Advanced Macroeconomics I Lecture 5 (1)

Zhe Li
SUFE

Spring 2011

Uncertainty

- Aggregate productivity

$$
Y_{t}=x_{t} k_{t}^{\alpha} t_{t}^{1-\alpha}
$$

- Aggregate productivity is often uncertain, but seriel correlated
- Markov Chain
- Linear stochastic difference equations

Markov Chain

Definition

Let $x_{t} \in X$, where $X=\left\{\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{n}\right\}$ is a finite set of values. A stationary Markov Chain is a stochastic process $\left\{x_{t}\right\}_{t=1}^{\infty}$ defined by a set X, a transition matrix, P, and an initial probability distribution, π_{0} for x_{0}.

Markov Chain

- P probabilities:
$P_{i j}=\operatorname{Pr}\left\{x_{t+1}=\tilde{x}_{j} \mid x_{t}=\tilde{x}_{i}\right\}$
- Given π_{0}, π_{1} is the probability distribution of x_{1} as of time $t=0, \pi_{1}=\pi_{0} P$

Stationary distribution

Definition

A stationary (or invariant) distribution for P is a probability vector π such that $\pi=\pi P$

A stationary distribution satisfies $\pi I=\pi P$,

$$
\pi[I-P]=0
$$

π is an eigenvector of P, associated with the eigenvalue $\lambda=1$

Asymptotically stationary

- If π_{t} convergences to a number π_{∞} as $t \rightarrow \infty$

$$
\pi_{\infty}=\pi_{\infty} P
$$

- If π_{∞} does not depend on the initial π_{0}
- then the stochastic process is said to be "asymptotically stationary", with a unique invariant distribution

Linear stochastic difference equations

- Auto-regressive process $A R(1)$

$$
y_{t+1}=b+\rho y_{t}+\varepsilon_{t+1}
$$

- Assume

$$
\begin{aligned}
E_{t}\left[\varepsilon_{t+1}\right] & =0 \\
E_{t}\left[\varepsilon_{t+1}^{2}\right] & =\sigma^{2} \\
E_{t}\left[\varepsilon_{t+k} \varepsilon_{t+k+1}\right] & =0
\end{aligned}
$$

Asymptotically stationary

The process $\left\{y_{t}\right\}_{t=0}^{\infty}$ is not stationary in general, but it is Asymptotically stationary as $t \rightarrow \infty$

$$
E_{0}\left(y_{t}\right)=\rho^{t} y_{0}+\frac{b}{1-\rho}\left(1-\rho^{t}\right)
$$

if $|\rho|<1$, as $t \rightarrow \infty$,

$$
E_{0}\left(y_{t}\right)=\frac{b}{1-\rho}
$$

Stochastic neoclassical growth model

- Introduce uncertainty into the neoclassical growth model:

$$
F_{t}\left(k_{t}, 1\right)=x_{t} f\left(k_{t}\right), x_{t} \in X
$$

- The sequence of productivity

$$
x^{t}=\left(x_{t}, x_{t-1}, \ldots, x_{0}\right)
$$

Expected life-time utility

- Expected life-time utility

$$
\begin{aligned}
& \sum_{t=0}^{\infty} \sum_{x^{t} \in X^{t}} \beta^{t} \pi\left(x^{t}\right) u\left[c_{t}\left(x^{t}\right)\right] \\
\equiv & E\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right]
\end{aligned}
$$

- $u\left[c_{t}\left(x^{t}\right)\right]$: utility in t if $x^{t}=\left(x_{t}, x_{t-1}, \ldots, x_{0}\right)$ realized
- $\pi\left(x^{t}\right)$: probability of occurrence of the event $\left(x_{t}, x_{t-1}, \ldots, x_{0}\right)$

Planning problem in sequential

 form- Consumers' problem

$$
\begin{aligned}
& \max _{\left\{c_{t}\left(x^{t}\right), k_{t+1}\left(x^{t}\right)\right\}_{t=0}^{\infty}} E\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right] \\
& \quad \text { s.t. } c_{t}\left(x^{t}\right)+k_{t+1}\left(x^{t}\right) \\
& =x_{t} f\left(k_{t}\left(x^{t-1}\right)\right)+(1-\delta) k_{t}\left(x^{t-1}\right) \\
& \quad \forall\left(t, x^{t}\right), \quad k_{0} \text { given }
\end{aligned}
$$

Stochastic Euler equation

- Foc. with k_{t+1} :

$$
=\begin{aligned}
& \pi\left(x^{t}\right) u^{\prime}\left[c_{t}\left(x^{t}\right)\right] \\
& \sum_{x^{t+1} \in X^{t+1}} \beta \pi\left(x^{t+1}\right) u^{\prime}\left[c_{t+1}\left(x^{t+1}\right)\right] \\
& \times\left\{x_{t+1} f^{\prime}\left(k_{t+1}\left(x^{t}\right)\right)+1-\delta\right\}
\end{aligned}
$$

Stochastic Euler equation

- denote $\pi\left[\left(x_{t+1}, x^{t}\right) \mid x^{t}\right] \equiv \frac{\pi\left(x_{t+1}, x^{t}\right)}{\pi\left(x^{t}\right)}$

$$
\begin{aligned}
& u^{\prime}\left[c_{t}\left(x^{t}\right)\right] \\
& \sum_{x^{t+1} \in X^{t+1}} \beta \pi\left[\left(x_{t+1}, x^{t}\right) \mid x^{t}\right] \\
& u^{\prime}\left[c_{t+1}\left(x_{t+1}, x^{t}\right)\right] \\
& \times\left\{x_{t+1} f^{\prime}\left(k_{t+1}\left(x^{t}\right)\right)+1-\delta\right\}
\end{aligned}
$$

Stochastic Euler equation

- Stochastic Euler equation

$$
u^{\prime}\left[c_{t}\left(x^{t}\right)\right]=E_{x^{t}}\left\{u^{\prime}\left[c_{t+1}\left(x_{t+1}, x^{t}\right)\right] R_{t+1}\right\}
$$

$R_{t+1} \equiv x_{t+1} f^{\prime}\left(k_{t+1}\left(x^{t}\right)\right)+1-\delta$ is the marginal return on capital realized for each x_{t+1}

Planner's problem: recursive version

- Value function with x as a state variable

$$
\begin{aligned}
& V(k, x) \\
= & \max _{k^{\prime}}\left\{\begin{array}{c}
u\left[x f(k)+(1-\delta) k-k^{\prime}\right] \\
+\beta \sum_{x^{\prime} \in X} \pi\left(x^{\prime} \mid x\right) V\left(k^{\prime}, x^{\prime}\right)
\end{array}\right\}
\end{aligned}
$$

- Solution involves $x, k^{\prime}=g(k, x)$

Example

$x \in\left\{x_{h}, x_{l}\right\}$

Transient set

- Transient set, a set of values of capital, which cannot occur in the long run
- on the left of $A: k_{t}<O A$
- The probability of leaving the transient set is equal to the probability of capital reaching a value higher or equal to A
- which is possible only with a high shock
- This probability is non-zero and the capital will therefore get beyond A at least once in the long run
- on the right of B

Ergodic set

- Ergodic set, which is a set, that the capital will never leave once it is there
- The interval between A and B
- there is no value of capital from this interval and a shock which would cause the capital to take a value outside of this interval

