# Advanced Macroeconomics I Lecture 2 (1)

Zhe Li

SUFE

Spring 2011



- two common approaches to modelling real-life individuals:
  - they live a finite number of periods
  - they live forever
- two alternative ways of solving dynamic optimization problems:
  - sequential methods: a sequence of choices are determined at once
  - recursive methods: choices in one period are determined in that period

• Decide on a consumption stream for *T* periods Additive separable utility function:

$$U(c_1, c_2, ... c_T) = \sum_{t=0}^T \beta^t u(c_t)$$

• The standard assumption is  $0 < \beta < 1$ , which corresponds to the observations that human beings seem to deem consumption at an early time more valuable than consumption further off in the future

### A consumption-savings problem

$$\max_{\{c_t, k_{t+1}\}_{t=0}^T} \sum_{t=0}^T \beta^t u(c_t)$$

$$\begin{array}{rcl} s.t. \ c_t + k_{t+1} & \leq & f\left(k_t\right) \equiv F(k_t,L) + (1-\delta)k_t \\ c_t & \geq & 0, \ k_{t+1} \geq 0, \ \text{and} \ k_0 \ \text{is given} \end{array}$$

It is, in this case, a "planning problem": there is no market where the individual might obtain an interest income from his savings, but rather savings yield production following the transformation rule  $f(k_t)$ 

- Assume that u is strictly increasing and  $\lim_{c o 0} u'(c) o \infty$
- Resource constraint will bind
  - resource constraint  $c_t + k_{t+1} \le f(k_t)$  allows for throwing goods away, since strict inequality is allowed
  - but the assumption that *u* is strictly increasing will imply that goods will not actually be thrown away, because they are valuable
- We can ignore the non-negative constraint of  $c_t$ 
  - $\lim_{c \to 0} u'(c) \to \infty$ , This implies that  $c_t = 0$  at any t cannot be optimal

• Two decision variables:  $c_t$  and  $k_{t+1}$ 

$$L = \sum_{t=0}^{T} \beta^{t} \left[ u(c_{t}) + \lambda_{t}(f(k_{t}) - k_{t+1} - c_{t}) + \mu_{t} k_{t+1} \right]$$

• Or one decision variable:  $k_{t+1}$ 

$$L = \sum_{t=0}^{T} \beta^{t} \left[ u(f(k_{t}) - k_{t+1}) + \mu_{t} k_{t+1} \right]$$

We have made use of our knowledge of the fact that the resource constraint will be binding in our solution to get rid of the multiplier  $\beta^t \lambda_t$ 

(SUFE)

### Sovle the problem - Kuhn-Tucker conditions

• First order conditions for  $c_t$  and  $k_{t+1}$ 

$$\begin{aligned} \frac{\partial L}{\partial c_t} &: \quad \beta^t \left[ u(c_t) - \lambda_t \right] = 0, \quad t = 0, \dots T \\ \frac{\partial L}{\partial k_{t+1}} &: \quad -\beta^t \lambda_t + \beta^t \mu_t + \beta^{t+1} \lambda_{t+1} f'(k_{t+1}) = 0, \quad t = 0, \dots, T - 1 \\ \frac{\partial L}{\partial k_T} &: \quad -\beta^T \lambda_T + \beta^T \mu_T = 0, \quad t = T \end{aligned}$$

• Or first order conditions for  $k_{t+1}$ 

$$\frac{\partial L}{\partial k_{t+1}} : -\beta^t u'(c_t) + \beta^t \mu_t + \beta^{t+1} u'(c_{t+1}) f'(k_{t+1}) = 0,$$
  
$$t = 0, ..., T - 1$$
  
$$\frac{\partial L}{\partial k_T} : -\beta^T u'(c_T) + \beta^T \mu_T = 0, \ t = T$$

• the complementary slackness condition

$$\mu_t k_{t+1} = 0, \ t = 0, ..., T$$

• Non-negative conditions

$$k_{t+1} \geq$$
 0,  $\lambda_t \geq$  0,  $\mu_t \geq$  0

• Derive that  $k_{T+1} = 0$ : consumers leave no capital for after the last period  $\begin{pmatrix} \forall c, u'(c) > 0 \\ -\beta^T u'(c_T) + \beta^T \mu_T = 0 \end{pmatrix} = = > \mu_T > 0 = = > k_{T+1} = 0$  • The summary statement of the first-order conditions is then the "Euler equation":

$$u'(f(k_t) - k_{t+1}) = \beta u'(f(k_{t+1}) - k_{t+2})f'(k_{t+1})$$
  

$$t = 0, ..., T - 1, k_0 \text{ given, } k_{T+1} = 0$$

- Variational conditions: given to boundary conditions  $k_t$  and  $k_{t+2}$ , it represents the idea of varying the intermediate value  $k_{t+1}$  so as to achieve the best outcome
- A difference equation in the capital sequence: there are a total of T + 1 equations and T + 1 unknowns - the unknowns are a sequence of capital stocks with an initial and a terminal condition
  - It is a second-order difference equation because there are two lags of capital in the equation.

٠

• Assumption: *u* is concave

$$U = \sum_{t=0}^T eta^t u(c_t)$$
 is concave in  $\{c_t\}$ 

since the sum of concave functions is concave

- the constraint set is convex in  $\{c_t, k_{t+1} | c_t + k_{t+1} \le f(k_t)\}$ , provided that we assume concavity of f
- concavity of the functions u and f makes the overall objective concave and the choice set convex, and thus the first-order conditions are suffient

$$u'(f(k_t) - k_{t+1}) = \beta u'(f(k_{t+1}) - k_{t+2})f'(k_{t+1})$$

$$\begin{array}{lll} u'(f(k_t)-k_{t+1}) & : & \mbox{utility lost if you invest one more unit} \\ & & \mbox{i.e. marginal cost of saving} \\ \beta u'(f(k_{t+1})-k_{t+2}) & : & \mbox{utility increase next period} \\ & & \mbox{per unit of increase in } c_{t+1} \\ & f'(k_{t+1}) & : & \mbox{return on the invested unit:} \\ & & \mbox{by how many units } c_{t+1} \mbox{ can increase} \end{array}$$

because of the concavity of u, equalizing the marginal cost of saving to the marginal benefit of saving is a condition for an optimum

the concavity of utility, the discounting, and the return to saving

Consumption "smoothing": if the utility function is strictly concave, the individual prefers a smooth consumption stream

#### Example

Suppose that technology is linear, i.e. f(k) = Rk, and that  $R\beta = 1$ . Then

$$\beta f'(k_{t+1}) = \beta R = 1$$

$$u'(c_t) = u'(c_{t+1})$$

if u is strictly concave, u' is monotonically increasing,  $c_t = c_{t+1}$ 

- 2 Impatience: via  $\beta$  we see that a low  $\beta$  (a low discount factor, or a high discount rate  $\frac{1}{\beta} 1$ ) will tend to be associated with low  $c_{t+1}$ 's and high  $c_t$ 's.
- 3 The return to savings:  $f'(k_{t+1})$  clearly also affects behavior
  - but its effect on consumption cannot be signed unless we make more specific assumptions
  - Moreover,  $k_{t+1}$  is endogenous, so when f' nontrivially depends on it, we cannot vary the return independently
  - The case when f' is a constant, such as in the Ak growth model, is more convenient

### Example 1 - logarithmic utility function

• 
$$u(c) = \log(c)$$
,  $f(k) = Ak$ 

• Euler equation:

$$u'(c_t) = \beta u'(c_{t+1})f'(k_{t+1})$$

۰

$$\frac{1}{c_t} = \frac{\beta}{c_{t+1}} A$$

• Optimal consumption growth rule

$$c_{t+1} = \beta A c_t$$

Resource constraints

$$c_{0} + k_{1} = Ak_{0}$$

$$c_{1} + k_{2} = Ak_{1}$$
...
$$c_{T} + k_{T+1} = Ak_{T}$$

$$k_{T+1} = 0$$

• Intertemporal budget constraint

$$c_0 + rac{1}{A}c_1 + rac{1}{A^2}c_2 + ... + rac{1}{A^T}c_T = Ak_0$$

present value of consumption stream = present value of income

Using the optimal consumption growth rule  $c_{t+1} = \beta A c_t$ ,

$$c_0 + \frac{1}{A}\beta A c_0 + \frac{1}{A^2}(\beta A)^2 c_0 + ... + \frac{1}{A^T}(\beta A)^T c_0 = Ak_0$$

$$c_0 \left[ \beta + \beta^2 + ... + \beta^T \right] = Ak_0$$

$$c_0 = \frac{Ak_0}{\beta + \beta^2 + ... + \beta^T}$$
hare of consumption  $c_t$  is  $\frac{\beta^t}{\beta + \beta^2 + ... + \beta^T}$ 

S

- An increase in A will cause a rise in consumption in all periods
  - Crucial to this result is the chosen form for the utility function: Logarithmic utility has the property that income and substitution effcts, when they go in opposite directions, exactly offset each other
- Changes in A have two components: a change in relative prices (of consumption in different periods) and a change in present-value income: Ak<sub>0</sub>

$$c_0 + \frac{1}{A}c_1 + \frac{1}{A^2}c_2 + \ldots + \frac{1}{A^T}c_T = Ak_0$$

## The Effects of productivity A - logarithmic utility

- With logarithmic utility, a relative price change between two goods will make the consumption of the favored good go up whereas the consumption of other good will remain at the same level
- The unfavored good will not be consumed in a lower amount since there is a positive income effct of the other good being cheaper, and that effect will be spread over both goods
- Thus, the period 0 good will be unfavored in our example (since all other goods have lower price relative to good 0 if A goes up), and its consumption level will not decrease
- The consumption of good 0 will in fact increase because total present-value income is multiplicative in *A*

### Varying productivity A

Productivity stream  $\{A_t\}$ 

$$c_0 + rac{1}{A_1}c_1 + rac{1}{A_1A_2}c_2 + ... + rac{1}{A_1A_2...A_T}c_T = A_0k_0$$

Plugging in the optimal path  $c_{t+1} = \beta A_{t+1}c_t$ ,

$$c_0\left[\beta+\beta^2+\ldots+\beta^T\right]=A_0k_0$$

$$c_0 = \frac{A_0 k_0}{\beta + \beta^2 + \dots + \beta^T}$$

$$c_1 = \frac{(A_1 \beta) A_0 k_0}{\beta + \beta^2 + \dots + \beta^T}$$

$$c_T = \frac{A_0 A_1 \dots A_T \beta^T k_0}{\beta + \beta^2 + \dots + \beta^T}$$

Comparative Statics:  $A_t \uparrow \implies c_0, c_1, ..., c_{t-1}$  are unaffected

(SUFE)

$$u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$$

- $\sigma~=~$ 0: linear utility
- $\sigma$  > 0: concave
- $\sigma = 1$ : limit: logarithmic utility

Let  $R_{t,t+k}$  denote the interest rate:  $R_{t,t+k} = A_{t+1}...A_{t+k}$ The intertemporal elasticity of substitution is

$$ES \equiv rac{d rac{c_{t+k}}{c_t}}{rac{dR_{t,t+k}}{R_{t,t+k}}}$$

IES measures the elasticity of the relative share of conumption with respect to interest rate

$$R_{t+1} = A_{t+1}$$
  
 $u'(c_t) = \beta u'(c_{t+1})R_{t+1}$ 

Replacing repeatedly, we have

$$\begin{array}{c} u'(c_t) = \beta^k u'(c_{t+k}) R_{t+1} \dots R_{t+k} \\ u'(c) = c^{-\sigma} \end{array} \right\} \Longrightarrow c_t^{-\sigma} = \beta^k c_{t+k}^{-\sigma} R_{t,t+k}$$

$$IES \equiv \frac{\frac{d \frac{c_{t+k}}{c_t}}{\frac{c_{t+k}}{R_{t,t+k}}}}{\frac{dR_{t,t+k}}{R_{t,t+k}}} = \frac{d\log\frac{c_{t+k}}{c_t}}{d\log R_{t,t+k}} = \frac{1}{\sigma}$$

- When  $\sigma = 1$ , expenditure shares do not change: this is the logarithmic case
- When σ > 1, an increase in R<sub>t,t+k</sub> would lead c<sub>t</sub> to go up and savings to go down: the income effect, leading to smoothing across all goods, is larger than substitution effect
- Finally,  $\sigma < 1$ , the substitution effect is stronger: savings go up whenever  $R_{t,t+k}$  goes up
- When  $\sigma = 0$ , the elasticity is infinite and savings respond discontinuously to  $R_{t,t+k}$