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Dynamic optimization

@ two common approaches to modelling real-life individuals:
e they live a finite number of periods
o they live forever
@ two alternative ways of solving dynamic optimization problems:

e sequential methods
e recursive methods
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Sequential methods - A finite horizon

@ Decide on a consumption stream for T periods
Additive separable utility function:

T

Ulea, e, .cr) =) Bru(ce)

t=0

@ The standard assumption is 0 < B < 1, which corresponds to the
observations that human beings seem to deem consumption at an
early time more valuable than consumption further off in the future
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Dynamic optimization - Neo-classical growth model

A consumption-savings problem

T

max Y Bfu(c)

{ceker1} o t=0

sit.ce+kev1r < f(ke) = Fke, L)+ (1 —06)k:
¢ > 0, k1 >0, and kg is given
It is, in this case, a "planning problem": there is no market where the

individual might obtain an interest income from his savings, but rather
savings yield production following the transformation rule f (k;)
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Assumptions on u

@ Assume that u is strictly increasing

e Notice that our resource constraint ¢; + k1 < f (k) allows for
throwing goods away, since strict inequality is allowed

@ But the assumption that u is strictly increasing will imply that goods
will not actually be thrown away, because they are valuable

@ We know in advance that the resource constraint will need to bind at
our solution to this problem

@ limc_o u'(c) — oo, This implies that ¢; = 0 at any t cannot be
optimal, so we can ignore the non-negativity constraint on
consumption: we know in advance that it will not bind in our solution
to this problem
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Lagrangian function

@ Two decision variables: ¢; and k11

.
L= ;).Bt [u(ce) + Ae(F(ke) = kev1 — c&) + poketa]

@ Or one decision variable: k;11

L= Z B [u(F(ke) = ke1) + pokesa]

We have made use of our knowledge of the fact that the resource
constraint will be binding in our solution to get rid of the multiplier

Bt A+
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Sovle the problem - Kuhn-Tucker conditions

o First order conditions for ¢; and k41

oL

aict_ : ﬁt [U(Ct) - )Lt] 0, t= O, T

oL

S A BB e (k) =0, £ =0, T -]
t

oL

O BTAr+pTH =0, t=T

okt

@ Or first order conditions for k;i1

oL
=B (ce) + B+ B (1) (Kes1) = 0,
Oke 11

aL
o BT (er) + BTy =0, t=T
T
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Sovle the problem - Kuhn-Tucker conditions

@ the complementary slackness condition

Hokey1 =0, t=0,.., T

@ Non-negative conditions

)\tZO,kt—s—lZO.,utZO

@ Derive that k741 = 0 : consumers leave no capital for after the last
period
( Vc u'(c)>0
Blu

(er)+BT VT_0> === Hr > 0==>kri1=0
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Sovle the problem - Euler equation

@ The summary statement of the first-order conditions is then the
"Euler equation":

u'(F(ke) = keyr) = PBu'(Fkes1) — keso)f' (kes1)
t = 0,...,T—1, ko given, kT+1 =0

@ Variational conditions: given to boundary conditions k; and k;1o, it
represents the idea of varying the intermediate value k;;1 so as to
achieve the best outcome

o A difference equation in the capital sequence: there are a total of T +
2 equations and T 4 2 unknowns - the unknowns are a sequence of
capital stocks with an initial and a terminal condition

e It is a second-order difference equation because there are two lags of
capital in the equation.

Advanced Macro Spring 2010 9/13




Unique solution

@ Assumption: u is concave

U= Z B'u(ct) is concave in {c;}

since the sum of concave functions is concave

@ the constraint set is convex in {ct, ke11|ct + ki1 < f (k¢)}, provided
that we assume concavity of f
@ concavity of the functions u and f makes the overall objective concave

and the choice set convex, and thus the first-order conditions are
suffient
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Interpret the Euler equation

u'(f(ke) = kes1) = Bu'(F(ker1) — ke2) ' (ket1)

U (f(ks) — kew1) o utility lost if you invest one more unit,
i.e. marginal cost of saving
Bu'(f(ket1) — ke2) @ utility increase next period
per unit of increase in c;y1
f'(key1) @ return on the invested unit:

by how many units ¢;4+1 can increase

because of the concavity of u, equalizing the marginal cost of saving to the
marginal benefit of saving is a condition for an optimum
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How do the premitives affect savings behavior

the concavity of utility, the discounting, and the return to saving

@ Consumption "smoothing": if the utility function is strictly concave,
the individual prefers a smooth consumption stream

Example
Suppose that technology is linear, i.e. f(k) = Rk, and that R = 1. Then

Bf' (k1) = BR =1

U/(Ct) = U/(Ct+1)

if u is strictly concave, ¢; = cty1
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How do the premitives affect savings behavior

2 Impatience: via B we see that a low B(a low discount factor, or a high
discount rate % — 1) will tend to be associated with low ¢;41's and
high ¢;'s.

3 The return to savings: f’(ks11) clearly also affcts behavior, but its
effect on consumption cannot be signed unless we make more specific
assumptions. Moreover, k;11 is endogenous, so when f’ nontrivially
depends on it, we cannot vary the return independently. The case
when f’ is a constant, such as in the Ak growth model, is more
convenient
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