Poisson Process and Poisson Distribution

1 Poisson Process

A Poisson process is the stochastic process in which events occur continu-
ously and independently of one another. Examples that are well-modeled as
Poisson processes include the radioactive decay of atoms, the number of mu-
tations in a given sequence of DNA, telephone calls arriving at a switchboard,
page view requests to a website, and rainfall.

The Poisson process is a collection {N(¢) : t > 0} of random variables,
where N (t) is the number of events that have occurred up to time t (starting
from time 0). The number of events between time a and time b is given as
N(b) — N(a) and has a Poisson distribution.

2 Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses
the probability of a number of events occurring in a fixed period of time if
these events occur with a known average rate and independently of the time
since the last event.

Each realization of the process {/N(t)} is a non-negative integer-valued
step function that is non-decreasing, but for intuitive purposes it is usually
easier to think of it as a point pattern on [0, 00) (the points in time where
the step function jumps, i.e. the points in time where an event occurs). At
any point in time, the probability of one more new event is the mean of the
Poisson distribution.

3 Binomial and Poisson distribution

In our case of the arrival of innovations—the events being counted are actu-
ally the outcomes of discrete trials, and would more precisely be modelled
using the binomial distribution. However, the binomial distribution with pa-
rameters n and A\/n, i.e., the probability distribution of the number of suc-
cesses in n trials, with probability A/n of success on each trial, approaches
the Poisson distribution with expected value A as n approaches infinity. So



we can approximate these random variables using the Poisson distribution
rather than the more-cumbersome binomial distribution.

To show how the binomial distribution approaches the Poisson distribu-
tion in limit, first, recall from calculus
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and the definition of the Binomial distribution
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If the binomial probability can be defined such that p = \/n, we can evaluate
the limit of P as n goes large:
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4 Exponentially-distributed inter-arrival times

To illustrate the exponentially-distributed inter-arrival times property, con-
sider a Poisson process N (t) with rate parameter A, and let T} be the time
of the k' arrival, for k = 1,2, 3, ... . Clearly the number of arrivals before
some fixed time ¢ is less than k if and only if the waiting time until the £
arrival is more than ¢. In symbols, the event [N(t) < k] occurs if and only if
the event [T}, > t] occurs. Consequently the probabilities of these events are
the same:

P(T, >t)=P(N(t) < k)

In particular, consider the waiting time until the first arrival. Clearly
that time is more than ¢ if and only if the number of arrivals before time ¢ is
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0. Combining this latter property with the above probability distribution for
the number of homogeneous Poisson process events in a fixed interval gives
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The cumulative function of an exponential distribution is
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Consequently, the waiting time until the first arrival T} has an exponential
distribution, and is thus memoryless. One can similarly show that the other
interarrival times 7}, — T}),_; share the same distribution.
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Hence, they are independent, identically-distributed (i.i.d.) random vari-
ables, namely exponential distribution with mean 1/\. For example, if the
average rate of arrivals is 5 per minute, then the average waiting time between
arrivals is 1/5 minute.



