
Example 3.5 Solving a parametric dynamic programming problem. In this
example we will illustrate how to solve dynamic programming problem by finding a corre-
sponding value function. Consider the following functional equation:

V (k) = max
c, k′

{log c + βV (k′)}
s.t. c = Akα − k′.

The budget constraint is written as an equality constraint because we know that prefer-
ences represented by the logarithmic utility function exhibit strict monotonicity - goods
are always valuable, so they will not be thrown away by an optimizing decision maker.
The production technology is represented by a Cobb-Douglass function, and there is full
depreciation of the capital stock in every period:

F (k, 1)︸ ︷︷ ︸
Akα11−α

+ (1− δ)︸ ︷︷ ︸
0

k.

A more compact expression can be derived by substitutions into the Bellman equation:

V (k) = max
k′≥0

{log [Akα − k′] + βV (k′)} .

We will solve the problem by iterating on the value function. The procedure will
be similar to that of solving a T -problem backwards. We begin with an initial ”guess”
V0 (k) = 0, that is, a function that is zero-valued everywhere.

V1 (k) = max
k′≥0

{log [Akα − k′] + βV0 (k′)}
= max

k′≥0
{log [Akα − k′] + β · 0}

max
k′≥0

{log [Akα − k′]} .

This is maximized by taking k′ = 0. Then

V1 (k) = log A + α log k.

Going to the next step in the iteration,

V2 (k) = max
k′≥0

{log [Akα − k′] + βV1 (k′)}
= max

k′≥0
{log [Akα − k′] + β [log A + α log k′]} .

The first-order condition now reads

1

Akα − k′
=

βα

k′
⇒ k′ =

αβAkα

1 + αβ
.

We can interpret the resulting expression for k′ as the rule that determines how much it
would be optimal to save if we were at period T−1 in the finite horizon model. Substitution
implies

V2 (k) = log

[
Akα − αβAkα

1 + αβ

]
+ β

[
log A + α log

αβAkα

1 + αβ

]

=
(
α + α2β

)
log k + log

(
A− αβA

1 + αβ

)
+ β log A + αβ log

αβA

1 + αβ
.
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We could now use V2 (k) again in the algorithm to obtain a V3 (k), and so on. We
know by the characterizations above that this procedure would make the sequence of value
functions converge to some V ∗ (k). However, there is a more direct approach, using a
pattern that appeared already in our iteration.

Let

a ≡ log

(
A− αβA

1 + αβ

)
+ β log A + αβ log

αβA

1 + αβ

and

b ≡ (
α + α2β

)
.

Then V2 (k) = a+b log k. Recall that V1 (k) = log A+α log k, i.e., in the second step what
we did was plug in a function V1 (k) = a1 + b1 log k, and out came a function V2 (k) =
a2 + b2 log k. This clearly suggests that if we continue using our iterative procedure, the
outcomes V3 (k) , V4 (k) , ..., Vn (k) , will be of the form Vn (k) = an + bn log k for all n.
Therefore, we may already guess that the function to which this sequence is converging
has to be of the form:

V (k) = a + b log k.

So let us guess that the value function solving the Bellman has this form, and determine
the corresponding parameters a, b :

V (k) = a + b log k = max
k′≥0

{log (Akα − k′) + β (a + b log k′)} ∀k.

Our task is to find the values of a and b such that this equality holds for all possible values
of k. If we obtain these values, the functional equation will be solved.

The first-order condition reads:

1

Akα − k′
=

βb

k′
⇒ k′ =

βb

1 + βb
Akα.

We can interpret
βb

1 + βb
as a savings rate. Therefore, in this setup the optimal policy

will be to save a constant fraction out of each period’s income.
Define

LHS ≡ a + b log k

and

RHS ≡ max
k′≥0

{log (Akα − k′) + β (a + b log k′)} .

Plugging the expression for k′ into the RHS, we obtain:

RHS = log

(
Akα − βb

1 + βb
Akα

)
+ aβ + bβ log

(
βb

1 + βb
Akα

)

= log

[(
1− βb

1 + βb

)
Akα

]
+ aβ + bβ log

(
βb

1 + βb
Akα

)

= (1 + bβ) log A + log

(
1

1 + bβ

)
+ aβ + bβ log

(
βb

1 + βb

)
+ (α + αβb) log k.
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