Advanced Macroeconomics I

Lecture 2 (1)

Zhe Li

SUFE
Spring 2011

Dynamic optimization

- two common approaches to modelling real-life individuals:
- they live a finite number of periods
- they live forever
- two alternative ways of solving dynamic optimization problems:
- sequential methods: a sequence of choices are determined at once
- recursive methods: choices in one period are determined in that period

Sequential methods - A finite horizon

- Decide on a consumption stream for T periods Additive separable utility function:

$$
U\left(c_{1}, c_{2}, . . c_{T}\right)=\sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right)
$$

- The standard assumption is $0<\beta<1$, which corresponds to the observations that human beings seem to deem consumption at an early time more valuable than consumption further off in the future

Dynamic optimization - Neo-classical growth model

A consumption-savings problem

$$
\begin{aligned}
& \max _{\left\{c_{t}, k_{t+1}\right\}_{t=0}^{T}} \sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right) \\
\text { s.t. } c_{t}+k_{t+1} & \leq f\left(k_{t}\right) \equiv F\left(k_{t}, L\right)+(1-\delta) k_{t} \\
c_{t} & \geq 0, k_{t+1} \geq 0, \text { and } k_{0} \text { is given }
\end{aligned}
$$

It is, in this case, a "planning problem": there is no market where the individual might obtain an interest income from his savings, but rather savings yield production following the transformation rule $f\left(k_{t}\right)$

Assumptions on utility function

- Assume that u is strictly increasing and $\lim _{c \rightarrow 0} u^{\prime}(c) \rightarrow \infty$
- Resource constraint will bind
- resource constraint $c_{t}+k_{t+1} \leq f\left(k_{t}\right)$ allows for throwing goods away, since strict inequality is allowed
- but the assumption that u is strictly increasing will imply that goods will not actually be thrown away, because they are valuable
- We can ignore the non-negative constraint of c_{t}
- $\lim _{c \rightarrow 0} u^{\prime}(c) \rightarrow \infty$, This implies that $c_{t}=0$ at any t cannot be optimal

Lagrangian function

- Two decision variables: c_{t} and k_{t+1}

$$
L=\sum_{t=0}^{T} \beta^{t}\left[u\left(c_{t}\right)+\lambda_{t}\left(f\left(k_{t}\right)-k_{t+1}-c_{t}\right)+\mu_{t} k_{t+1}\right]
$$

- Or one decision variable: k_{t+1}

$$
L=\sum_{t=0}^{T} \beta^{t}\left[u\left(f\left(k_{t}\right)-k_{t+1}\right)+\mu_{t} k_{t+1}\right]
$$

We have made use of our knowledge of the fact that the resource constraint will be binding in our solution to get rid of the multiplier $\beta^{t} \lambda_{t}$

Sovle the problem - Kuhn-Tucker conditions

- First order conditions for c_{t} and k_{t+1}

$$
\begin{aligned}
\frac{\partial L}{\partial c_{t}} & : \beta^{t}\left[u\left(c_{t}\right)-\lambda_{t}\right]=0, \quad t=0, . . T \\
\frac{\partial L}{\partial k_{t+1}} & : \quad-\beta^{t} \lambda_{t}+\beta^{t} \mu_{t}+\beta^{t+1} \lambda_{t+1} f^{\prime}\left(k_{t+1}\right)=0, \quad t=0, \ldots, T-1 \\
\frac{\partial L}{\partial k_{T}} & : \quad-\beta^{T} \lambda_{T}+\beta^{T} \mu_{T}=0, t=T
\end{aligned}
$$

- Or first order conditions for k_{t+1}

$$
\begin{gathered}
\frac{\partial L}{\partial k_{t+1}}:-\beta^{t} u^{\prime}\left(c_{t}\right)+\beta^{t} \mu_{t}+\beta^{t+1} u^{\prime}\left(c_{t+1}\right) f^{\prime}\left(k_{t+1}\right)=0, \\
t=0, \ldots, T-1 \\
\frac{\partial L}{\partial k_{T}}:-\beta^{T} u^{\prime}\left(c_{T}\right)+\beta^{T} \mu_{T}=0, t=T
\end{gathered}
$$

Sovle the problem - Kuhn-Tucker conditions

- the complementary slackness condition

$$
\mu_{t} k_{t+1}=0, t=0, \ldots, T
$$

- Non-negative conditions

$$
k_{t+1} \geq 0, \lambda_{t} \geq 0, \mu_{t} \geq 0
$$

- Derive that $k_{T+1}=0$: consumers leave no capital for after the last period

$$
\binom{\forall c, u^{\prime}(c)>0}{-\beta^{T} u^{\prime}\left(c_{T}\right)+\beta^{\top} \mu_{T}=0}==>\mu_{T}>0==>k_{T+1}=0
$$

Sovle the problem - Euler equation

- The summary statement of the first-order conditions is then the "Euler equation":

$$
\begin{aligned}
u^{\prime}\left(f\left(k_{t}\right)-k_{t+1}\right) & =\beta u^{\prime}\left(f\left(k_{t+1}\right)-k_{t+2}\right) f^{\prime}\left(k_{t+1}\right) \\
t & =0, \ldots, T-1, k_{0} \text { given, } k_{T+1}=0
\end{aligned}
$$

- Variational conditions: given to boundary conditions k_{t} and k_{t+2}, it represents the idea of varying the intermediate value k_{t+1} so as to achieve the best outcome
- A difference equation in the capital sequence: there are a total of $\mathrm{T}+$ 1 equations and $T+1$ unknowns - the unknowns are a sequence of capital stocks with an initial and a terminal condition
- It is a second-order difference equation because there are two lags of capital in the equation.

Unique solution

- Assumption: u is concave

$$
U=\sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right) \text { is concave in }\left\{c_{t}\right\}
$$

since the sum of concave functions is concave

- the constraint set is convex in $\left\{c_{t}, k_{t+1} \mid c_{t}+k_{t+1} \leq f\left(k_{t}\right)\right\}$, provided that we assume concavity of f
- concavity of the functions u and f makes the overall objective concave and the choice set convex, and thus the first-order conditions are suffient

Interpret the Euler equation

$$
u^{\prime}\left(f\left(k_{t}\right)-k_{t+1}\right)=\beta u^{\prime}\left(f\left(k_{t+1}\right)-k_{t+2}\right) f^{\prime}\left(k_{t+1}\right)
$$

$u^{\prime}\left(f\left(k_{t}\right)-k_{t+1}\right):$ utility lost if you invest one more unit i.e. marginal cost of saving
$\beta u^{\prime}\left(f\left(k_{t+1}\right)-k_{t+2}\right): \quad$ utility increase next period per unit of increase in c_{t+1}
$f^{\prime}\left(k_{t+1}\right)$: return on the invested unit: by how many units c_{t+1} can increase
because of the concavity of u, equalizing the marginal cost of saving to the marginal benefit of saving is a condition for an optimum

How do the premitives affect savings behavior

the concavity of utility, the discounting, and the return to saving
(1) Consumption "smoothing": if the utility function is strictly concave, the individual prefers a smooth consumption stream

Example

Suppose that technology is linear, i.e. $f(k)=R k$, and that $R \beta=1$. Then

$$
\begin{gathered}
\beta f^{\prime}\left(k_{t+1}\right)=\beta R=1 \\
u^{\prime}\left(c_{t}\right)=u^{\prime}\left(c_{t+1}\right)
\end{gathered}
$$

if u is strictly concave, u^{\prime} is monotonically increasing, $c_{t}=c_{t+1}$

How do the premitives affect savings behavior

2 Impatience: via β we see that a low β (a low discount factor, or a high discount rate $\frac{1}{\beta}-1$) will tend to be associated with low c_{t+1} 's and high c_{t} 's.
3 The return to savings: $f^{\prime}\left(k_{t+1}\right)$ clearly also affcts behavior

- but its effect on consumption cannot be signed unless we make more specific assumptions
- Moreover, k_{t+1} is endogenous, so when f^{\prime} nontrivially depends on it, we cannot vary the return independently
- The case when f^{\prime} is a constant, such as in the Ak growth model, is more convenient

Example 1 - logarithmic utility function

- $u(c)=\log (c), f(k)=A k$
- Euler equation:

$$
u^{\prime}\left(c_{t}\right)=\beta u^{\prime}\left(c_{t+1}\right) f^{\prime}\left(k_{t+1}\right)
$$

$$
\frac{1}{c_{t}}=\frac{\beta}{c_{t+1}} A
$$

- Optimal consumption growth rule

$$
c_{t+1}=\beta A c_{t}
$$

Intertemporal budget constraint

- Resource constraints

$$
\begin{aligned}
c_{0}+k_{1}= & A k_{0} \\
c_{1}+k_{2}= & A k_{1} \\
& \ldots \\
c_{T}+k_{T+1}= & A k_{T} \\
k_{T+1}= & 0
\end{aligned}
$$

- Intertemporal budget constraint

$$
c_{0}+\frac{1}{A} c_{1}+\frac{1}{A^{2}} c_{2}+\ldots+\frac{1}{A^{T}} c_{T}=A k_{0}
$$

present value of consumption stream $=$ present value of income

Optimal consumption

Using the optimal consumption growth rule $c_{t+1}=\beta A c_{t}$,

$$
\begin{gathered}
c_{0}+\frac{1}{A} \beta A c_{0}+\frac{1}{A^{2}}(\beta A)^{2} c_{0}+\ldots+\frac{1}{A^{T}}(\beta A)^{T} c_{0}=A k_{0} \\
c_{0}\left[\beta+\beta^{2}+\ldots+\beta^{T}\right]=A k_{0} \\
c_{0}=\frac{A k_{0}}{\beta+\beta^{2}+\ldots+\beta^{T}}
\end{gathered}
$$

Share of consumption c_{t} is $\frac{\beta^{t}}{\beta+\beta^{2}+\ldots+\beta^{T}}$

The Effects of productivity A

- An increase in A will cause a rise in consumption in all periods
- Crucial to this result is the chosen form for the utility function: Logarithmic utility has the property that income and substitution effcts, when they go in opposite directions, exactly offset each other
- Changes in A have two components: a change in relative prices (of consumption in different periods) and a change in present-value income: $A k_{0}$

$$
c_{0}+\frac{1}{A} c_{1}+\frac{1}{A^{2}} c_{2}+\ldots+\frac{1}{A^{T}} c_{T}=A k_{0}
$$

The Effects of productivity A - logarithmic utility

- With logarithmic utility, a relative price change between two goods will make the consumption of the favored good go up whereas the consumption of other good will remain at the same level
- The unfavored good will not be consumed in a lower amount since there is a positive income effct of the other good being cheaper, and that effect will be spread over both goods
- Thus, the period 0 good will be unfavored in our example (since all other goods have lower price relative to good 0 if A goes up), and its consumption level will not decrease
- The consumption of good 0 will in fact increase because total present-value income is multiplicative in A

Varying productivity A

Productivity stream $\left\{A_{t}\right\}$

$$
c_{0}+\frac{1}{A_{1}} c_{1}+\frac{1}{A_{1} A_{2}} c_{2}+\ldots+\frac{1}{A_{1} A_{2} \ldots A_{T}} c_{T}=A_{0} k_{0}
$$

Plugging in the optimal path $c_{t+1}=\beta A_{t+1} c_{t}$,

$$
\begin{gathered}
c_{0}\left[\beta+\beta^{2}+\ldots+\beta^{T}\right]=A_{0} k_{0} \\
c_{0}=\frac{A_{0} k_{0}}{\beta+\beta^{2}+\ldots+\beta^{T}} \\
c_{1}=\frac{\left(A_{1} \beta\right) A_{0} k_{0}}{\beta+\beta^{2}+\ldots+\beta^{T}} \\
c_{T}=\frac{A_{0} A_{1} \ldots A_{T} \beta^{T} k_{0}}{\beta+\beta^{2}+\ldots+\beta^{T}}
\end{gathered}
$$

Comparative Statics: $A_{t} \uparrow \Longrightarrow c_{0}, c_{1}, \ldots, c_{t-1}$ are unaffected

Example 2 - CES Utility function

$$
u(c)=\frac{c^{1-\sigma}-1}{1-\sigma}
$$

$\sigma=0$: linear utility
$\sigma>0$: concave
$\sigma=1$: limit: logarithmic utility

Intertemporal Elasticity of Substitution

Let $R_{t, t+k}$ denote the interest rate: $R_{t, t+k}=A_{t+1} \ldots A_{t+k}$
The intertemporal elasticity of substitution is

$$
I E S \equiv \frac{\frac{d \frac{c_{t+k}}{c_{t}}}{\frac{c_{t+k}}{c_{t}}}}{\frac{d R_{t, t+k}}{R_{t, t+k}}}
$$

IES measures the elasticity of the relative share of conumption with respect to interest rate

Intertemporal Elasticity of Substitution

$R_{t+1}=A_{t+1}$

$$
u^{\prime}\left(c_{t}\right)=\beta u^{\prime}\left(c_{t+1}\right) R_{t+1}
$$

Replacing repeatedly, we have

$$
\left.\begin{array}{c}
u^{\prime}\left(c_{t}\right)=\beta^{k} u^{\prime}\left(c_{t+k}\right) R_{t+1} \ldots R_{t+k} \\
u^{\prime}(c)=c^{-\sigma}
\end{array}\right\} \Longrightarrow c_{t}^{-\sigma}=\beta^{k} c_{t+k}^{-\sigma} R_{t, t+k} .
$$

Intertemporal Elasticity of Substitution

- When $\sigma=1$, expenditure shares do not change: this is the logarithmic case
- When $\sigma>1$, an increase in $R_{t, t+k}$ would lead c_{t} to go up and savings to go down: the income effect, leading to smoothing across all goods, is larger than substitution effect
- Finally, $\sigma<1$, the substitution effect is stronger: savings go up whenever $R_{t, t+k}$ goes up
- When $\sigma=0$, the elasticity is infinite and savings respond discontinuously to $R_{t, t+k}$

