Advanced Macroeconomics I Lecture 6 Overlapping-generations model

Zhe Li
 SUFE

Spring 2011

Welfare in models with multiple

 agents- New agents are born into the economy each period
- these individuals' life spans are shorter than the economy's time horizon
- Inter-generation game
- motive of bequest: why agents would "die" leaving non-consumed savings behind
- Policy: tax or subsidy on environment, pension

Overlapping generations

- Initial old, meaure 1
- In period 1, and onward, new generations are born, with mearuse 1
- At the end of period 1 , the initial old die; every other generation lives for two periods: young and old
- Consumptions: initial old in period 1: c_{1}^{o}
- Total consumption in period t :
$C_{t}=c_{t}^{y}+c_{t}^{o}$

Feasibility

Neoclassical growth model

- Endowment at t, L_{t}
- a production technology: $Y_{t}=F\left(K_{t}, L_{t}\right)$
- feasibility:

$$
C_{t}+K_{t+1} \leq Y_{t}+(1-\delta) K_{t}
$$

Efficiency across periods

Definition

A feasible consumption allocation c is efficient if there is no alternative feasible allocation \hat{c} such that

$$
\hat{c}_{t} \geq c_{t}, \forall t
$$

and $\hat{c}_{t}>c_{t}$, for some t

Efficiency across agents

Definition

A feasible consumption allocation c_{A} is Pareto superior to c_{B} (or c_{A} "Pareto dominates" c_{B}) if 1. No agent strictly prefers the consumption path specified by c_{B} to that specified by c_{A} 2. At least one agent strictly prefers the allocation c_{A} to C_{B}

Welfare improvement

- A feasible consumption allocation c_{A} is Pareto superior to c_{B}
- Whenever C_{B} is implemented, the existence of c_{A} implies that a welfare improvement is feasible by modifying the allocation

Pareto optimal

Definition

A consumption allocation is Pareto optimal if 1. It is feasible
2. There is no other feasible allocation $\hat{c} \neq c$ that Pareto dominates c

Accumlation of capital

- You may suspect that the fact that agents' life spans are shorter than the economy's horizon might lead to a different level of capital accumulation than if agents lived forever

Over-accumlation of capital

- Economies in which generations overlap lead to an over-accumulation of capital
- Inefficiency
- since an over-accumulation of capital implies that the same consumption pattern could have been achieved with less capital investment
- hence more goods could have been "freed-up" to be consumed

Under-accumlation of capital

- Economies in which generations overlap lead to an under-accumulation of capital
- Efficient
- but not Golden rule

Peter Diamond (1965)

Reference: Diamond, Peter, 1965. "National debt in a neoclassical growth model." American Economic Review 55, p. 1126-1150.

- Agents (in period t):
size
young $L_{t}=L_{0}(1+n)^{t}$
old $\quad L_{t-1}$
Labor Capital Utility
- young $1 \quad 0 \quad u\left(c_{t}^{y}, c_{t+1}^{o}\right)$ old $0 \quad k_{t-1}^{s} \quad u\left(c_{t-1}^{y}, c_{t}^{o}\right)$

Production technology

- Technology: homogeneous of degree 1 $F(K, L)=L F\left(\frac{K}{L}, 1\right)$

$$
F(K, L)=L f(k)
$$

where $k=\frac{K}{L}$

Social Optimum

- Pareto optimality: take care of all the generations
- Maximize steady state utility: c^{y}, c^{0}, for all generations t

$$
\max _{c^{y}, c^{o}} u\left(c^{y}, c^{o}\right)
$$

Resource constraint:

$$
L_{t}\left(c^{y}+k_{t+1}^{s}\right)+L_{t-1} c^{o} \leq F\left(K_{t}^{d}, L_{t}\right)+L_{t-1} k_{t}^{s}
$$

Resource constraint

$$
L_{t}\left(c^{y}+k_{t+1}^{s}\right)+L_{t-1} c^{o} \leq F\left(K_{t}^{d}, L_{t}\right)+L_{t-1} k_{t}^{s}
$$

Capital supply $=$ demand

$$
\begin{aligned}
L_{t-1} k_{t}^{s} & =K_{t}^{d}=L_{t} k_{t}^{d} \\
k_{t}^{s} & =(1+n) k_{t}^{d} \\
\text { let } k & =k_{t}^{d} \\
c^{y}+k_{t+1}^{s}+\frac{c^{o}}{1+n} & \leq F\left(\frac{K_{t}^{d}}{L_{t}}, 1\right)+\frac{k_{t}^{s}}{1+n}
\end{aligned}
$$

Golden Rule

- Resource constraint

$$
\begin{gathered}
c^{y}+(1+n) k+\frac{c^{o}}{1+n} \leq f(k)+k \\
c^{y}+\frac{c^{o}}{1+n} \leq f(k)-n k
\end{gathered}
$$

- optimal k

$$
\begin{gathered}
\max _{k} f(k)-n k \\
f^{\prime}(k)=n
\end{gathered}
$$

Optimal consumption

- Problem

$$
\begin{gathered}
\max _{c^{y}, c^{o}} u\left(c^{y}, c^{o}\right) \\
c^{y}+\frac{c^{o}}{1+n} \leq f(k)-n k
\end{gathered}
$$

- Optimal condition

$$
\frac{u_{1}}{u_{2}}=1+n
$$

$n \uparrow \Longrightarrow$ motivate to transfer some consumption to old

Competitive Economy

Fact

Incomplete market: a market is missing, agents cannot trade with future generations

A young agent's problem:

$$
\begin{gathered}
\max _{c_{t}^{y}, c_{t}^{o}} u\left(c_{t}^{y}, c_{t+1}^{o}\right) \\
\text { s.t. } c_{t}^{y}+k_{t+1}^{s} \leq w_{t} \times 1 \\
c_{t+1}^{o} \leq\left(1+r_{t+1}\right) k_{t+1}^{s}
\end{gathered}
$$

Competitive Economy

Intertemporal budget constraint:

$$
c_{t}^{y}+\frac{c_{t+1}^{o}}{1+r_{t+1}} \leq w_{t}
$$

Solution:

$$
\frac{u_{1}}{u_{2}}=1+r_{t+1}
$$

Competitive economy - Social optimal?

- Competitive:

$$
\frac{u_{1}}{u_{2}}=1+r_{t+1}
$$

- Social optimal:

$$
\frac{u_{1}}{u_{2}}=1+n
$$

Agents' problem

- First order condistions give

$$
\frac{u_{1}\left(w_{t}-k_{t+1}^{s},\left(1+r_{t+1}\right) k_{t+1}^{s}\right)}{u_{2}\left(w_{t}-k_{t+1}^{s},\left(1+r_{t+1}\right) k_{t+1}^{s}\right)}=1+r_{t+1}
$$

- Taken prices, w_{t}, r_{t+1}, as given, there is one variable to solve, the saving (supply function of capital) $k_{t+1}^{s}=s\left(w_{t}, r_{t+1}\right)$

Effect of wage income

- Assume that the marginal propensity to save satisfies

$$
\begin{gathered}
0<\frac{\partial s}{\partial w}<1 \\
c_{t}^{y}+k_{t+1}^{s}=w_{t}
\end{gathered}
$$

Effect of interest rate

- The effect of interest rate

$$
\frac{\partial s}{\partial r_{t+1}}<_{?}{ }_{0}
$$

$$
c_{t}^{y}+\frac{c_{t+1}^{o}}{1+r_{t+1}}=w_{t}
$$

- price of $c_{t}^{y}: 1$; price of $c_{t+1}^{o}: \frac{1}{1+r_{t+1}}$

Effect of interest rate

- If $r_{t+1} \uparrow$
- Income effect: boundle of the goods become less expensive $\longrightarrow c_{t}^{y} \uparrow \longrightarrow k_{t+1}^{s} \downarrow$
- Substitution effect: relative price of today's goods to tomorrow goods

$$
\uparrow \longrightarrow c_{t}^{y} \downarrow \longrightarrow k_{t+1}^{s} \uparrow
$$

Firm's problem

Assume 0 depreciation

$$
\max _{K_{t}^{d}, L_{t}^{d}} F\left(K_{t}^{d}, L_{t}^{d}\right)-w_{t} L_{t}^{d}-\left(1+r_{t}\right) K_{t}^{d}+K_{t}^{d}
$$

$$
\begin{gathered}
r_{t}=F_{K}\left(K_{t}^{d}, L_{t}^{d}\right)=f^{\prime}\left(k_{t}\right) \\
w_{t}=F_{L}\left(K_{t}^{d}, L_{t}^{d}\right)=f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right) \\
k_{t} \equiv \frac{K_{t}^{d}}{L_{t}^{d}}, f(k) \equiv F\left(\frac{K}{L}, 1\right)
\end{gathered}
$$

Market clearing

- Capital: $K_{t}^{d}=k_{t}^{s} L_{t-1}$
- Labor: $L_{t}^{d}=1 \times L_{t}$
- Goods:
$L_{t}\left(c_{t}^{y}+k_{t+1}^{s}\right)+L_{t-1} c_{t}^{o}=$
$F\left(K_{t}^{d}, L_{t}^{d}\right)+L_{t-1} k_{t}^{s}$

Capital market

- Demand curve: $r_{t}=f^{\prime}\left(k_{t}\right)$
- supply curve: $k_{t}=\frac{s\left(w_{t-1}, r_{t}\right)}{1+n}$

Capital market - Normal case

$w_{t-1} \uparrow \Longrightarrow s$ curve $\uparrow \Longrightarrow r_{t} \downarrow \Longrightarrow \frac{\partial k_{t}^{s}}{\partial w_{t-1}}>0$ s curve more steeply negatively sloped (or s curve positively sloped)

Capital market - Abnormal case

$w_{t-1} \uparrow \Longrightarrow s$ curve $\uparrow \Longrightarrow r_{t} \uparrow \Longrightarrow \frac{\partial k_{t}^{s}}{\partial w_{t-1}}<0$

Income and interest rate

Data: income $\uparrow \Longrightarrow k_{t}$

- Given r_{t}, for an individual $\frac{\partial s}{\partial w_{t-1}}>0$
- $\binom{k_{t}=\frac{s\left(w_{t-1}, r_{t}\right)}{1+n}}{r_{t}=f^{\prime}\left(k_{t}\right)} \Longrightarrow r_{t}=f^{\prime}\left(\frac{s\left(w_{t-1}, r_{t}\right)}{1+n}\right) \Longrightarrow$ $r_{t}=\psi\left(w_{t-1}\right)$
- Normal case: $\psi^{\prime}\left(w_{t-1}\right)<0$

Labor market

$$
\begin{gathered}
w_{t}=\left[f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right)\right]_{k_{t}=f^{\prime-1}\left(r_{t}\right)} \equiv \phi\left(r_{t}\right) \\
\phi^{\prime}\left(r_{t}\right)=-k_{t}<0 \\
r \uparrow \Longrightarrow k^{d} \downarrow \Longrightarrow w_{t} \downarrow
\end{gathered}
$$

Competitive equilibrium

$$
\begin{aligned}
& w_{t}=\phi\left(r_{t}\right) \quad r_{t}=\psi\left(w_{t-1}\right) \Longrightarrow w_{t-1}= \\
& \psi^{-1}\left(r_{t}\right)
\end{aligned}
$$

Stable

slope of ϕ : ϕ^{\prime}
slope of $\psi^{-1}: \frac{1}{\psi^{\prime}}$

$$
\text { stable if }-\phi^{\prime}<-\frac{1}{\psi^{\prime}}
$$

$$
\phi^{\prime} \psi^{\prime}<1
$$

Example

- Utility

$$
u\left(c^{y}, c^{o}\right)=\beta \ln c^{y}+(1-\beta) \ln c^{o} \quad \beta \in(0,1)
$$

- Production function

$$
f(k)=A k^{\alpha} \quad \alpha \in(0,1)
$$

- Solution: income and substitution effect of interest rate is washed out with lograthmic utility function

Solution

- Saving is proportional to income

$$
s(w, r)=(1-\beta) w
$$

- Capital market

$$
r_{t}=\psi\left(w_{t-1}\right)=\alpha A\left(\frac{(1-\beta) w_{t-1}}{1+n}\right)^{\alpha-1}
$$

- Labor market

$$
w_{t}=\phi\left(r_{t}\right)=(1-\alpha) \alpha^{\frac{\alpha}{1-\alpha}} A^{\frac{1}{1-\alpha}} r_{t}^{\frac{\alpha}{1-\alpha}}
$$

Stable

- Stable condition:

$$
0<\phi^{\prime} \psi^{\prime}=\alpha<1
$$

- Wage dynamics

$$
\begin{aligned}
w_{t} & =\phi\left(\psi\left(w_{t-1}\right)\right) \\
& =(1-\alpha) A\left(\frac{(1-\beta) w_{t-1}}{1+n}\right)^{\alpha}
\end{aligned}
$$

Stable

- Steady state wage

$$
w^{*}=[(1-\alpha) A]^{\frac{1}{1-\alpha}}\left(\frac{1-\beta}{1+n}\right)^{\frac{\alpha}{\alpha-1}}
$$

- Steady state interest rate

$$
r^{*}=\phi^{-1}\left(w^{*}\right)=\frac{\alpha}{1-\alpha}\left(\frac{1+n}{1-\beta}\right) \neq n
$$

Competitive equilibrium and Golden rule

- Competitive quilibrium

$$
f^{\prime}\left(k^{*}\right)=r^{*}=\frac{\alpha}{1-\alpha} \frac{1+n}{1-\beta}
$$

- Golden rule $f^{\prime}\left(k^{*}\right)=n$
- $\alpha=0.36, \beta=0.6, n=0.02$
$r^{*}=\frac{\alpha}{1-\alpha} \frac{1+n}{1-\beta}=\frac{0.36}{(0.36-1)(0.6-1)}(0.02+1)$
$=1.4344$

Missing marekt and Government debt

- If $r>n$, accumulate too little capital
- Missing market across generations
- Enforcement of market: government debt
- Assume same interest rate (market rate $=$ government rate)
- Return of debt $\left(1+r_{t}\right) L_{t} b$
- New debt $L_{t+1} b$

Government tax

- Tax on the young

$$
\begin{gathered}
\left(1+r_{t}\right) L_{t} b=L_{t+1} b+T_{t} \\
T_{t}=L_{t} b\left(r_{t}-n\right)
\end{gathered}
$$

- Debt holding of per young agent

$$
\frac{L_{t+1} b}{L_{t}}=(1+n) b
$$

Budget constraint

- Young agent born at t

$$
c_{t}^{y}+k_{t+1}^{s}+(1+n) b \leq w_{t}-\frac{T_{t}}{L_{t}}
$$

- Consumption when they become old

$$
c_{t+1}^{o}=\left(1+r_{t+1}\right)\left[k_{t+1}^{s}+(1+n) b\right]
$$

- Intertemporal budget constraint

$$
c_{t}^{y}+\frac{c_{t+1}^{o}}{1+r_{t+1}}=w_{t}-\left(r_{t}-n\right) b
$$

Problem

- Objective:

$$
\max _{c_{t}^{y}, c_{t+1}^{o}} u\left(c_{t}^{y}, c_{t+1}^{o}\right)
$$

- Budget constraint:

$$
c_{t}^{y}+\frac{c_{t+1}^{o}}{1+r_{t+1}}=w_{t}-\left(r_{t}-n\right) b
$$

Solution

- For.

$$
\begin{aligned}
& 1+r_{t+1} \\
= & \frac{u_{1}\left(w_{t}-\left(r_{t}-n\right) b-s_{t},\left(1+r_{t+1}\right) s_{t}\right)}{u_{2}\left(w_{t}-\left(r_{t}-n\right) b-s_{t},\left(1+r_{t+1}\right) s_{t}\right)}
\end{aligned}
$$

where $s_{t}=s\left(w_{t}-\left(r_{t}-n\right) b, r_{t+1}\right)$,
$0<s_{w}<1$, and $s_{r}<0$

The effect of debt

- Assumbe b can be used as capital
- Focus on normal case $\psi^{\prime} \phi^{\prime}<1$
- If $r^{*}>n$, can debt move r^{*} toward $n ?\left(\frac{\partial r^{*}}{\partial b}<0\right.$? $)$

Factor markets with debt

- $\binom{k_{t}=\frac{s\left(w_{t-1}-\left(r_{t-1}-n\right) b, r_{t}\right)}{1+n}}{r_{t}=f^{\prime}\left(k_{t}\right)}$
- $r_{t}=f^{\prime}\left(\frac{s\left(w_{t-1}-\left(r_{t-1}-n\right) b, r_{t}\right)}{1+n}\right)$

$$
r_{t}=\psi\left(w_{t-1}-\left(r_{t-1}-n\right) b\right)
$$

$$
\begin{aligned}
w_{t} & =\left[f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right)\right]_{k_{t}=f^{\prime-1}\left(r_{t}\right)} \\
& \equiv \phi\left(r_{t}\right)
\end{aligned}
$$

The effect of debt

$$
r_{t}=\psi\left(w_{t-1}-\left(r_{t-1}-n\right) b\right) \quad w_{t}=\phi\left(r_{t}\right)
$$

Arround the steady state, taken r_{t-1} as given. If $r_{t-1}>n$, debt increases the gap $r-n$

r_{t}

The welfare effect of debt

- Steady state utility $u^{*}=u\left(c^{y}, c^{o}\right)$

$$
\begin{aligned}
& \text { - } \quad c^{y}=w-(r-n) b-s \\
& -c^{o}=(1+r) s
\end{aligned}
$$

- Foc. $s: u_{1}=u_{2}(1+r)$

$$
\begin{aligned}
\frac{d u^{*}}{d b}= & u_{1}\left[\begin{array}{c}
\frac{d w}{d b}-(r-n) \\
-b \frac{d r}{d b}-\frac{d s}{d b}
\end{array}\right] \\
& +u_{2}\left[\begin{array}{c}
(1+r) \frac{d s}{d b} \\
+s \frac{d r}{d b}
\end{array}\right]
\end{aligned}
$$

The welfare effect of debt

$$
\begin{aligned}
\frac{d u^{*}}{d b}= & u_{1}\left[\frac{d w}{d b}-(r-n)\right] \\
& +\left[u_{2} s-u_{1} b\right] \frac{d r}{d b}
\end{aligned}
$$

- disposible income
- interest rate

The welfare effect of debt

$$
\begin{aligned}
\frac{d w}{d b}= & \frac{d\left[f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right)\right]}{d b} \\
= & -k f^{\prime \prime} \frac{d k}{d b} \\
= & -k \frac{d r}{d b} \\
& f^{\prime}(k)=r \\
& f^{\prime \prime} \frac{d k}{d b}=\frac{d r}{d b}
\end{aligned}
$$

The welfare effect of debt

$$
s=k^{s}+(1+n) b=(1+n)(k+b)
$$

$$
\frac{1}{u_{1}} \frac{d u^{*}}{d b}=\frac{d w}{d b}-(r-n)
$$

$$
+\left[\frac{u_{2}}{u_{1}} s-b\right] \frac{d r}{d b}
$$

$$
=(n-r)\left(1+\frac{b+k}{1+r} \frac{d r}{d b}\right)
$$

$$
<0
$$

