Assignment 3 for Advanced Macroeconomics III

(Fall 2009)

SUFE

Question 1. Introduce capital accumulation into the asset pricing model of Lucas (1978, Econometrica) as follows. There is a unit measure of firms, each of which is specialized in collecting fruit from a particular tree. The quantity of fruit produced by a tree in a period depends on the amount of capital the firm uses. That is, output is $y_{t}=z_{t} f\left(k_{t}\right)$, where k_{t} the level of capital, and z_{t} is productivity which obeys a two-state Markovian process. The two possible realizations of z are z_{1} and z_{2}, with $\infty>z_{1}>z_{2}>0$. The transition probabilities are

$$
\operatorname{prob}\left\{z_{+1}=z_{j} \mid z=z_{i}\right\}=\left\{\begin{array}{cc}
\lambda & \text { if } z_{j}=z_{i} \\
1-\lambda & \text { if } z_{j} \neq z_{i}
\end{array} .\right.
$$

Assume $0.5<\lambda<1$.
The function f has the following properties: $f(0)=0, f^{\prime}>0, f^{\prime \prime}<0, f^{\prime}(0)=$ ∞, and $f^{\prime}(\infty)=0$. The firm chooses investment it so that the capital stock next period is $k_{t+1}=k_{t}+i_{t}$. The firm gives all residual earnings after investment to the shareholders as dividends; that is, $d_{t}=y_{t}-i_{t}$.

The firms are owned by a unit measure of households who have the following preferences:

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right), \beta \in(0,1)
$$

Here, the utility function $u(c)$ has the standard properties: $u^{\prime}>0, u^{\prime \prime}<0, u^{\prime}(0)=\infty$, and $u^{\prime}(\infty)=0$. In each period t, the household chooses consumption, c_{t}, and the number of shares of the firm to hold, s_{t+1}. In contrast to a firm, a household does not have a storage technology and, hence, dividends that are not consumed will perish.

The shares of a firm are traded competitively in the asset market. Each firm issues one share. Let p_{t} be the ex-dividend price of a share measured in terms of consumption goods (fruit). Denote the aggregate state in period t as $A_{t}=\left(K_{t}, z_{t}\right)$, where K is the capital stock per firm. Individual households and firms take A as given. Use the notation $E_{A}(x)$ to denote the expectation of any variable x conditional on A. Denote the variables in the next period by adding the subscripts +1 to the variables.

Assume that the price p and dividends d can be expressed as $p=\psi(A)$ and $d=D(A)$.

1. Let the state variables for a household be (s, A) and the value function be $v(s, A)$. Formulate the household's optimization problem as a dynamic programming problem. Specify explicitly the state variables, the choices, and the information which expectations are conditional on. Derive the optimality conditions.
2. Assume that consumption per household is $C=C(A)$. Denote $M\left(A, A_{+1}\right) \equiv$ $\beta u^{\prime}\left(C\left(A_{+1}\right)\right) u^{\prime}(C(A))$. Let a firm's state variables be (k, A) and its value function be
$J(k, A)$. Assume that each firm discounts next period's value with the factor $M\left(A, A_{+1}\right)$. Formulate a firm's optimization problem as a dynamic programming problem. Specify explicitly the state variables, the choices, and the information which expectations are conditional on. Derive the optimality conditions.
3. Focus on a symmetric equilibrium where all households have the same level of consumption and all firms have the same capital stock. Prove that the assumptions $p=$ $\psi(A), d=D(A)$, and $C=C(A)$ are consistent with a symmetric equilibrium (i.e. to prove that p, d, and C are all only a function of A).
4. For this part only, assume that the utility function is linear. Prove that the firm's optimal choice of k_{+1} in state A can be written as $k_{+1}=\phi(z)$. Also, prove that $\phi\left(z_{1}\right)>$ $\phi\left(z_{2}\right)$.
5. Return to the general specification of the model. Does this model explain the observed equity premium better than the model where the capital stock is fixed? Justify.

Question 2. Consider a special case of the Diamond and Dybvig model (JPE 1983). A large number of agents live for 3 periods. Preference is isoelastic and the discounting factor is one:

$$
\theta \frac{c_{1}^{1-\sigma}}{1-\sigma}+(1-\theta) \frac{\left(c_{1}+c_{2}\right)^{1-\sigma}}{1-\sigma},
$$

where the taste shock $\theta=\left\{\begin{array}{cc}1 \text { if type } 1 & \text { with prob. } t \\ 0 \text { if type } 2\end{array} \quad\right.$ with prob. $1-t$. . Each agent is endowed with 1 unit of goods in time period 0 . The good can be privately stored. The goods could also be invested in a project that matures in time period 2. If a project matures, it gives R units of goods; if the project is interrupted, it gives 1 unit of goods. Assume $R>1$. Each agent learns his type in time period 1. In time period 0 , an agent can deposit his money in a bank. If an agent withdraws in time period 1 , the bank pays r_{1}, and if an agent withdraws in time period 2 , the bank pays r_{2}.

1. Sovle for the demand deposit contract $\left(r_{1}, r_{2}\right)$.
2. Show that if $\sigma>1$, as assumed in the paper, $r_{1}>1$ and $r_{2}<R$.

3 . What would happen if $\sigma<1$? Would bank exist? If so, could bank runs happen?

