Advanced Macroeconomics I Lecture 3 (4)

Zhe Li

SUFE

Spring 2010

(SUFE)

- The task is now to find $g'(k^*)$
- by linearization: linearize the Euler equation
- This will lead to a difference equation in k_t . One of the solutions to this difference equation will be the one we are looking for

Theorem

Let $x_t \in \mathbb{R}^n$. Given $x_{t+1} = h(x_t)$ with a stationary point $x^* : x^* = h(x^*)$ if 1. h is continuously differentiable with Jacobian $H(x^*)$ around x^* 2. $I - H(x^*)$ is non-singular then there is a set of initial conditions x_0 , of dimension equal to the number of eigenvalues of $H(x^*)$ that are less than 1 in absolute value, for which $x_t \to x^*$

Examples

There is only one eigenvalue: $\lambda = h'(x^*)$ 1. $|\lambda| \ge 1$, no initial condition leads to x_t converging to x^* In this case, only for $x_0 = x^*$ will the system stay in x^* if $\lambda = 1$ 2. $|\lambda| < 1$, $x_t \to x^*$ for any value of x_0

Examples

There are two eigenvalues: λ_1 , λ_2 1. $|\lambda_1|$, $|\lambda_2| \ge 1$, no initial condition x_0 leads to x_t converging to x^* 2. $|\lambda_1| < 1$, $|\lambda_2| \ge 1$, dimention of x'_0s leading to *convergence* is 1 3. $|\lambda_1| < 1$, $|\lambda_2| < 11$, dimention of x'_0s leading to *convergence* is 2, $x_t \rightarrow x^*$ for any value of x_0

- Let the number of eigenvalues less than 1 in absolute value be denoted by m. This is the dimension of the set of initial x₀'s leading to x*
- We may interpret m as the degrees of freedom
- Let the number of economic restrictions on initial conditions be denoted by \hat{m} . These are the restrictions coming from physical conditions in our economic model
- Notice that an interpretation of this is that we have \hat{m} equations and m unknowns. Then the issue of convergence boils down to the following cases

- $m = \hat{m}$: there is a unique convergent solution to the difference equation system
- 2 $m < \hat{m}$: No convergent solution obtains
- $m > \hat{m}$: There is "indeterminacy", i.e. many solutions