# Advanced Macroeconomics I Lecture 4 (2) 

## Zhe Li

SUFE

## Spring 2011

## Neoclassical growth model with sequential trade

- The following are the prices involved in this market structure:
- Price of capital services at $t: R_{t}$
- $R_{t}=r_{t}+1-\delta$
- Price of labor:
- $w_{t}$ price of labor at $t$ relative to (in terms of) consumption goods at $t$


## Equilibrium with sequential trade

## Definition

A competitive equilibrium is a sequence $\left\{R_{t}^{*}, w_{t}^{*}, c_{t}^{*}, K_{t+1}^{*}, n_{t}^{*}\right\}_{t=0}^{\infty}$ such that 1.)

$$
\begin{aligned}
& \left\{c_{t}^{*}, K_{t+1}^{*}, n_{t}^{*}\right\}_{t=0}^{\infty} \\
= & \arg \max _{\left\{c_{t}, K_{t+1}, n_{t}\right\}_{t=0}^{\infty}}\left\{\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right\}
\end{aligned}
$$

## Definition

s.t.

$$
c_{t}+K_{t+1}=R_{t}^{*} K_{t}+n_{t} w_{t}^{*}
$$

$k_{0}$ given and a no-Ponzi-game condition
2.) $\left\{K_{t+1}^{*}, n_{t}^{*}\right\}_{t=0}^{\infty}$ solves the firms' problem:
$\forall t\left(K_{t}^{*}, 1\right)$
$=\arg \max _{K_{t}, n_{t}}\left\{\begin{array}{c}F\left(K_{t}, n_{t}\right)-R_{t}^{*} K_{t} \\ +(1-\delta) K_{t}-w_{t}^{*} n_{t}\end{array}\right\}$

## Definitions

3.) Market clearing (feasibility):

$$
\forall t c_{t}^{*}+K_{t+1}^{*}=F\left(K_{t}^{*}, 1\right)+(1-\delta) K_{t}^{*}
$$

## Consumer's problem

- A sequence of Lagrange Multiplier FOC

$$
\begin{aligned}
c_{t} & : \beta^{t} u^{\prime}\left(c_{t}^{*}\right)=\beta^{t} \lambda_{t}^{*} \\
c_{t+1} & : \beta^{t+1} u^{\prime}\left(c_{t+1}^{*}\right)=\beta^{t+1} \lambda_{t+1}^{*} \\
K_{t+1} & : \beta^{t} \lambda_{t}^{*}=\beta^{t+1} R_{t+1}^{*} \lambda_{t+1}^{*}
\end{aligned}
$$

## Optimal conditions

- Marginal rate of substitution $=$ interest rate

$$
\begin{gathered}
\frac{\lambda_{t}^{*}}{\lambda_{t+1}^{*}}=\beta R_{t+1}^{*} \\
\frac{u^{\prime}\left(c_{t}^{*}\right)}{u^{\prime}\left(c_{t+1}^{*}\right)}=\beta R_{t+1}^{*}
\end{gathered}
$$

- Firm's optimal:

$$
R_{t}^{*}=F_{k}\left(K_{t}^{*}, 1\right)+1-\delta
$$

## Equilibrium

- Euler equation

$$
u^{\prime}\left(c_{t}^{*}\right)=\beta u^{\prime}\left(c_{t+1}^{*}\right)\left(F_{k}\left(K_{t}^{*}, 1\right)+1-\delta\right)
$$

- This is identical to the planner's Euler equation
- The sequential market equilibrium is the same as the Arrow-Debreu-McKenzie date-0 equilibrium
- Both are Pareto-optimal


## Recursive competitive equilibrium

- Treating all maximization problems as split into decisions concerning today versus the entire future
- Instead of having sequences, a recursive competitive equilibrium is a set of functions
- quantities, utility levels, and prices, as functions of the "state"
- These functions allow us to say what will happen in the economy for every specific consumer, given an arbitrary choice of the initial state


## The neoclassical growth model

Centralized recursive economy

- Assume time endowment $=1$, leisure is not valued
- Recall the central planner's problem:

$$
\begin{aligned}
& V(K)=\max _{c, K^{\prime} \geq 0}\left\{u(c)+\beta V\left(K^{\prime}\right)\right\} \\
& \text { s.t. } c+K^{\prime}=F(K, 1)+(1-\delta) K
\end{aligned}
$$

## The neoclassical growth model

## Decentralized recursive economy

- The individual's budget constraint will no longer be expressed in terms of physical units, but in terms of sources and uses of funds at the going market prices, $\left\{R_{t}, w_{t}\right\}_{t=0}^{\infty}$ with the equilibrium levels given by

$$
\begin{aligned}
& R_{t}^{*}=F_{K}\left(K_{t}^{*}, 1\right)+1-\delta \\
& w_{t}^{*}=F_{n}\left(K_{t}^{*}, 1\right)
\end{aligned}
$$

## Aggregate states

- If $\bar{K}$ denotes the (current) aggregate capital stock, then

$$
R=R(\bar{K}), w=w(\bar{K})
$$

## Individual states

- For one individual:

$$
c+K^{\prime}=R(\bar{K}) K+w(\bar{K})
$$

two variables are key to the agent: his own level of capital, $K$, and the aggregate level of capital, $\bar{K}$, which will determine his income

- Value function

$$
V(K, \bar{K})=\max _{c, K^{\prime} \geq 0}\left\{u(c)+\beta V\left(K^{\prime}, \bar{K}^{\prime}\right)\right\}
$$

## Law of motion-aggregate capital

- The agent's perceived law of motion of aggregate capital
- We assume that he will perceive this law of motion as a function of the aggregate level of capital
- His perception is rational - it will correctly correspond to the actual law of motion:

$$
\bar{K}^{\prime}=G(\bar{K})
$$

where $G$ is a result of the representative agent's equilibrium capital accumulation decisions

## Dynamic problem in decentralized

## economy

- The consumer's complete dynamic problem in the decentralized economy:

$$
V(K, \bar{K})=\max _{c, K^{\prime} \geq 0}\left\{u(c)+\beta V\left(K^{\prime}, \bar{K}^{\prime}\right)\right\}
$$

s.t.

$$
\begin{gathered}
c+K^{\prime}=R(\bar{K}) K+w(\bar{K}) \\
\bar{K}^{\prime}=G(\bar{K})
\end{gathered}
$$

## Policy function

- A policy function for the individual's law of motion for capital:

$$
\begin{aligned}
K^{\prime}= & g(K, \bar{K}) \\
= & \arg _{K^{\prime} \in[0, R(\bar{K}) K+w(\bar{K})]} \\
& \left\{\begin{array}{c}
u\left(R(\bar{K}) K+w(\bar{K})-K^{\prime}\right) \\
+\beta V\left(K^{\prime}, \bar{K}^{\prime}\right)
\end{array}\right\}
\end{aligned}
$$

- Aggregate policy function

$$
\bar{K}^{\prime}=G(\bar{K})
$$

## A recursive competitive equilibrium

## Definition

A recursive competitive equilibrium is a set of functions:
Quantities $G(\bar{K}), g(K, \bar{K})$,
Lifetime utility level $V(K, \bar{K})$, and Prices $R(\bar{K})$, w $(\bar{K})$ such that
(1) $V(K, \bar{K})$ solves the consumer's problem, and $g(K, \bar{K})$ is the associated policy function

## A recursive competitive equilibrium

## Definition

2 Prices are competitively determined:

$$
\begin{aligned}
& R(\bar{K})=F_{K}(\bar{K}, 1)+1-\delta \\
& w(\bar{K})=F_{n}(\bar{K}, 1)
\end{aligned}
$$

In the recursive formulation, prices are stationary functions, rather than sequences

## A recursive competitive equilibrium

## Definition

3 Individual and aggregate consistency:

$$
G(\bar{K})=g(\bar{K}, \bar{K}) \forall \bar{K}
$$

- The third condition - consistency is the distinctive feature of the recursive formulation of competitive equilibrium


## A distinctive feature

- Whenever the individual consumer is endowed with a level of capital equal to the aggregate level, his own individual behavior will exactly mimic the aggregate behavior
- for example, only one single agent in the economy owns all the capital, or there is a measure one of agents
- The aggregate law of motion perceived by the agent must be consistent with the actual behavior of individuals


## Market Clears?

$$
c+\bar{K}^{\prime}=F(\bar{K}, 1)+(1-\delta) \bar{K}
$$

## Theorem

Euler Theorem: if the production technology exhibits constant returns to scale (that is, if the production function is homogeneous of degree 1), then

$$
F(\bar{K}, 1)+(1-\delta) \bar{K}=R(\bar{K}) \bar{K}+w(\bar{K})
$$

## Off-equilibrium

- Solving for the functions $V$ and $g$, which specify "off-equilibrium" behavior: what the agent would do if he were different from the representative agent?
- In order to justify the equilibrium behavior we need to see that the postulated, chosen path, is not worse than any other path
- $V(K, \bar{K})$ precisely allows you to evaluate the futurec onsequences for these behavioral alternatives, thought of as one-period deviations


## Off-equilibrium

- Implicitly, in the sequential approach, we check off-equilibrium behavior
- although in that approach one typically simply derives the first-order (Euler) equation and imposes $K=\bar{K}$ there
- Knowing that the F.O.C. is sufficient, one does not need to look explicitly at alternatives


## Optimal?

$$
V(K, \bar{K})=\max _{c, K^{\prime} \geq 0}\left\{u(c)+\beta V\left(K^{\prime}, \bar{K}^{\prime}\right)\right\}
$$

s.t.

$$
\begin{gathered}
c+K^{\prime}=R(\bar{K}) K+w(\bar{K}) \\
\bar{K}^{\prime}=G(\bar{K})
\end{gathered}
$$

## Optimal?

$$
V(K, \bar{K})=\max _{K^{\prime} \geq 0}\left\{\begin{array}{c}
u\left(R(\bar{K}) K+w(\bar{K})-K^{\prime}\right) \\
+\beta V\left(K^{\prime}, \bar{K}^{\prime}\right)
\end{array}\right.
$$

- F.O.C:

$$
\begin{aligned}
& u^{\prime}(R(\bar{K}) K+w(\bar{K})-g(K, \bar{K})) \\
= & \beta V^{\prime}\left(K^{\prime}, \bar{K}^{\prime}\right)
\end{aligned}
$$

$g(K, \bar{K})$ individual policy function

## Optimal?

- Envelope condition:

$$
\left.\begin{array}{rl}
V(K, \bar{K})=\max _{K^{\prime} \geq 0}\left\{\begin{array}{c}
u(R(\bar{K}) K+w(\bar{K}) \\
\left.-K^{\prime}\right) \\
+\beta V\left(K^{\prime}, \bar{K}^{\prime}\right)
\end{array}\right\}
\end{array}\right\}, ~ \begin{aligned}
V^{\prime}(K, \bar{K})= & R(\bar{K}) u^{\prime}(R(\bar{K}) K \\
& +w(\bar{K})-g(K, \bar{K}))
\end{aligned}
$$

## Optimal?

- Euler equation:

$$
\begin{aligned}
& u^{\prime}(R(\bar{K}) K+w(\bar{K})-g(K, \bar{K})) \\
= & \beta R(G(\bar{K})) \\
& u^{\prime}\left[\begin{array}{c}
R(G(\bar{K})) g(K, \bar{K}) \\
+w(G(\bar{K}))-G(G(K))
\end{array}\right]
\end{aligned}
$$

## Optimal!

- Using Euler theorem and consistency:

$$
\begin{aligned}
& u^{\prime}(F(\bar{K}, 1)+(1-\delta) \bar{K}-G(\bar{K})) \\
= & \beta u^{\prime}\left[\begin{array}{c}
F(G(\bar{K}), 1)+(1-\delta) G(\bar{K}) \\
-G(G(\bar{K}))
\end{array}\right] \\
& \times\left[F_{1}(G(\bar{K}))+1-\delta\right]
\end{aligned}
$$

