Advanced Macroeconomics I Lecture 2 (5)

Zhe Li

SUFE

Spring 2010

The proofs of all these results can be found in Stokey and Lucas with Prescott (1989)

Assumptions:

- F(k, k') is continuously diffrentiable in its two arguments, that it is strictly increasing in its first argument (and decreasing in the second), strictly concave, and bounded
- **②** Γ is a nonempty, compact-valued, monotone, and continuous correspondence with a convex graph
- $\ \beta \in (0,1)$
 - There exists a function V that solves the Bellman equation. This solution is unique

- It is possible to find V by the following iterative process:
 - Pick any initial V_0 function, for example $V_0(k) = 0$
 - Find V_{n+1}, for any value of k, by evaluating the right-hand side of (*) using V_n

$$V(k) \equiv \max_{k' \in \Gamma(k)} \left\{ F(k, k') + \beta V(k') \right\}$$
(*)

• The outcome of this process is a sequence of functions $\{V_j\}_{j=0}^\infty$ which converges to V

- V is strictly concave
- V is strictly increasing
- V is diffrentiable

- Optimal behavior can be characterized by a function g, with k' = g(k), that is increasing so long as F_2 is increasing in k
- First order condition:

$$V(k) \equiv \max_{k' \in \Gamma(k)} \left\{ F(k, k') + \beta V(k') \right\}$$
(*)
-F₂(k, k') = $\beta V'(k')$