Assignment 1 for Advanced Macroeconomics III (Fall 2009)

SUFE

Condiser a variation of Lucas's (1988, JME) model. Time is continuous in the economy. The representative household has the following utility function:

$$
\int_{0}^{\infty} u(c(t)) e^{-\rho t} d t, \text { where } u(c)=\frac{c^{1-\sigma}}{1-\sigma}, \sigma \neq 1, \text { and } \sigma, \rho>0 .
$$

The process of human capital accumulation by an individual agent is:

$$
\dot{h}(t)=h(t) \delta[1-l(t)], \delta>0
$$

where $(1-l)$ is the time input in the accumulaiton. The produciton function of final goods is

$$
F\left(k, l h, h_{a}\right)=k^{\alpha}(l h)^{1-\alpha} h_{a}^{\gamma}, \gamma>0,
$$

where h_{a} is the human capital stock per capita, which is taken as given by every individual agent, although $h_{a}=h$ in equilibrium. Assume that physical capital does not depreciate.

The government in this economy subsidizes human capital accumulation at a rate ϕ. That is, each household receives a subsidy $\phi w \dot{h}$ at each t, where w is the wage rate for raw labour. The subsidy is financed by a lump-sum tax S. Restrict $0<\phi<1 / \delta$.

1. Formulate a representative household's optimization problem and derive the conditions for optimal choices.
2. A competitive firm's optimization problem yields $F_{1}=r$ and $F_{2}=w$. Use these conditions, the conditions in (1) and market clearing conditions to derive a dynamic system for (c, k, l, h). (There should not be any other variables in this system.)
3. Let $\frac{\dot{c}}{c}=\kappa$, and $\frac{\dot{h}}{h}=\nu$. Prove that $\frac{\dot{k}}{k}=\kappa$, and $\kappa=\left(1+\frac{\gamma}{1-\alpha}\right) \nu$ along the balanced growth path.
4. Solve for the long-run growth rate of consumption.
5. Assume $0<l<1$ along the balanced growth path. Compute the long-run level of intertemporal utility, and show that it is finite. (Note that σ could be greater than or less than 1.)
6. Does long-run utility necessarily increase with ϕ ?
7. Formulate the social planner's problem in this economy and derive the socially optimal growth rate in the long run (denoted κ^{o}).
8. Show that, if $\phi=0$, then the long-run growth rate in the decentralized economy is lower than the socially optimal one whenever the equilibrium satisfies $l>0$. Briefly explain why this result holds.
