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Dynamic optimization

@ two common approaches to modelling real-life individuals:

o they live a finite number of periods
o they live forever

@ two alternative ways of solving dynamic optimization problems:

e sequential methods: a sequence of choices are determined at once
e recursive methods: choices in one period are determined in that period
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Sequential methods - A finite horizon

@ Decide on a consumption stream for T periods
Additive separable utility function:

T

Ula, e, .cr) =) Bru(ce)
t=0
@ The standard assumption is 0 < B < 1, which corresponds to the
observations that human beings seem to deem consumption at an
early time more valuable than consumption further off in the future
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Dynamic optimization - Neo-classical growth model

A consumption-savings problem

T

max Y Bfu(c)

{ceker1} o t=0

sit.ce+kev1r < f(ke) = Fke, L)+ (1 —06)k:
¢ > 0, k1 >0, and kg is given
It is, in this case, a "planning problem": there is no market where the

individual might obtain an interest income from his savings, but rather
savings yield production following the transformation rule f (k;)
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Assumptions on utility function

@ Assume that u is strictly increasing and limc_,o v'(c) — oo
@ Resource constraint will bind

o resource constraint ¢; + ker1 < f (k¢) allows for throwing goods away,
since strict inequality is allowed

e but the assumption that v is strictly increasing will imply that goods
will not actually be thrown away, because they are valuable

@ We can ignore the non-negative constraint of ¢;

o lime_g u/(c) — oo, This implies that ¢; = 0 at any t cannot be
optimal
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Lagrangian function

@ Two decision variables: ¢; and ks 1

.
L= ;).Bt [u(ce) + Ae(F(ke) = kev1 — c&) + poketa]

@ Or one decision variable: k11

L= Z B [u(f(ke) — ket1) + poketa]

We have made use of our knowledge of the fact that the resource
constraint will be binding in our solution to get rid of the multiplier

A
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Sovle the problem - Kuhn-Tucker conditions

o First order conditions for ¢; and k41

oL

aict_ : ﬁt [U(Ct) - )Lt] 0, t= O, T

oL

S A BB e (k) =0, £ =0, T -]
t

oL

O BTAr+pTH =0, t=T

okt

@ Or first order conditions for k;i1

oL
=B (ce) + B+ B (1) (Kes1) = 0,
Oke 11

aL
o BT (er) + BTy =0, t=T
T
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Sovle the problem - Kuhn-Tucker conditions

@ the complementary slackness condition

Hokey1 =0, t=0,.., T

@ Non-negative conditions

kt+1 ZO,AtZO,ytZO

@ Derive that k741 = 0 : consumers leave no capital for after the last
period
( Vc u'(c)>0
Blu

(er)+BT VT_0> === Hr > 0==>kri1=0
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Sovle the problem - Euler equation

@ The summary statement of the first-order conditions is then the
"Euler equation":

u'(F(ke) = keyr) = PBu'(Fkes1) — keso)f' (kes1)
t = 0,...,T—1, ko given, kT+1 =0

@ Variational conditions: given to boundary conditions k; and k;1o, it
represents the idea of varying the intermediate value k;;1 so as to
achieve the best outcome

o A difference equation in the capital sequence: there are a total of T +
1 equations and T + 1 unknowns - the unknowns are a sequence of
capital stocks with an initial and a terminal condition

e It is a second-order difference equation because there are two lags of
capital in the equation.
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Unique solution

@ Assumption: u is concave

U= Z B'u(ct) is concave in {c;}

since the sum of concave functions is concave

@ the constraint set is convex in {ct, ke11|ct + ki1 < f (k¢)}, provided
that we assume concavity of f
@ concavity of the functions u and f makes the overall objective concave

and the choice set convex, and thus the first-order conditions are
suffient
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Interpret the Euler equation

u'(f(ke) = kes1) = Bu'(F(ker1) — ke2) ' (ket1)

U (f(ks) — kes1) o utility lost if you invest one more unit
i.e. marginal cost of saving
Bu'(f(kes1) — ket2) :  utility increase next period
per unit of increase in c;y1
f'(ket1) : return on the invested unit:

by how many units ¢;41 can increase

because of the concavity of u, equalizing the marginal cost of saving to the
marginal benefit of saving is a condition for an optimum
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How do the premitives affect savings behavior

the concavity of utility, the discounting, and the return to saving

@ Consumption "smoothing": if the utility function is strictly concave,
the individual prefers a smooth consumption stream

Example
Suppose that technology is linear, i.e. f(k) = Rk, and that R = 1. Then

Bf' (k1) = BR =1

U/(Ct) = U/(Ct+1)

if u is strictly concave, v’ is monotonically increasing, ¢; = ct11
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How do the premitives affect savings behavior

2 Impatience: via B we see that a low B (a low discount factor, or a
high discount rate % — 1) will tend to be associated with low ¢;y1's
and high ¢;'s.

3 The return to savings: f’(k:+1) clearly also affcts behavior

e but its effect on consumption cannot be signed unless we make more

specific assumptions

e Moreover, k:y1 is endogenous, so when f' nontrivially depends on it,
we cannot vary the return independently

o The case when f’ is a constant, such as in the Ak growth model, is
more convenient
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Example 1 - logarithmic utility function

u(c) =log(c), f(k) = Ak
Euler equation:

u'(ct) = Bu'(ceyr)f' (keg1)

1

1_ 5,
Ct Ct+1

@ Optimal consumption growth rule

Ct+1 = ﬁACt
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Intertemporal budget constraint

@ Resource constraints

o+ ki = Ak
a+k = Ak

cr +kri1 = Akt
krv1 = 0

@ Intertemporal budget constraint

1
C1+ o+ ...+ ——=cr = Ak

A A2 AT
present value of consumption stream = present value of income

¢+ —
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Optimal consumption

Using the optimal consumption growth rule ¢, 1 = BAc,

o + ﬁACO + (’BA) c + .. + (ﬁA) = Ako

o [ﬁ+ﬁ2+...+ﬁ7] = Ak
Akg
ptp+.t+p

t

B
B+B2+..+pT

o =

Share of consumption ¢; is
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The Effects of productivity A

@ An increase in A will cause a rise in consumption in all periods

o Crucial to this result is the chosen form for the utility function:
Logarithmic utility has the property that income and substitution
effcts, when they go in opposite directions, exactly offset each other

@ Changes in A have two components: a change in relative prices (of
consumption in different periods) and a change in present-value
income: Ak

1
ct = Ako

o+ - C1—I— AT

2 G+ ...+

A2
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The Effects of productivity A - logarithmic utility

@ With logarithmic utility, a relative price change between two goods
will make the consumption of the favored good go up whereas the
consumption of other good will remain at the same level

@ The unfavored good will not be consumed in a lower amount since
there is a positive income effct of the other good being cheaper, and
that effect will be spread over both goods

@ Thus, the period 0 good will be unfavored in our example (since all
other goods have lower price relative to good 0 if A goes up), and its
consumption level will not decrease

@ The consumption of good 0 will in fact increase because total
present-value income is multiplicative in A
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Varying productivity A

Productivity stream {A;}

1 1 1
C0+A71C1+EC2+---+mC

Plugging in the optimal path ¢;11 = BAs+1¢t,

co [ﬁ+/32 +... +ﬁT] = Aoko

T = Aoko

. Aoko
O pu—
BB +..+p’
_ (A1B)Acko
a = 2 T
B+pB +...+p
AcA1. ATBT kg
ct =

B+p+. . +pT

Comparative Statics: Ay T = «, c1, ..., ¢t—1 are unaffected
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Example 2 - CES Utility function

o = 0: linear utility
o > 0: concave

c = 1: limit: logarithmic utility
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Intertemporal Elasticity of Substitution

Let R: 4k denote the interest rate: Ry ;yx = Ar41...Artk
The intertemporal elasticity of substitution is

Ct+k
d <
Ct+k

IES = 4/

Rt tvk

IES measures the elasticity of the relative share of conumption with
respect to interest rate
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Intertemporal Elasticity of Substitution

Rt+1 = At+1

u'(ce) = Bu'(cer1) Renn
Replacing repeatedly, we have

u'(ct) =

B¥U' (crik)Res1.-Resk

—0 _ pk .—0
} > C _,B Ct+th,t+k

d Stk
Ct
ik d log =tk 1
IES = p*— = L ==
teek  dlog Ry O
Rt tvk ’
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Intertemporal Elasticity of Substitution

@ When 0 = 1, expenditure shares do not change: this is the
logarithmic case

@ When ¢ > 1, an increase in Ry ¢4, would lead ¢; to go up and savings
to go down: the income effect, leading to smoothing across all goods,
is larger than substitution effect

e Finally, 0 < 1, the substitution effect is stronger: savings go up
whenever Ry sy, goes up

@ When 0 = 0, the elasticity is infinite and savings respond
discontinuously to Ry ¢y«
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