is to

uncover the interaction between productivity dispersion and abatement. By analyzing

this interaction, we bring out the role of market power in policy evaluation that has been

emphasized by the literature originated from Buchanan (1969) (see the introduction) and

show how this role is limited by productivity dispersion.

4.1 Equilibrium characterization under each policy

A household’s decisions are the same as those in subsection 3.1. A plant’s decisions need

to be modified. Consider the tax first. With the input in production, (), and the input

in abatement, (), profit of a plant  is

() = 
1
 [()]1−

1
 − ()− 

µ
1 +

()

()

¶− 1


()− (),

where we have substituted the demand function, (5), and the emission process, (4). The

plant chooses the abatement level, (), and the input, (), to maximize profit. It is easy

to verify that the plant’s optimal choices are12

() = ()

"µ




¶ 
+1

− 1
#
, (16)

() =  (−1)
∙
(− 1)



¸
, (17)

where

 ≡ ( + 1)

µ




¶ 
+1

. (18)

12To avoid unnecessary complications, we allow the choice  to be negative as well as positive, provided
1 + 

 ≥ 0. The interpretation of a choice   0 is that the plant uses a production technology that
produces more emission than the production technology in the baseline model.
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By comparing (17) with its counterpart without the abatement choice, (8), we can

interpret  as the plant’s marginal cost which incorporates the marginal cost of the inputs

in production and abatement, and the tax. Adjusted for the plant’s productivity, the

plant’s effective marginal cost is −. The optimal choices above induce the following

levels of output, price, and emission under the tax:

() =  
∙
(− 1)



¸
, () =

−

− 1 , () = 

µ




¶ −1
+1

(). (19)

As in the baseline model, the price of a plant’s product is a constant markup over the plant’s

effective marginal cost. Moreover, ()  0 for all , and so all plants operate under the

tax. That is, the set of productivity levels observed in the economy is  = [∞).
Next, consider the emission standard. Profit of a plant  is

() = 
1
 [()]1−

1
 − ()− ().

The standard imposes the constraint, ()() ≤ . With the emission process, (4), we

can rewrite this constraint as () ≥ ()
£¡




¢
− − 1¤. Maximizing profit under this

constraint, a plant ’s optimal choices of  and  are:

() = ()

∙µ




¶

− − 1
¸
, (20)

() =  [(+1)−1]
∙
(− 1)



³


´¸
. (21)

Under the standard, a plant-’s output, price and emission are

() =  (+1)
∙
(− 1)



³


´¸
, (22)

() =
−(+1)

− 1 

µ




¶

, () = (). (23)

The plant’s marginal cost is 
¡



¢
−, which includes the price of the input and the

marginal cost of abatement. The effective marginal cost is 
¡



¢
−(+1).

In contrast to the model without abatement, the model with abatement implies that

every plant operates. To meet the standard, a plant spends enough in abatement and cuts
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production sufficiently. Since all varieties are produced under both policies, we will omit

the notation for the interval [∞) over which the integrals are computed.
The aggregate input in production, , and the average productivity, , are computed

similarly to the baseline model. The aggregate level of abatement is  =
R
()(). An

equilibrium can be defined by incorporating abatement into the definition in the baseline

model. The following lemma determines the equilibrium (see Appendix B for a proof):

Lemma 5 Assume that the abatement technology (4) is available. Under either policy,

there is a unique equilibrium, where  =  and  is determined by (6). Under the

emission tax,  = (), where the function () is given by (12), and other aggregate

quantities and prices are as follows:

 =




µ




¶+1

,  =
( + 1)

(− 1)
µ




¶

, (24)

 = 

∙µ




¶

− 1
¸
,  =  − 



µ




¶

. (25)

Under the emission standard, aggregate quantities and prices are:

 =

∙Z
(+1)(−1)()

¸ 
−1
ÁZ

[(+1)−1]() , (26)

 =




R
[(+1)−1]()R
(+1)()

,  =


(− 1)
µ




¶

, (27)

 = 

∙µ




¶

− 1
¸
,  =  − 



µ




¶

, (28)

where

 ≡
£R

(−1)(+1)()
¤ £R

(+1)()
¤£R

[(+1)−1]()
¤+1 . (29)

4.2 Comparing the two policies

With the abatement choice, aggregate quantities depend on the distribution of productivity

in a complicated way as shown in Lemma 5. To gain insight, let us assume a specific

distribution function of  and a specific utility function in this subsection. We will consider

more general forms of these functions in section 5.
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The specific distribution function (cdf) of  is exponential:

() = 1− −(−),  ∈ (0 ̄), (30)

where ̄ = min{1
2
 1
(+1)

}. This distribution implies that productivity  =  is distributed

according to the Pareto distribution: () = 1−
¡




¢1
. The restriction   1[(+1)]

is required for  in (29) to be finite, while the restriction   12 is required for the

variance of  to be finite. Under the restriction   12, the mean of  is 

1− and the

variance is 22

(1−2)(1−)2 . If we fix the mean of 
 at any arbitrary level ̄  0 by setting

 = ln[(1− )̄], then the variance of  is (̄)2

1−2 . Since this variance is increasing in , we

refer to  as productivity dispersion among the plants.

The utility function is assumed to be

() = (+ ()), with  0  0,  00  0,   0, 0  0. (31)

With this utility function, the marginal rate of substitution between the dirty-goods com-

posite and the clean good is 21 = (). For any given emission target  , the equilib-

rium price of the dirty-goods composite is a constant  = (). With (31), we can solve

equilibrium  explicitly from (6) as

 =

⎧⎪⎨⎪⎩



h
(−1)()


( )

+1

+1

i1
, with the tax




h
(−1)()


()

+1



i1
, with the standard.

(32)

For any given emission target, the equilibrium value of  differs under the two policies in

two aspects. One is the difference in the average productivity. The other is that there is a

constant ( + 1) under the tax, while the corresponding constant is  under the standard.

Add the subscript  to the variables under the tax and the subscript  under the

standard. In Appendix C, we prove the following proposition:

Proposition 6 Assume that the abatement technology in (4) is available and that produc-

tivity is distributed according to (30). Then,    . Define

0 =
1



h
( + 1)(+1) − 1

i
( 1).
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With the utility function (31),  =  = (), and the following results hold: (i)¡


+

¢


¡


+

¢

; (ii) If  ≥ 0, then    for all ; if   0, then there exists

0() ∈ (0 ̄) such that    iff   0(); (iii)    =⇒    =⇒    =⇒
   and    ; (iv) The emission target that maximizes utility is the same

under the two policies and is given by ∗ = argmax [()](1+).

Introducing the abatement choice does not change the ranking of the two policies in

the average productivity. Measured as , the average productivity is still higher under the

tax than under the standard. In contrast to the baseline model, however, the standard

induces lower average productivity than the tax not by shutting down low- plants, but

by reducing low- plants’ input and shifting it to high- plants. This shift occurs because

a low- plant must have a higher abatement intensity than a high- plant in order to meet

the standard (see (20)). Since the marginal contribution of each variety to the composite is

diminishing, this shift of the production from low-output varieties to high-output varieties

reduces the average contribution of the input to the composite. In contrast, the tax does

not induce this shift of the input, because the the abatement intensity is constant across

the plants under the tax. Again, the average productivity is lower under the standard.

Note that this result does not rely on the particular utility function (31).

The measure  counts only the input in production of the dirty goods but not the

input in abatement. If the input in abatement is also counted, total input in the dirty-

goods sector is ( + ), and the overall productivity in the sector is ( + ). Part

(i) of Proposition 7 says that, when the utility function has the form in (31), the overall

productivity is also higher under the tax than under the standard.13

Introducing the abatement choice can modify the ranking of the two policies in other

aspects, including the ranking in welfare. As stated in (ii) of Proposition 7, the standard

yields higher welfare than the tax if productivity dispersion is sufficiently small and if

market power of each variety is sufficiently strong. Part (iii) provides a list of comparisons

13As in the baseline model, one can compute the effective marginal productivity of the input in each

plant  as 1
0()[() + ()] and verify that it is equal to (+).
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between the two policies. In particular, for the standard to yield higher welfare than the

tax, the standard must induce higher output of the dirty-goods composite, a higher input

into production of dirty goods, a higher intensity (and level) of abatement, and lower

consumption of the clean good. Part (iv) says that the optimal emission target is the same

under the two policies. An implication is that the same ranking described in parts (i) -

(iii) is valid if the emission target is chosen optimally under each policy.

In the next two subsections, we will explain why these modifications occur. Before

doing so, it is useful to emphasize that market power affects the welfare ranking between

the two policies only when productivity dispersion is small. Even in the limit case → 1,

where a plant’s market power is the largest, the critical level on productivity dispersion,

0(), satisfies 0()  ̄. This means that if productivity is sufficiently dispersed in the

sense   0(1), then the tax is superior to the standard for all values of market power

even when abatement is available. In contrast, the literature that focuses on market power

but abstracts from productivity dispersion shows that the standard is superior to the tax

when market power is sufficiently large (see the introduction for references).

4.3 Why is the standard possibly better than the tax?

The answer to this question must lie in the response of abatement to the two policies,

because the standard is always inferior to the tax in the economy without an abatement

technology. To explain the role of abatement clearly, it is useful to isolate this role by

abstracting from productivity dispersion. Accordingly, in this subsection we assume that

all plants have the same value of . In this economy, the following proposition states the

ranking between the two policies (see Appendix B for a proof):14

Proposition 7 When there is no productivity dispersion, the equilibrium with the abate-

ment choice yields  =  ,  = 1,    ,    ,    and    for

any given emission target  . Moreover, a sufficient condition for    is  ≤ 1 + 1

.

On the other hand, if  is sufficiently large, then    .

14The results in Proposition 7 hold for general utility functions, not just for that in (31).
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When all plants are homogeneous in productivity, the average productivity is the same

under both policies, and the distribution of relative prices between the varieties is degener-

ate. In this economy, the two policies both increase the effective marginal cost of production

of the dirty goods, exert an upward pressure on the price, and hence reduce output of the

dirty goods. The main difference between the two policies is that the standard increases

the effective marginal cost by less than the tax does, as explained below. As a result, the

standard generates higher input and output in the dirty-goods sector than the tax does.

Moreover, because the emission target is the same under the two policies and output of

the dirty goods is higher under the standard, the emission intensity is lower under the

standard than under the tax. To generate a lower emission intensity, the standard must

induce a higher abatement intensity than the tax does, as stated in Proposition 7. Because

the standard induces more resources to be used in the dirty-goods sector, a lower quantity

of the clean good is produced under the standard than under the tax.

The welfare ranking between the two policies depends on the relative change in the two

types of consumption. This is where market power plays a role. When market power of

each variety in the dirty-goods sector is sufficiently strong in the sense that  ≤ 1 + 1

,

the markup of price on the marginal cost is high. In this case, even a small difference in

the marginal cost can translate into a large difference in price and, hence, in output. The

additional quantity of the dirty-goods composite produced under the standard relative to

the tax can be so large that it outweighs the shortfall in the clean good. On the other

hand, if market power is weak, the standard yields lower welfare than the tax, because

the additional quantity of the dirty goods produced under the standard is too small to

compensate for the shortfall in the clean good. Note that this role of market power in

policy evaluation is to determine the balance between the two sets of goods and, as such,

it is a feature of the general equilibrium of our model. This role is different from the one in

a partial equilibrium which is to determine which policy yields higher output of the dirty

goods. In the economy with abatement and homogeneous productivity, output of the dirty

goods is always higher under the standard than under the tax.
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We now explain why the standard increases the marginal cost by less than the tax

does when the plants are homogeneous in productivity. A plant’s effective marginal cost

consists of the direct and the indirect marginal cost. The direct marginal cost  is the same

under the two policies, but the indirect marginal cost is different. To meet the standard

on the emission intensity, a plant keeps the abatement intensity at a constant ratio that

is a function of the standard. When the input increases, the required level of abatement

increases at this ratio, which is the indirect marginal cost. Under the tax, it is also optimal

for a plant to keep the abatement intensity at a constant ratio that is a function of the

policy (tax). And so the abatement cost increases according to this ratio as the input in

production increases. However, this is not the only indirect marginal cost under the tax.

Even when the abatement intensity is kept constant, an increase in the input in production

increases emission (see (4)), which is taxed. This additional cost under the tax induces a

plant to restrict output by more than under the standard.

To support the above explanation, recall that a plant’s effective marginal cost of pro-

duction is (+1)( 

)


+1 − under the tax and 

¡



¢
−(+1) under the standard. When

there is no dispersion in productivity, each plant’s input, abatement, and emission are equal

to their industry average. That is, () = , () =  and () = . From the equation

() = , we can solve the policy level ( or ) that is required to meet the target . At

this policy level, the effective marginal cost of production is ( + 1)( 

)− under the

tax and ( 

)− under the standard. Clearly, the former is higher than the latter by a

factor ( + 1). Since the price level is (− 1) times the effective marginal cost, it is also
higher under the tax than under the standard by a factor ( + 1).15

4.4 Interaction between productivity dispersion and abatement

Let us now return to the economy with productivity dispersion in order to examine the

interaction between productivity dispersion and abatement.

Productivity heterogeneity can reverse the above cost advantage of the standard over

15It can be verified that, with homogeneous productivity, the effective marginal cost of production is

higher under the tax than under the standard even for a general emission process, () = (() ()),
where 1  0 and 2  0.
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the tax. First of all, with productivity dispersion, the average productivity in the dirty-

goods sector is lower under the standard than under the tax, as we explained earlier. A

lower average productivity adds upward pressure on the price. Moreover, the standard tilts

abatement to the plants with low productivity and high cost, thus pushing up the marginal

cost by more at plants with high prices than at plants with low prices. This change in

the distribution of relative prices also adds upward pressure on the price index under the

standard, which is absent under the tax.

To explain why the standard changes the distribution of relative prices, note that low-

plants must have a higher abatement intensity than high- plants do in order to meet the

same standard (see the explanation after Proposition 6). Thus, the standard increases

low- plants’ marginal costs and prices by more than high- plants’. Under monopolistic

competition, low- plants produce less and charge higher prices than high- plants do.

Imposing the standard increases high prices by a larger proportion than low prices, thus

tilting the distribution of relative prices toward high prices. This effect is reflected by an

increase in , defined in (29), which increases  . In contrast, the tax induces all plants

to spend the same proportion in abatement relative to their input in production. Thus,

prices of all varieties increase by the same proportion under the tax, leaving the relative

price between any two plants unchanged.

Overall, whether the standard or the tax creates higher or lower upward pressure on the

price index depends on the extent of productivity dispersion. When productivity dispersion

is sufficiently small, i.e., when  is small, the two new forces above on the price index created

by the standard are small. In this case, the standard has lower upward pressure on the price

index than the tax. When productivity dispersion is sufficiently high, the two new forces

above on the price index dominate the force in the economy with homogeneous plants. In

this case, the standard has higher upward pressure on the price index than the tax.

Differences between the two policies’ pressure on the price index translate into differ-

ences in the quantity of the dirty-goods composite which, in turn, affect the welfare ranking

of the two policies as stated in (ii) of Proposition 6. With the utility function (31), the
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equilibrium price is fixed by the target on aggregate emission as  = (). Any upward

pressure on the price index must be absorbed by a fall in output of the dirty-goods com-

posite in order to restore the equilibrium. Thus, when productivity dispersion is small,

the standard induces a higher quantity of the dirty-goods composite than the tax does. If

market power is also sufficiently high, this higher quantity of dirty goods dominates the

lower quantity of the clean good, as we explained in the previous subsection, and welfare

is higher under the standard than under the tax. On the other hand, if productivity dis-

persion is high, the standard induces much lower average productivity and a much lower

quantity of the dirty goods than the tax does, in which case the tax dominates the stan-

dard in welfare. With sufficiently high dispersion in productivity, this superiority of the

tax holds regardless of the value of market power.16

Let us turn to the remaining parts of Proposition 6. Part (iii) is easy to understand.

First, for utility to be higher under the standard than under the tax, the standard must

generate less pressure on the price index of the dirty-goods composite, in which case the

composite decreases by less under the standard than under the tax. Second, since pro-

ductivity is lower under the standard than under the tax, the input in the dirty-goods

sector must be higher under the standard in order to produce a higher composite of the

dirty goods than under the tax. Third, with (4), abatement is proportional to the input

in production. Thus, a higher input in the production of the dirty-goods composite also

calls for a higher level of abatement. Finally, when the input in the dirty-goods sector is

higher under the standard, the input in the clean-good sector is lower, which contributes

to lower consumption of the clean good under the standard than under the tax.

Part (iv) of Proposition 6 describes the optimal emission target, i.e., the target that

maximizes the representative household’s utility. With (31), the optimal level of  is

proportional to . Since  depends on only through the term(1+), so does the

16Note that the effectiveness of the abatement technology, 1, also plays a role since the critical levels
0 and 0 in Proposition 6 depend on . In the limit  → 0, even a tiny amount of input in abatement
can reduce emission to zero. In this case, the two policies are equivalent. In the opposite limit  → ∞,
the abatement is not effective at all, and the model approaches the baseline model where the tax induces

higher welfare than the standard.
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utility level. The optimal target maximizes this term regardless of which policy is used to

implement the target. This result implies that parts (i) - (iii) of Proposition 6 continue to

hold when the emission target is set to the optimal level under each policy.

5 Robustness of the Results

Proposition 6 utilized the particular distribution function, (30), and the utility function,

(31). These functional forms enabled us to solve the equilibrium explicitly. However, the

main results hold more generally, as we illustrate in this section.

5.1 The utility function

Consider first the following generalization of the utility function:

() = { + (1− ) [()]}1 ,   ∈ [0 1],   0, and 0  0.

The restriction  ≥ 0 is imposed to satisfy Assumption 1. The case  = 1 corresponds

to (31). The case  = 0 is also analytically tractable and the results are the same as in

Proposition 6 after a modification of 0. For any  ∈ [0 1), the relative price of the dirty-
goods composite to the clean good is endogenous, in contrast to the case  = 1 where the

price is fixed by the emission target. We use numerical examples to illustrate the results

for  ∈ (0 1). Let () =− and fix some of the parameters as follows:

 = 06  = 02  = 3  = 1  = ln(1− ),  = 05

The chosen value  implies that the mean of  is 1 and the variance is 2

1−2 . We explore

different values of (  ). For each  ∈ [0 1], we find the region of ( ) in which the
standard yields higher welfare than the tax.

Figure 1 depicts two sets of curves in the ( ) plane. One is the curve below which

the values of ( ) are feasible. The other is the curve along which the two policies yield

the same welfare, and is drawn for  = 01, 05 and 08, respectively. The standard yields

higher welfare than the tax if and only if the values of ( ) lie below this curve. For all

three values of , the standard dominates the tax in welfare if and only if  and  are
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small. This result is consistent with Proposition 6. In addition, when the elasticity of

substitution between the clean and the dirty goods increases, i.e., when  increases, the

curve moves slightly upward for intermediate values of , but downward for small values

of . This indicates that the more substitutable the clean and dirty goods are, the larger

the parameter region in which the standard dominates the tax.
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Figure 1. The region of ( ) in which the standard dominates the tax

5.2 The distribution function of productivity

Now let us return to the utility function (31) but consider a different distribution of pro-

ductivity. The density function of the distribution of productivity  (= ) is given by

0
() =

(

|| ( − )1−1 −(−)

1

, if   

0, otherwise.
(33)

This distribution is Weibull if   0 and Frechet if   0. We normalize  = 0 to

simplify the algebra. The mean of productivity  is −Γ(1 + ), and the variance of  is

−2
£
Γ(1 + 2)− [Γ(1 + )]2

¤
, where Γ is the gamma function. If we choose  to fix the

mean of  at any arbitrary level ̄, then the variance of  is ̄2
h

Γ(1+2)

[Γ(1+)]2
− 1
i
. Since this
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variance is increasing in ||, we refer to || as a measure of productivity dispersion among
the plants. We restrict   −12 for the variance to be bounded and restrict   − 1

(+1)

for  (defined in (29)) to exist.
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Figure 2. The region of ( ) in which the standard dominates the tax

With (33), the average productivity under the two policies is, respectively:

 = − [Γ (1 +  (− 1))] 1
−1 ,  =

− [Γ (1 +  ( + 1) (− 1))] 
−1

Γ (1 +  ( ( + 1)− 1)) 

The term  defined in (29) is equal to

 =
Γ (1 +  ( + 1) (− 1)) [Γ (1 +  ( + 1))]

[Γ (1 +  ( ( + 1)− 1))]+1 

Using (31), welfare is higher under the standard than under the tax if and only ifµ



¶(+1)µ
 + 1

 + 1

¶
 + 1


 1 (34)

The condition (34) depends on four parameters:    and . We take  = 02 as in

the previous subsection and choose  to normalize the mean of productivity, −Γ(1 + ),

to 1. The numerical results are depicted in Figure 2, where the left panel is for the Frechet

distribution and the right panel for the Weibull distribution. The curve labeled “tax-

standard equivalent line” contains the combinations of  and  with which the two policies

yield the same welfare. In the region below this line, the standard yields higher welfare
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than the tax. This region is non-empty for both the Frechet and the Weibull distribution.

Thus, the standard yields higher welfare than the tax if and only if productivity dispersion

is small (i.e., if || small) and market power is strong (i.e., if  is small). Therefore, the
main qualitative result in Proposition 6 also holds under the distribution function (33).

6 Conclusion

We have evaluated an emission tax against a nontradable emission standard in an economy

with rich dispersion in productivity among a continuum of monopolistically competitive

firms. We have found that productivity dispersion increases the advantage of the tax over

the standard as the better policy. If no technology is available for emission abatement,

then the tax induces higher average productivity, a lower average price, higher output and

higher welfare than the standard. If an abatement technology is available, the standard

can yield higher welfare than the tax if firms have both sufficiently similar productivity and

sufficiently large market power. Moreover, the standard changes relative prices between

firms’ products by tilting abatement toward high-cost and low-productivity firms, which

the tax does not do. When productivity dispersion exceeds a critical level, the tax is

again superior to the standard for all values of market power. Therefore, productivity

dispersion and its interaction with abatement choices are important for evaluating market-

based versus non market-based environmental policies.

One appealing feature of our model is that it can be integrated relatively easily with

other fields of economics for a comprehensive study of environmental issues. First, it is

straightforward to embed our model into a standard dynamic macro model with an infi-

nite horizon and allow emission to accumulate and decumulate over time. Second, it is

interesting to allow for entry and exit of the plants and calibrate the dynamic model to

quantify the cost of reaching an environmental target. Li and Sun (2009) have made an

attempt on such quantitative exercises. Finally, given the common emphasis on produc-

tivity dispersion by our model and the Eaton-Kortum-Melitz trade model, it is fruitful to

study how environmental and trade policies should be coordinated.
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Appendix

A Proofs of Lemma 3 and Proposition 4

We establish Lemma 3 first. Under the tax, (14) can be written as



µ
 − 

̄


 ()

̄

0
 ̄

¶
=  (  ()).

For any given ̄ , the left-hand side of the above equation is independent of  and the right-

hand side is an increasing function of  . Thus, there exists a unique level of  , denoted

(̄), that solves the above equation. With this level of the tax, other equilibrium variables

are uniquely determined as in the main text. Moreover, the target ̄ is binding if and

only if (̄)  0. The latter requirement is equivalent to the condition that the left-hand

side of the above equation is strictly greater than  (0 ()). Since the left-hand side of

the above equation is a strictly decreasing function of ̄ (see Assumption 1), the target is

binding if and only if ̄  max. It is easy to see that 
0(̄)  0 and (max) = 0.

Under the emission standard, 0 = ln(), and (14) can be written as

 

µ
 − 

̄


 

̄


 ̄

¶
=



− 1,

where  = (ln()). For any given ̄ , the assumption on  imposed in Lemma 3

ensures that the left-hand side of the above equation is a strictly increasing function of 

and reaches 0 at  = 0. There is a unique level of , denoted (̄), that solves the above

equation. The implied standard can be calculated from (̄) = (ln((̄))) and other

equilibrium variables can be uniquely determined as in the main text. Moreover, the target

̄ is binding iff ln((̄))  , i.e., iff (̄)  (). This requirement is equivalent

to ̄  max. Furthermore, it is easy to verify that 
0
(̄)  0 and (max) = ().

Hence, 0(̄)  0 and (max) = −. This completes the proof of Lemma 3.

Now we prove Proposition 4 by verifying statements (i)-(iii) in the proposition. State-

ment (i) is evident, since  = ̄ and  = (1− ) under both policies. For statement

(ii), the proof of Lemma 3 has already established 0 =   ln() = 0 for any binding
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target. Because (0) defined by (12) is a strictly decreasing function of 0, then   .

Since  = ̄, then   . Recall that  = () and that () is a

strictly decreasing function of . We have  = (  ̄)  ( ̄) = . Finally,

 = (  ̄)  ( ̄) = . QED

B Proofs of Lemma 5 and Proposition 7

For Lemma 5, we only derive the formulas for the tax and prove that there exists a unique

equilibrium. The derivation and the proof for the standard are similar and, hence, are

omitted. Under the tax, we substitute () from (19) into (2) to compute  and aggregate

() from (17) to compute , which yields  =  = (), where () is the function

defined by (12). Aggregating () in (19), we have  = ( 

)
−1
+1. Inverting this result

yields  as the function of () in (24). Substituting () from (19) into (7), we obtain

 = 
(−1) , where  is a function of  given by (18). Substituting  , we obtain

 = ( + 1)

µ




¶

, (35)

and, hence,  is as in (24). Aggregating () in (16) and substituting  from (24), we

obtain  as in (25). Since total input in the dirty-goods sector is (+), consumption of

the clean good is  = (1− −). Substituting , we obtain  as in (25). The quantity

 is determined by (6). Proving that there exists a unique equilibrium amounts to proving

that there is unique solution for . Substituting  from (24), we have

2(() )

1(() )
=

( + 1)

(− 1)
µ




¶

, (36)

where () is given by (25). Under Assumption 1, the left-hand side of (36) is a strictly

decreasing function of , while the right-hand side is a strictly increasing function of .

With these features, it is easy to prove that there is a unique solution for  to (36). This

completes the proof of Lemma 5.

For Proposition 7, we assume that the measure of plants is one without loss of generality.

When all plants have the same productivity, () = , () = , () = , and() = .
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It is evident that  =  =  and  = 1. Substituting the pricing formulas in (24) and

(27) into (6), we obtain:

2()

1()
=



(− 1)
µ




¶

,

where  =  + 1 under the tax and  = 1 under the standard. Under both policies,

 =  − 


³



´
and  =  in the above equation. Denote the solution to the above

equation as (). It is clear that 0()  0. Thus,    . From (25), (28) and

 = , it is clear that    ,    , and    . Express the utility level

as ̂() ≡ (() ()). Then,    iff ̂(1)  ̂( + 1). It can be verified that

̂0()  0 iff   ( +1)(− 1). If 1 ≥ ( +1)(− 1), i.e., if  ≤ 1+ 1

, then ̂0()  0

for all   1. In this case,  = ̂( + 1)  ̂(1) = . On the other hand, if →∞, then
̂0()  0 for all    + 1. In this case,  = ̂( + 1)  ̂(1) = . QED

C Proof of Proposition 6

Using (30), we compute the average productivity as

 =

(
[1− (− 1)] −1−1 , with the tax

1+−(+1)
[1−(−1)(+1)] 

−1
, with the standard.

(37)

The statement    is true if and only if



− 1 ln [1− (− 1)( + 1)]− ln [1 +  − ( + 1)]− 1

− 1 ln [1− (− 1)]  0.

Temporarily denote the left-hand side as (). Note that (0) = 0 and ( 1
(+1)

) 

0. Also, 0() has the same sign as the following expression:

( + 1)

[1− (− 1)( + 1)] [1 +  − ( + 1)]
+

1

[1− (− 1)] .

Thus, 0()  0. For all   0, ()  (0) = 0.

With the utility function (31), it is clear that  =  = (). For part (i) of the

proposition, we can compute



+
=

(


(−1)()
( + 1), with the tax


(−1)()

, with the standard.
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It is evident that (+) is higher under the tax than under the standard.

For other parts of the proposition, we substitute  from (30) into (29) to compute

 =
[1 +  − ( + 1)]+1

[1− ( + 1)] [1− (− 1)( + 1)] ( 1). (38)

For part (ii), we use (32) to solve for ,  and . Substituting () and  into (31), we

know that    iff



 +1

+1
. Write the latter condition equivalently as follows:

1
−1 ln [1− (− 1)] + 

+1
ln [1− ( + 1)]

− +1
(−1)(+1) ln [1− (− 1)( + 1)] + ln( + 1)− 

+1
ln( + 1)  0.

Temporarily denote the left-hand side as (). It is clear that ( 1
(+1)

) = −∞.
Also, (0)  0 iff   0, where 0 is defined in the proposition. Moreover, we can

verify that

0() =
−( + 1)

[1− (− 1)] [1− (− 1)( + 1)] [1− ( + 1)]
 0.

If  ≥ 0, then ()  (0) ≤ 0, in which case    for all  ∈ (0 ̄). If   0,

then (0)  0, in which case there exists 0() ∈ (0 ̄) such that    iff   0().

Moreover, using L’Hopital’s rule, we can verify that (̄)  0 in the limit → 1. This

implies the strict inequality, 0()  ̄, even in the limit → 1.

For part (iii), recall that    iff



 +1

+1
. Because   1, then    implies

   . Similarly, since  =  and   , then    implies    . To

compare the aggregate level of abatement and consumption of the clean good under the

two polices, recall that  = 
£¡




¢ − 1¤ and  =  − 
¡



¢
under the tax, while

 = 
£¡




¢
− 1¤ and  =  − 

¡



¢
 under the standard. Since   1, the

inequality    is sufficient for    and    .

For part (iv), we can substitute equilibrium values of () into the utility function to

verify that (+ ()) depends on  entirely through the term  [()](1+) and is

increasing in this term. Then, part (iv) is evident. QED
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