Advanced Macroeconomics I Lecture 2 (1)

Zhe Li

SUFE

Spring 2010

- two common approaches to modelling real-life individuals:
 - they live a finite number of periods
 - they live forever
- two alternative ways of solving dynamic optimization problems:
 - sequential methods
 - recursive methods

• Decide on a consumption stream for T periods Additive separable utility function:

$$U(c_1, c_2, ... c_T) = \sum_{t=0}^T \beta^t u(c_t)$$

• The standard assumption is $0 < \beta < 1$, which corresponds to the observations that human beings seem to deem consumption at an early time more valuable than consumption further off in the future

A consumption-savings problem

$$\max_{\{c_t, k_{t+1}\}_{t=0}^T} \sum_{t=0}^T \beta^t u(c_t)$$

$$\begin{array}{rcl} s.t. \ c_t + k_{t+1} & \leq & f\left(k_t\right) \equiv F(k_t,L) + (1-\delta)k_t \\ c_t & \geq & 0, \ k_{t+1} \geq 0, \ \text{and} \ k_0 \ \text{is given} \end{array}$$

It is, in this case, a "planning problem": there is no market where the individual might obtain an interest income from his savings, but rather savings yield production following the transformation rule $f(k_t)$

- Assume that *u* is strictly increasing
- Notice that our resource constraint ct + kt+1 ≤ f (kt) allows for throwing goods away, since strict inequality is allowed
- But the assumption that u is strictly increasing will imply that goods will not actually be thrown away, because they are valuable
- We know in advance that the resource constraint will need to bind at our solution to this problem
- $\lim_{c\to 0} u'(c) \to \infty$, This implies that $c_t = 0$ at any t cannot be optimal, so we can ignore the non-negativity constraint on consumption: we know in advance that it will not bind in our solution to this problem

• Two decision variables: c_t and k_{t+1}

$$L = \sum_{t=0}^{T} \beta^{t} \left[u(c_{t}) + \lambda_{t}(f(k_{t}) - k_{t+1} - c_{t}) + \mu_{t} k_{t+1} \right]$$

• Or one decision variable: k_{t+1}

$$L = \sum_{t=0}^{T} \beta^{t} \left[u(f(k_{t}) - k_{t+1}) + \mu_{t} k_{t+1} \right]$$

We have made use of our knowledge of the fact that the resource constraint will be binding in our solution to get rid of the multiplier $\beta^t \lambda_t$

(SUFE)

Sovle the problem - Kuhn-Tucker conditions

• First order conditions for c_t and k_{t+1}

$$\begin{aligned} \frac{\partial L}{\partial c_t} &: \quad \beta^t \left[u(c_t) - \lambda_t \right] = 0, \quad t = 0, \dots T \\ \frac{\partial L}{\partial k_{t+1}} &: \quad -\beta^t \lambda_t + \beta^t \mu_t + \beta^{t+1} \lambda_{t+1} f'(k_{t+1}) = 0, \quad t = 0, \dots, T - 1 \\ \frac{\partial L}{\partial k_T} &: \quad -\beta^T \lambda_T + \beta^T \mu_T = 0, \quad t = T \end{aligned}$$

• Or first order conditions for k_{t+1}

$$\frac{\partial L}{\partial k_{t+1}} : -\beta^t u'(c_t) + \beta^t \mu_t + \beta^{t+1} u'(c_{t+1}) f'(k_{t+1}) = 0,$$

$$t = 0, ..., T - 1$$

$$\frac{\partial L}{\partial k_T} : -\beta^T u'(c_T) + \beta^T \mu_T = 0, \ t = T$$

• the complementary slackness condition

$$\mu_t k_{t+1} = 0, \ t = 0, ..., T$$

• Non-negative conditions

$$\lambda_t \geq$$
 0, $k_{t+1} \geq$ 0, $\mu_t \geq$ 0

• Derive that $k_{T+1} = 0$: consumers leave no capital for after the last period $\begin{pmatrix} \forall c, u'(c) > 0 \\ -\beta^T u'(c_T) + \beta^T \mu_T = 0 \end{pmatrix} = = > \mu_T > 0 = = > k_{T+1} = 0$ • The summary statement of the first-order conditions is then the "Euler equation":

$$u'(f(k_t) - k_{t+1}) = \beta u'(f(k_{t+1}) - k_{t+2})f'(k_{t+1})$$

$$t = 0, ..., T - 1, k_0 \text{ given, } k_{T+1} = 0$$

- Variational conditions: given to boundary conditions k_t and k_{t+2} , it represents the idea of varying the intermediate value k_{t+1} so as to achieve the best outcome
- A difference equation in the capital sequence: there are a total of T + 2 equations and T + 2 unknowns - the unknowns are a sequence of capital stocks with an initial and a terminal condition
 - It is a second-order difference equation because there are two lags of capital in the equation.

٠

• Assumption: *u* is concave

$$U = \sum_{t=0}^T eta^t u(c_t)$$
 is concave in $\{c_t\}$

since the sum of concave functions is concave

- the constraint set is convex in $\{c_t, k_{t+1} | c_t + k_{t+1} \le f(k_t)\}$, provided that we assume concavity of f
- concavity of the functions u and f makes the overall objective concave and the choice set convex, and thus the first-order conditions are suffient

$$u'(f(k_t) - k_{t+1}) = \beta u'(f(k_{t+1}) - k_{t+2})f'(k_{t+1})$$

$$u'(f(k_t) - k_{t+1})$$
 : utility lost if you invest one more unit,
i.e. marginal cost of saving
 $\beta u'(f(k_{t+1}) - k_{t+2})$: utility increase next period
per unit of increase in c_{t+1}
 $f'(k_{t+1})$: return on the invested unit:
by how many units c_{t+1} can increase

because of the concavity of u, equalizing the marginal cost of saving to the marginal benefit of saving is a condition for an optimum

the concavity of utility, the discounting, and the return to saving

Consumption "smoothing": if the utility function is strictly concave, the individual prefers a smooth consumption stream

Example

Suppose that technology is linear, i.e. f(k) = Rk, and that $R\beta = 1$. Then

$$\beta f'(k_{t+1}) = \beta R = 1$$

$$u'(c_t) = u'(c_{t+1})$$

if u is strictly concave, $c_t = c_{t+1}$

(SUFE)

- 2 Impatience: via β we see that a low β (a low discount factor, or a high discount rate $\frac{1}{\beta} 1$) will tend to be associated with low c_{t+1} 's and high c_t 's.
- 3 The return to savings: $f'(k_{t+1})$ clearly also affects behavior, but its effect on consumption cannot be signed unless we make more specific assumptions. Moreover, k_{t+1} is endogenous, so when f' nontrivially depends on it, we cannot vary the return independently. The case when f' is a constant, such as in the Ak growth model, is more convenient