Advanced Macroeconomics I

Lecture 3 (5)

Zhe Li

SUFE

Spring 2010

(SUFE) Advanced Macro Spring 2010 1 / 10

Solving for the speed of convergence

- Derive the Euler equation: $F(k_t, k_{t+1}, k_{t+2}) = 0$ $u'[f(k_t) - k_{t+1}] - \beta u'[f(k_{t+1}) - k_{t+2}]f'(k_{t+1}) = 0$
- ullet k^* is a steady state \Leftrightarrow $F(k^*,k^*,k^*)=0$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

(SUFE) Advanced Macro Spring 2010 2 / 10

Linearize the Euler equation

• Define $\hat{k}_t = k_t - k^*$, and using first-order Taylor approximation derive a_0 , a_1 , and a_2 such that

$$a_2\hat{k}_{t+2} + a_1\hat{k}_{t+1} + a_0\hat{k}_t = 0$$

$$\beta u''(c^*)f'(k^*)\hat{k}_{t+2} - \left[u''(c^*) + \beta u''(c^*) \left[f'(k^*)\right]^2 + \beta u'(c^*)f''(k^*)\right]\hat{k}_{t+1} + u''(c^*)f'(k^*)\hat{k}_t$$

$$= 0$$

$$\hat{k}_{t+2} - \left[\frac{1}{\beta f'(k^*)} + f'(k^*) + \frac{u'(c^*)f''(k^*)}{u''(c^*)f'(k^*)}\right]\hat{k}_{t+1} + \frac{1}{\beta}\hat{k}_t = 0$$

4□ > 4□ > 4 = > 4 = > = 90

(SUFE) Advanced Macro Spring 2010 3 / 10

A first-order system

• Write the Euler equation as a first-order system: A difference equation of any order can be written as a first order difference equation by using vector notation: Define $x_t = \binom{\hat{k}_{t+1}}{\hat{k}_t}$ and then

$$x_{t+1} = Hx_t$$

$$\begin{pmatrix} \hat{k}_{t+2} \\ \hat{k}_{t+1} \end{pmatrix} = H \begin{pmatrix} \hat{k}_{t+1} \\ \hat{k}_t \end{pmatrix}$$

$$H = \begin{pmatrix} 1 + \frac{1}{\beta} + \frac{u'(c^*)f''(k^*)}{u''(c^*)f'(k^*)} & -\frac{1}{\beta} \\ 1 & 0 \end{pmatrix}$$

 $\beta f'(k^*) = 1$

(SUFE) Advanced Macro Spring 2010 4 / 10

Look for eigenvalues

From the characteristic polynomial given by

$$|H - \lambda I| = 0$$

Using spectral decomposition, we can decompose H as follows:

$$H = V\Lambda V^{-1} \Longrightarrow \Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

 λ_1 and λ_2 are (distinct) eigenvalues of $\emph{H},\, V$ is a matrix of eigenvectors of H

(ロ) (型) (差) (差) 差 から(®)

Spring 2010

(SUFE) Advanced Macro

A change of variables

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

(SUFE) Advanced Macro Spring 2010 6 / 10

Solve k

We can go back to x_t by premultiplying z_t by V:

$$\begin{array}{rcl}
x_t & = & Vz_t \\
 & = & V\begin{pmatrix} z_{1t} \\ z_{2t} \end{pmatrix}
\end{array}$$

$$x_t = z_{10}\lambda_1^t {V_{11} \choose V_{21}} + z_{20}\lambda_2^t {V_{12} \choose V_{22}}$$
$$= {\hat{k}_{t+1} \choose \hat{k}_t}$$

(SUFE) Advanced Macro Spring 2010 7 / 10

Eigenvalues

$$\begin{vmatrix} 1 + \frac{1}{\beta} + \frac{u'(c^*)f''(k^*)}{u''(c^*)f'(k^*)} - \lambda & -\frac{1}{\beta} \\ 1 & -\lambda \end{vmatrix} = 0$$

$$\lambda^2 - \left[1 + \frac{1}{\beta} + \frac{u'(c^*)f''(k^*)}{u''(c^*)f'(k^*)} \right] \lambda + \frac{1}{\beta} = 0$$

(SUFE) Advanced Macro Spring 2010 8 / 10

Eigenvalues

Let

$$F(\lambda) = \lambda^2 - \left[1 + rac{1}{eta} + rac{u'(c^*)f''(k^*)}{u''(c^*)f'(k^*)}
ight]\lambda + rac{1}{eta}$$

 $F(\lambda)$ is a continuous function of λ

$$\left. \begin{array}{l} F(0) = \frac{1}{\beta} > 0 \\ F(1) = -\frac{u'(c^*)f''(k^*)}{u''(c^*)f'(k^*)} < 0 \\ F(\infty) = \infty > 0 \end{array} \right\} \Longrightarrow \lambda_1 < 1, \ \lambda_2 > 1$$

(SUFE) Advanced Macro Spring 2010 9 / 10

A convergent solution

$$\begin{pmatrix} \hat{k}_{t+1} \\ \hat{k}_{t} \end{pmatrix} = z_{10} \lambda_{1}^{t} \begin{pmatrix} V_{11} \\ V_{21} \end{pmatrix} + z_{20} \lambda_{2}^{t} \begin{pmatrix} V_{12} \\ V_{22} \end{pmatrix}
\hat{k}_{t} = c_{1} \lambda_{1}^{t} + c_{2} \lambda_{2}^{t}$$

A convergent solution to the system requires $c_2 = 0$. The remaining constant, c_1 , will be determined from

$$k_0 - k^* \equiv \hat{k}_0 = c_1 \lambda_1^0 = c_1$$

 $k_t - k^* = \lambda_1^t (k_0 - k^*)$
 $k_{t+1} - k^* = \lambda_1 (k_t - k^*)$

It can thus be seen that the eigenvalue λ_1 has a particular meaning: it measures the (inverse of the) rate of convergence to the steady state