Advanced Macroeconomics I

Lecture 6 (2)

Zhe Li
SUFE

Spring 2010

Government debt

- Missing market across generations
- Enforcement of market
- Assume same interest rate (market rate $=$ government rate)
- Return of debt

$$
\left(1+r_{t}\right) L_{t} b
$$

- New debt

$$
L_{t+1} b
$$

Competitive quilibrium

$$
f^{\prime}\left(k^{*}\right)=r^{*}=\frac{\alpha}{1-\alpha} \frac{1+n}{1-\beta}
$$

Golden rule

$$
f^{\prime}\left(k^{*}\right)=n
$$

$$
\begin{aligned}
& \quad \alpha=0.36 \\
& \beta=0.6 \\
& n=0.02 \\
& r^{*}=\frac{\alpha}{1-\alpha} \frac{1+n}{1-\beta}=\frac{0.36}{(0.36-1)(0.6-1)}(0.02+1)=1.4344
\end{aligned}
$$

Government Tax

- If $r>n$, accumulate too little capital
- Tax on the young

$$
\begin{gathered}
\left(1+r_{t}\right) L_{t} b=L_{t+1} b+T_{t} \\
T_{t}=L_{t} b\left(r_{t}-n\right)
\end{gathered}
$$

- Debt holding of per young agent

$$
\frac{L_{t+1} b}{L_{t}}=(1+n) b
$$

Budget constraint

- Young agent born at t

$$
c_{t}^{1}+k_{t+1}^{s}+(1+n) b \leq w_{t}-\frac{T_{t}}{L_{t}}
$$

- Consumption when they become old

$$
c_{t}^{2}=\left(1+r_{t+1}\right)\left[k_{t+1}^{s}+(1+n) b\right]
$$

- Intertemporal budget constraint

$$
c_{t}^{1}+\frac{c_{t}^{2}}{1+r_{t+1}}=w_{t}-\left(r_{t}-n\right) b
$$

Solution

$$
\begin{gathered}
\max _{c_{t}^{1}, c_{t}^{2}} u\left(c_{t}^{1}, c_{t}^{2}\right) \\
c_{t}^{1}+\frac{c_{t}^{2}}{1+r_{t+1}}=w_{t}-\left(r_{t}-n\right) b
\end{gathered}
$$

- Foc.

$$
\begin{gathered}
1+r_{t+1}=\frac{u_{1}\left(w_{t}-\left(r_{t}-n\right) b-s_{t},\left(1+r_{t+1}\right) s_{t}\right)}{u_{2}\left(w_{t}-\left(r_{t}-n\right) b-s_{t},\left(1+r_{t+1}\right) s_{t}\right)} \\
s_{t}=s\left(w_{t}-\left(r_{t}-n\right) b, r_{t+1}\right) \\
0<s_{w}<1, s_{r}<0
\end{gathered}
$$

The effect of debt

- Assumbe b can be used as capital
- Focus on normal case $\psi^{\prime} \phi^{\prime}>1$

$$
\begin{aligned}
&\binom{k_{t}=\frac{s\left(w_{t-1}-\left(r_{t}-n\right) b, r_{t}\right)}{1+n}}{r_{t}=f^{\prime}\left(k_{t}\right)} \Longrightarrow r_{t}=f^{\prime}\left(\frac{s\left(w_{t-1}-\left(r_{t}-n\right) b, r_{t}\right)}{1+n}\right) \\
& \Longrightarrow r_{t}=\psi\left(w_{t-1}-\left(r_{t}-n\right) b\right) \\
& w_{t}=\left[f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right)\right]_{k_{t}=f^{\prime-1}\left(r_{t}\right)} \equiv \phi\left(r_{t}\right)
\end{aligned}
$$

The effect of debt

$$
r_{t}=\psi\left(w_{t-1}-\left(r_{t-1}-n\right) b\right) \quad w_{t}=\phi\left(r_{t}\right)
$$

Arround the steady state, taken r_{t-1} as given

$$
\mathrm{W}_{\mathrm{t}-1}
$$

$\mathrm{n} \quad \mathrm{r}^{*}$
r_{t}

The welfare effect of debt

- Steady state utility $u^{*}=u\left(c^{1}, c^{2}\right), c^{1}=w-(r-n) b-s$, $c^{2}=(1+r) s$
- Foc. $s: u_{1}=u_{2}(1+r)$

$$
\begin{aligned}
\frac{d u^{*}}{d b}= & u_{1}\left[\frac{d w}{d b}-(r-n)-b \frac{d r}{d b}-\frac{d s}{d b}\right] \\
& +u_{2}\left[(1+r) \frac{d s}{d b}+s \frac{d r}{d b}\right] \\
\frac{d u^{*}}{d b}= & u_{1}\left[\frac{d w}{d b}-(r-n)\right]+\left[u_{2} s-u_{1} b\right] \frac{d r}{d b} \\
& \text { disposible income } \quad \text { interest rate }
\end{aligned}
$$

The welfare effect of debt

$$
\begin{gathered}
\frac{d w}{d b}=\frac{d\left[f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right)\right]}{d b}=-k f^{\prime \prime} \frac{d k}{d b}=-k \frac{d r}{d b} \\
f^{\prime}(k)=r \\
f^{\prime \prime} \frac{d k}{d b}=\frac{d r}{d b} \\
s=k^{s}+(1+n) b=(1+n)(k+b) \\
\frac{1}{u_{1}} \frac{d u^{*}}{d b}=\frac{d w}{d b}-(r-n)+\left[\frac{u_{2}}{u_{1}} s-b\right] \frac{d r}{d b} \\
=(n-r)\left(1+\frac{b+k}{1+r} \frac{d r}{d b}\right)<0
\end{gathered}
$$

