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Abstract

This paper proposes a structural model of oligopoly competition where the set of endogenous
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all nonstop and one-stop services. Furthermore, this paper proposes a simple methodology for

both model estimation and counterfactual experiment evaluation that avoids the computation

of a network equilibrium. Applying the estimated model to evaluate the consequences of a

hypothetical merger between Alaska Airlines and Virgin America shows that the hypothetical
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1 Introduction

The U.S. airline industry helps drive nearly $1.5 trillion in U.S. economic activity (almost 10%

of U.S. GDP) and is relevant to more than 11 million jobs. One of the most important strategic

choices for an airline is deciding the markets in which to operate direct flights.1 This entry decision

determines the network structure of the airline, or specifically, the set of markets that the airline

serves and whether these markets are served with direct flights or flights with connections. There

are substantial interdependence and synergies between an airline’s entry decisions into different

markets. Some of these synergies have to do with economies of scale and scope at the airline-

airport level, e.g., the additional cost of operating flights between cities A and B could be lower

if the airline already operates in other markets in addition to A or B. However, the most obvious

interdependence between the entry decisions for different markets is that they determine the set

of markets with connections (or stops) that the airline operates. For instance, suppose an airline

operates direct flights between cities A and B, and is deciding whether to start operating flights

either between cities B and C or between C and D. Supposing that the operating costs and demand

of these new markets are similar, one would expect this airline to choose to operate between cities

B and C rather than between C and D simply because the first choice would also attract new

passengers travelling between A and C with a stop in city B.

This paper wants to answer two research questions related to airline networks: first, how do

airlines’ entry, exit and flight frequency decisions depend on the network structure, or specifically,

the market structures in the other parts of the network. Second, if two airlines merge into a new

airline, how does this post-merger airline optimize its network structure. The network of the post-

merger airline is not a simple combination of the two pre-merger networks. There may be entries,

exits or flight frequency re-allocations in many markets, even in markets where airlines are not

active before.

Structural papers studying the airline industry, pioneered by Berry (1992), have answered

important questions related to airline demand, cost structure, strategic interactions, and entry

deterrence.2 However, most models of entry in this literature have ignored or simplified the in-

terconnectionness of markets and treated airline networks as exogenously given, often making the

1A market is a non-directional city pair in which airlines transport passengers from wither city to the other city.
2The growing literature includes Berry (1990), Berry (1992), Brueckner and Spiller (1994), Berry, Carnall, and

Spiller (2006), Williams (2008), Ciliberto and Tamer (2009), Snider (2009), Berry and Jia (2010), Aguirregabiria and
Ho (2012), Ciliberto and Williams (2014), Ciliberto and Zhang (2014), Gedge, Roberts, and Sweeting (2017), Kundu
(2014), Onishi and Omori (2014), Blevins (2015) and Gayle and Yimga (2015).
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assumption that the airline entry, exit, and flight frequency decisions in one market is independent

to its structure across markets. This would make sense if there were no synergies across markets,

since airlines would make entry and flight frequency decisions based on local market characteris-

tics without considering overall market network structure. However, network structure is the key

feature of this industry. For example, suppose two airlines merge into a new airline. The opti-

mal network of the post-merger airline would not merely be a combination of the two pre-merger

networks but a much larger network with a potential re-allocation of flight frequencies across its

network and/or entry into new markets. Without a model endogenizing the network structure of

the airlines, it would not be possible to study can not answer the research questions of this paper.

To answer these questions, I develop a three-stage model of airline network competition, mod-

elling airline competition as a static game of complete information in which network structure,

flight frequency, and price for every nonstop and one-stop market are endogenized. In the first

(entry) stage, airlines choose their network structure, i.e., the set of markets in which they operate

nonstop flights, which determines the set of nonstop and one-stop products available to consumers.

In the second (flight frequency) stage, airlines decide their flight frequency for every nonstop mar-

ket, which determines the total number of nonstop and one-stop service offerings in all markets. In

the third stage, airlines compete with respect to prices in every market given their network struc-

ture and flight frequencies. Consumers decide which airline service to purchase after observing the

prices and quality of all products. Airlines earn variable profits from both nonstop and one-stop

products.

It is computationally challenging to estimate a three-stage network competition model. The

number of strategies or networks of an airline increases exponentially with the number of markets in

the network and estimating the complete information game usually requires computing for an equi-

librium of the model (Berry, 1992) or solving for the upper and lower bounds of choice probabilities

(Ciliberto and Tamer, 2009).3 For network competition games, computation of an equilibrium is

infeasible even for a simple entry game with only a small number of players. While Jia (2008) makes

use of the supermodularity of the game to compute Nash equilibria for network competition games

with two players. Her method, nonetheless, doesn’t apply to the US airline industry where there

are more than two major players. Furthermore, estimation of incomplete information games usu-

ally requires estimating conditional choice probabilities, which is impossible with high-dimensional

3In a world with 87 cities, the number of possible strategy profiles would be 287×86/2 ' 1.4 × 101126 and the
number of feasible network configurations with 13 airlines would be 213×87×86/2 ' 1014640.
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strategy space. The existing literature proposes various assumptions to reduce the dimensionality

of strategy space. For example, Aguirregabiria and Ho (2012) assume that every airline has a

local manager in every market who decides whether the airline will enter or exit the local markets

independently, which substantially reduces the dimensionality of the strategy space.

As an alternative, the current paper proposes and implements a simple methodology for model

estimation and the evaluation of counterfactual experiments that does not require solving for a

network equilibrium. First, I estimate the demand systems and back out the marginal costs of

serving passengers. Both consumer utility and airline marginal cost of serving passengers depend

on airline flight frequency. Next, I estimate the cost structure of airlines associated with network

structure. Assuming that the network structures observed in the data are those of Nash equilibrium,

I estimate airline’ cost of scheduling flight frequencies using the flight frequency marginal condition

of optimality. In other words, an airline that is active in a market will schedule flights in this market

until the marginal variable profit (MVP) of an additional flight equals the marginal cost (MC) of

scheduling this flight. Specifically, the MVP of an additional flight is the sum of the following

four components: (a) a MVP from additional nonstop service, (b) a MVP from additional one-

stop services, (c) a cannibalization effect from additional nonstop service and (d) a cannibalization

effect from additional one-stop services. Finally, I estimate entry costs by exploiting the inequality

restrictions implied by airline best response conditions in the entry game. If an airline operates

direct service in a market, its entry cost is lower than its counterfactual variable profit if it exits

this market. This generates an upper bound for entry cost. If an airline does not operate direct

service in a market, its entry cost is higher than its counterfactual variable profit if it enters this

market with optimal flight frequency. This generates a lower bound for entry cost. These two

model restrictions minimize violations of entry cost estimates.

In a counterfactual experiment, I investigate the network structure after an exogenous hypo-

thetical merger between Alaska Airline and Virgin America. Since it is computationally infeasible

to obtain a Nash equilibrium of this simultaneous-move network competition game, I reconstruct

this simultaneous game as a sequential-move game. I start by proposing a sequence by which

all airline-market pairs move. Airlines first move in larger markets followed by smaller markets.

Within each market, airlines move sequentially by profitability. In this way, I obtain the order by

which all airline-market pairs move in this massive sequential move game. While it would be ideal

to solve for the sub-game perfect Nash equilibrium using backward induction, it is impossible to

compute airline profits at all branches of the game tree, so I use a forward-induction algorithm
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to search for an equilibrium. Starting with an empty network where no airlines are active in any

market, I repetitive airline best response, airline-market pair by airline-market pair according to the

sequence defined above. Specifically, starting with the most profitable airline in the largest market,

I determine the optimal action of this airline in that specific market. I update the airline’s network

structure each time it enters, exits, or changes flight frequency in a market. Then, I proceed to

the second most profitable airline in the largest market, evaluate the best response of this airline

in the market and update its network structure, and so on. After visiting all airline-market pairs, I

return to the first airline-market pair and re-evaluate the best responses of the entire airline-market

sequence. If there is no incentive to deviate, this convergence of best responses in the network serves

as an approximation of the subgame perfect Nash equilibrium of the sequential-move game.

The empirical finding shows that, on average, marginal variable cost and marginal variable

profit from scheduling an additional flight is $7553. However, if endogenous network structures are

ignored, these values would be underestimated by 13%. The counterfactual experiment shows that,

if Alaska Airline and Virgin America merge in the first quarter of 2014, the new post-merger airline

will enter 32 nonstop markets and exit 13 nonstop markets. Though overall consumer surplus

increases post-merger, there is heterogeneity in consumer surplus change across markets in that

consumer surplus will increase in larger markets but slightly decrease in smaller markets.

There are four main contributions in this paper. First, I construct and estimate an equi-

librium model of network competition, endogenizing network structures, product quality (flight

frequencies), price and number of consumers for every nonstop and one-stop market and estimating

consumer demand together with endogenous product characteristics (flight frequencies) and en-

dogenous network structures (entry decisions). Second, this paper implements a moment inequal-

ity method to obtain a consistent estimator of entry cost under mild conditions. The empirical

framework is based upon the necessary conditions of pure strategy Nash equilibrium, which avoids

the solution of the model and is computationally feasible. I extend and implement a swapping

method in the spirit of Pakes, Porter, Ho, and Ishii (2015) and Ellickson, Houghton, and Timmins

(2013), and the bound estimator proposed in Aguirregabiria, Clark, and Wang (2016), and obtain

consistent estimates of fixed cost under mild conditions. Third, I propose a novel algorithm to

investigate the consequences of an exogenous merger between two airlines. This algorithm allows

me to compare the change in network structures and consumer welfare pre-merger and post-merger.

Fourth, I propose measures of flight frequency for both nonstop and one-stop services, which are

measures of product quality and incorporated as important endogenous choices of the airlines.

5



This paper also makes important contributions to the research on network competition. First,

this paper studies a new type of network synergy — economies of scope. Suppose an airline operates

direct flights in market AB, its entry into market BC generates two new products to consumers:

nonstop service in market BC and one-stop service in market AC with a stop at city B. In contrast,

existing models on network competition focus on economies of scale: a firm has a lower cost if it

operates many stores in this market. Second, this paper allows for rich heterogeneity in synergy

between any two markets. In the airline industry, synergy between two markets is the profitability

of the one-stop service through the two markets. This synergy depends on not only the number

of direct flights in these two markets but also technology determinifng the feasibility and efficiency

of the connecting service. I use two matrices to represent the network structures of an airline:

one matrix for nonstop service and another matrix for one-stop service. As a comparison, other

papers measure synergy by the distance between two stores (Jia, 2008), the number of airline routes

connected to a city (Aguirregabiria and Ho, 2012), or the number of stores in a market (Ellickson,

Houghton, and Timmins, 2013). Third, this paper explicitly models consumer utility and airline

product quality decisions, both of which are abstracted in other models of network competition.

Lastly, I propose an algorithm to compute a network equilibrium such that I can compare the

airline networks pre-merger and post-merger.

This paper builds on and contributes to three streams of literature. In terms of research on the

airline industry, previous studies have discussed the benefits of airline hubs, including cost efficiency

(Berry, 1990, 1992; Brueckner and Spiller, 1994; Berry, Carnall, and Spiller, 2006; Ciliberto and

Tamer, 2009), demand factors (Berry, 1990; Berry and Jia, 2010), and strategic entry deterrence

(Hendricks, Piccione, and Tan, 1997, 1999; Aguirregabiria and Ho, 2012). Few structural models of

entry in the airline industry study synergies between an airline entry decisions in different markets.

Aguirregabiria and Ho (2012) is the first paper to empirically estimate a network competition game

with exogenous network structure. Dou, Lazarev, and Kastl (2017) study the externalities of airline

delays throughout airline networks. There are rich studies on the pricing strategies of the airlines.

Williams (2008) estimates a dynamic equilibrium model where firms first invest in seating capacity

and then play a capacity-constrained pricing game. Lazarev (2013) studies intertemporal price

discrimination on monopoly routes in the airline industry and evaluate its welfare consequences.

Williams (2017) separately studies both intertemporal price discrimination and dynamic adjustment

to stochastic demand. Gedge, Roberts, and Sweeting (2017) propose a model of limited pricing to

explain that incumbent prices are lower when Southwest becomes a potential entrant.

6



This paper also relates to research on the estimation of entry games with network competition.

Most entry models ignore interconnections across markets with several exceptions: Seim (2006)

studies spatial competition in the video rental industry. Her model endogenizes store locations and

estimates an entry game of spatial competition. Zhu and Singh (2009) employ a more flexible model

of spatial competition and allow for more general heterogeneity across firms. Jia (2008) analyzes the

network entry game between Wal-Mart and Kmart over 2065 locations. She considers a specification

of the profit function which implies the supermodularity of the game and facilitates the computation

of an equilibrium. While her model allows for the economies of density, it ignores cannibalization

effects and spatial competition between stores of different chains at different locations. Nishida

(2014) extends Jia’s model by allowing for multiple stores in the same location and incorporates

spatial competition. Ellickson, Houghton, and Timmins (2013) and Aguirregabiria, Clark, and

Wang (2016) estimate network economics in retail chains and the banking industry, respectively.

Lastly, this paper contributes to research on airline mergers. Richard (2003) finds that mergers

are associated with increased flight frequencies and that the overall effect of mergers on welfare

varies by markets. Peters (2006) uses merger simulations to predict post-merger prices for six

major airline mergers from the 1980’s, and compares these predictions with actual post-merger

prices. Ciliberto, Murry, and Tamer (2016) and Li, Mazur, Park, Roberts, Sweeting, and Zhang

(2018) study endogenous market entry with post-merger selection. Ciliberto, Cook, and Williams

(2018) use measures of centrality from graph theory to study the effect of consolidation on airline

network connectivity. There is also an extensive literature on mergers in other industries. For

instance, Nevo (2000) studies how prices and consumer welfare change after a merger in the ready-

to-eat cereal industry. Fan (2013) allows for changes in both prices and product characteristics after

ownership consolidation. Most research on mergers study within market mergers but few papers

study mergers between two networks. The closest research to this paper is Benkard, Bodoh-Creed,

and Lazarev (2010), which estimates dynamic changes in the airline industry after mergers. Their

merger analysis is based on simulation of policy functions (choice probabilities) and assume that

firms’ strategy functions do not change pre-merger and post-merger. Though my model is static,

it is based on profit maximization behaviors of players and has a clear equilibrium concept.

The remainders of the paper are organized as follows. Section 2 a model of airline competition.

Section 3 describes the data and construction of the working sample. Section 4 presents the

assumptions and empirical strategy. Section 5 presents the empirical results. Section 6 discusses

the counterfactual analysis. Section 7 summarizes and concludes.
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2 Model

The model is a game of network competition, as in the models of competition between retail

networks in Jia (2008), Ellickson, Houghton, and Timmins (2013), and Aguirregabiria, Clark, and

Wang (2016).4 However, the game of competition between airline networks has some important

distinguishing features with respect to existing models of retail networks. Network synergies in

retail industries are about economies of scale or density at the local market level: firms receive

higher profit if they have more stores in a market. In contrast, network synergy in the airline

industry is about economics of scope: if an airline operates two direct flights, it may operate an

additional one-stop flight which introduces an important interconnection between airlines’ entry and

flight frequency decisions in different markets. While most existing literature treats airline network

structures as exogenous, I construct a game of airline network competition that endogenizes the

network structure of the airlines.

2.1 Notation and Timeline

The industry is configured by N airlines (indexed by n) and C cities. From the point of view of

airline operation and competition, a market is a non-directional city-pair in which airlines provide

regular commercial aviation service. In a world with C cities, there are M = C×(C−1)
2 markets.5

Markets are indexed by ij, with i and j representing the two endpoint cities. Airlines can provide

both nonstop and one-stop services in this market.

Airline n can provide at most two different types of services (or two products) in a market ij.

Service in market ij without a stop is referred to as nonstop service and service between i and j

with a stop in a third city is referred to as one-stop service.6 Airlines usually connect passengers in

their hub cities. For instance, if a passenger travels from New York to San Francisco, she may take

a connection in Chicago or Atlanta. To simplify the model, I do not distinguish amongst one-stop

4I consider a static model rather than a dynamic model. If the profit function in the static game is treated as
present value of the dynamic game under the assumption that there will not be changes in the network and the
adjustment cost function, the static game is equivalent to a dynamic game. My paper is not the only paper that
models a complicated dynamic game as a static game. Other papers include Jia (2008) and Ellickson, Houghton, and
Timmins (2013) and Aguirregabiria, Clark, and Wang (2016).

5I follow the approach of Berry (1992) and define markets as city-pairs instead of airport pairs. Berry, Carnall, and
Spiller (2006) and Aguirregabiria and Ho (2012) also define markets as city-pairs. Borenstein (1989) and Ciliberto
and Tamer (2009) define markets as airport pairs. The implicit assumption is that airports in the same city are
perfect substitutes in both demand and supply. This paper ignores competition between airports.

6My analysis is restricted to nonstop and one-stop services but ignore services with more than one-stop because
services with two or more stops comprise of less than 3% of air travel. However, the model and estimation method
can be extended to accommodate services with more than one-stop.
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services with different connecting cities, but aggregate all possible one-stop services in market ij

into one product and refer to it as one-stop service in market ij. The network structure of an airline

consists of both nonstop and one-stop services in all markets. The product of an airline includes

its nonstop and one-stop services in all markets.

In every market ij, airline n’s cost structure includes its entry cost (FCnij), variable cost of

flight frequency (V Cfnij), variable cost of serving nonstop passengers (V CNSQnij ), and variable cost

of serving one-stop passengers (V COSQnij ). Airlines compete in three stages: In the first stage,

airlines simultaneously determine their network structures, or specifically, the set of markets in

which to operate direct flights (entry decisions anij). In the second stage, airlines decide their flight

frequencies for every market in which they are active (flight frequencies fNSnij and fOSnij ). In the third

stage, airlines compete in prices (pNSnij and pOSnij ) in all markets given their network structures and

flight frequency allocations, both of which are determined in the first two stages.

The model assumes that consumers choose products that maximize their utility given individ-

ual and product characteristics. Airlines are assumed to maximize their profits in a three-stage

competition with simultaneous moves in each stage.

2.2 Three-stage Model of Airline Competition

This subsection discusses the details of the three-stage model of airline network competition.7

2.2.1 Firm Behavior: First Stage (Network Stage)

In the first stage, aka the entry or network stage, every airline simultaneously decides whether or

not to operate direct (nonstop) flights in all M markets. This determines the network structures

of the airlines.

Entry Decision

Let anij = 1 if airline n enters market ij, and anij = 0 otherwise. The entry decision of airline n

is measured by a C × C symmetric matrix An where anij is the (i, j)-th element of An. Airline n

can provide one-stop service between city-pair ij with a connection in k if it operates direct flights

in both market ik and market kj (i.e.: anik = 1 and ankj = 1).

7Alternatively, first stage and second stage may be aggregated into a single stage wherein airlines choose flight
frequency, and zero flight frequency refers to staying out. However, the current three-stage model has several ad-
vantages. The first stage and second stages represent the extensive and intensive margins, respectively. Though I
could describe these decisions in a single stage, it is convenient to describe the model and methods to separate the
extensive and intensive margins in two stages.
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Entry Cost

The total entry cost of airline n sums up the airline’s fixed cost in all markets:

FCn(An) =
1

2

∑
i

∑
j 6=i

FCnij × 1 [anij = 1] , (1)

where FCnij denotes airline n’s entry cost into market ij.

2.2.2 Firm Behavior: Second Stage (Flight Frequency Stage)

In the second stage, airlines determine their flight schedules, or specifically, the types of aircrafts

and time of departure and arrival for their flights in all markets. This determines the set of nonstop

and one-stop products of airlines as well as product quality.

Flight Frequencies

I distinguish between two products and two corresponding flight frequency variables. If airline n

operates fNSnij direct flights in market ij, it provides a nonstop product to consumers with quality

b(fNSnij ). Alternatively, if airline n operates fOSnij one-stop flights in market ij, it provides a one-stop

product to consumers with quality b(fOSnij ). These flight frequencies measure heterogeneity in airline

nonstop and one-stop services and are important determinants of product quality.

Airline n’s nonstop flight frequency in market ij (fNSnij ) is the number of direct flights it operates

in market ij. I ignore heterogeneity in aircraft type and departure (arrival) time of flights. The

concept of one-stop flight frequency is more subtle. Airline n’s one-stop flight frequency in market

ij with a stop at city k (f
OS(k)
nij ) is the number of possible one-stop flights airline n provides between

city i and city j with a connection in city k. One-stop flight frequency depends not only on the

number of flights but also on their departure and arrival schedules such that connections are feasible.

I assume airlines can connect one-stop passengers only in hub cities.8 The set of hubs of airline

n is denoted by Hn. Thus, airline n’s one-stop flight frequency in market ij sums up its one-stop

flight frequencies in all markets with a connection at all hub cities,

fOSnij =
∑
k∈Hn

f
OS(k)
nij . (2)

The details of measuring one-stop flight frequencies and selecting hub cities are described in Section

8More than 90% of the connections occur in hub cities.
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3.4.

Nonstop and one-stop flight frequencies of airline n are measured by two C × C symmetric

matrices FNS
n and FOS

n where their (i, j)-th elements are fNSnij and fOSnij , respectively. Let Fn ={
FNS
n ,FOS

n

}
denote airline n’s flight frequencies in the network, let F−n = {Fn′ , n

′ 6= n} denote

the flight frequencies of other airlines in the entire network, and let f−nij =
{

fNS−nij , f
OS
−nij

}
denote

flight frequencies of other airlines in market ij.

Technological Relationship between Nonstop/One-stop Flight Frequencies

As discussed in the previous subsection, airline n’s one-stop flight frequency between i and j with

a connection in k (f
OS(k)
nij ) depends on the flight schedules of its two legs: fNSnik and fNSnkj . For the

sake of simplicity, I assume f
OS(k)
nij is a symmetric function of fNSnik and fNSnkj :

f
OS(k)
nij = Λ

(k)
nij

(
fNSnik , f

NS
nkj

)
, (3)

where f
OS(k)
nij is non-decreasing in both fNSnik and fNSnkj . This function is specific for each airline-

market-connection city because airlines may have different schedules or connection technologies in

different markets or in different connection cities.9

Function Λn(.) summarizes the technological relationship between airline n’s nonstop and one-

stop flight frequencies in the network:

FOS
n = Λn(FNS

n ). (4)

Variable Cost of Flight Frequency

For airline n in market ij, variable cost of scheduling flight frequency is the cost of operating flights

between city i and j. This variable cost depends on the number of daily flights in this market, the

type of aircraft, availability of fleets, fuel price, cost of recruiting a crew, other market characteristics

such as distance between two endpoints, as well as airline operations at the two endpoints due to

economies of scale or scope. I assume there is no additional cost associated with one-stop flight

frequencies. Once direct flights are scheduled, one-stop flight frequencies are determined. Airline

9Λ
(k)
nij(., .) is a symmetric function because nonstop flight frequency in one leg should impact the flight frequencies

of one-stop service the same as the nonstop flight frequency in the other leg. For instance, there is no reason to
assume that the number of flights in market AB impacts the one-stop flight frequency from A to C with a connection
at B differently than the number of flights in market BC.
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n’s total variable cost of flight frequency, summed up across all markets is:

V Cfn(An,F
NS
n ) =

1

2

∑
i

∑
j 6=i

V Cfnij(F
NS
nij )× 1[anij = 1]. (5)

2.2.3 Firm Behavior: Third Stage (Price Competition Stage)

Airlines also incur a variable cost for serving passengers. This variable cost of serving passengers in-

cludes the cost of selling tickets, boarding, and accommodating passengers. Airline n’s variable cost

of serving nonstop (one-stop) passengers in market ij is denoted by V CNSQnij (qNSnij ) (V COSQnij (qOSnij )),

where qNSnij (qOSnij ) denotes number of nonstop (one-stop) consumers traveling with airline n’s in

market ij.

In the third stage, the price competition stage, airlines compete in prices at every market and

receive variable profits from both nonstop and one-stop services, given flight frequencies determined

in the first two stages and the cost of serving passengers.10

2.2.4 Consumer Behavior

A typical consumer observes the price and quality of all products and chooses one product that

maximizes his/her utility. The demand model follows the classic discrete-choice literature.11 Let

MSij denote the total number of potential travelers in market ij. Each traveler has a unit demand

(one trip or no trip) and chooses from several differentiated products.12 For notational simplicity,

index g represents the following three-tuple market and product characteristics: (1) airline n; (2)

market ij; and (3) nonstop product indicator variable x.

Consumers’ average willingness to pay for an airline’s nonstop (one-stop) service depends on

its nonstop (one-stop) flight frequency in the market. Consumers value higher flight frequencies

because they provide more flexible departure times and more connecting possibilities if it is an

one-stop service. Given that the quality or average willingness to pay for product g is bg(fg) and

price of product g is pg, the indirect utility of traveler ι purchasing product g is U(fg, pg, vιg) =

bg(fg) − pg + vιg, where vιg is the consumer-product specific component. Let vι denote a vector

that contains all product-specific random tastes of individual ι. The utility of the outside good

(not traveling or taking an alternative form of transportation) is normalized to zero (Uι0 = 0).

10I assume in each market, airlines charge a uniform price for its nonstop service and another uniform price for its
one-stop service, which is a common assumption in the literature.

11The growing literature is pioneered by Berry (1994) and Berry, Levinsohn, and Pakes (1995).
12Since a market is a non-directional city-pair, I do not distinguish between service from i to j and service from j

to i. However, the model can be extended to directional markets.
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A consumer demands one unit of the product that gives him/her the greatest utility, including

the outside alternative. I integrate individual demands over the consumer-idiosyncratic variable

vιg to obtain aggregate demand:

qg(fg, pg, f−g,p−g) = MSij ×
∫

1
[
U(fg, pg, vιg) ≥ U(fg′ , pg′ , vιg′), ∀g′ 6= g

]
dvι, (6)

where f−g and p−g are vectors of product characteristics and prices of competing products, respec-

tively.

2.2.5 Firm Profit

The variable profit an airline receives from product g is πg:

πg(fg, pg, f−g,p−g) = pg × qg(fg, pg, f−g,p−g)− V CQg (qg(fg, pg, f−g,p−g)). (7)

Airline n’s variable profit in market ij sums up variable profit from both nonstop and one-stop

products in this market. I specify variable profit of airline n in market ij as a function of market

conditions:

πnij(f
NS
nij , f

OS
nij , p

NS
nij , p

OS
nij , f

NS
−nij , f

OS
−nij ,p

NS
−nij ,p

OS
−nij) =

∑
g∈Gnij

πg(fg, pg, f−g,p−g), (8)

where Gnij is the set of products of airline n in market ij, which includes nonstop and one-stop

products of airline n in market ij.

Airline n’s total variable profit (πn) sums up variable profit in all markets

πn =
1

2

∑
i

∑
j 6=i

πnij . (9)

Finally, airline n’s overall profit in the network can be specified as

Πn = πn − V Cfn − FCn. (10)

2.3 Best Responses and Equilibrium

An equilibrium of this three-stage complete information game is a Nash equilibrium with the

following sequential structure.
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(i) In the first (entry or network) stage, given an equilibrium selection in the flight frequency

stage (FNS∗
n ,FNS∗

−n ) and in the pricing stage (PNS∗
n ,POS∗

n ,PNS∗
−n ,POS∗

−n ), airlines’ entry decisions

can be described as an N -tuple {A∗n : ∀n} such that for every airline n, the following best response

condition is satisfied:

A∗n = argmax
An

Πn(An) (11)

(ii) In the second (flight frequency) stage, conditional on entry decisions (A∗n), given an equilib-

rium selection in the pricing stage (PNS∗
n ,POS∗

n ,PNS∗
−n ,POS∗

−n ), and given the technological relation-

ship between nonstop and one-stop flight frequency Λn(.), airlines’ flight frequency decisions can

be described as an N -tuple {FNS∗
n : ∀n} such that for every airline n, the following best response

function is satisfied:

FNS∗
n = argmax

FNSn

πn(FNS
n ,FOS

n ,FNS∗
−n ,FOS∗

−n ) (12)

subject to: FOS
n = Λn(FNS

n ) ∀n.

The profit maximization problem in this stage is subject to the technological relationship between

nonstop and one-stop service Λn(.).

(iii) In the third (pricing) stage, airlines compete in prices in each local market. In each market

ij, given airlines’ flight frequencies in this market (fNS∗nij , f
OS∗
nij , f

NS∗
−nij , f

OS∗
−nij), the following pricing

best response function of airline n is satisfied:

(pNS∗nij , p
OS∗
nij ) = argmax

(pNSnij ,p
OS
nij)

πnij(p
NS
nij , p

OS
nij ,p

NS∗
−nij ,p

OS∗
−nij). (13)

2.4 Properties of the Model

2.4.1 Marginal Variable Profit of Flights

This airline network competition model has some distinguishing properties. Below I discuss how

airline n’s variable profit changes with respect to increasing its nonstop flight frequency in a market.

When all markets are isolated, a change in airline flight frequency will affect variable profit only in

this local market. However, when markets are interconnected, a change in airline flight frequency

will affect variable profit in not only this market but also other markets connected to this market.

Specifically, this airline may make use of this direct flight to construct more one-stop flights and

14



serve more one-stop passengers, which, in turn, may also have a cannibalization effect on existing

nonstop service.

To evaluate the impact of a change in direct flights, I impose a simplifying assumption on flight

frequency:13

Assumption 1. CO Flight frequency, either nonstop or one-stop, is a continuous variable. The

variable profit and variable cost functions are continuously differentiable with respect to this variable.

Nonstop flight frequency is measured by the aggregate number of flights over a quarter, regardless

of flight time or aircraft type.

Flight frequency is continuous in the sense that an airline can always change its flight frequency

by scheduling or eliminating flights. The current model assumes homogeneous flights. In future,

this model may be extended to accommodate flight schedules and choice of aircraft type.

Taking the derivative of equation (9) with respect to airline n’s nonstop flight frequency in

market ij (i.e. fNSnij ), the following expression shows how variable profit of airline n changes with

fNSnij :

∂πn

∂fNSnij

=
∂πNSnij

∂fNSnij

+
∂πOSnij

∂fNSnij

+
∑
i′ 6=i

∂πOSni′j

∂fNSnij

+
∑
j′ 6=j

∂πOSnij′

∂fNSnij

+
∑
i′ 6=i

∂πNSni′j

∂fNSnij

+
∑
j′ 6=j

∂πNSnij′

∂fNSnij

, (14)

where
∂πNSnij
∂fNSnij

is the marginal variable profit from additional nonstop flight frequency in market ij;

∂πOSnij
∂fNSnij

is the cannibalization effect from additional nonstop flight frequency on existing one-stop

service in market ij;∑
i′ 6=i

∂πOS
ni′j

∂fNSnij
+
∑

j′ 6=j
∂πOS
nij′

∂fNSnij
=
∑

i′ 6=i
∂πOS
ni′j

∂fOS
ni′j

∂Λ
(i)

ni′j
∂fNSnij

+
∑

j′ 6=j
∂πOS
nij′

∂fOS
nij′

∂Λ
(j)

nij′

∂fNSnij
are the marginal variable

profits from additional one-stop flight frequencies;∑
i′ 6=i

∂πNS
ni′j

∂fNSnij
+
∑

j′ 6=j
∂πNS
nij′

∂fNSnij
=
∑

i′ 6=i
∂πNS
ni′j

∂fOS
ni′j

∂Λ
(i)

ni′j
∂fNSnij

+
∑

j′ 6=j
∂πNS
nij′

∂fOS
nij′

∂Λ
(j)

nij′

∂fNSnij
are the cannibalization effect

from additional one-stop flight frequencies on existing nonstop services from city i or j to other

cities.

13In the online appendix, I present a histogram of scheduled daily flight frequencies of the airlines. It shows that
flight frequency can be treated as a continuous choice. Airlines sometimes schedule flights on a daily basis and
sometimes choose a flight only in some selected days. For instance, AA1184 which served Albuquerque to Dallas
and had 7 flights per week in early 2014, suspended its Tuesday and Saturday services in November and resumed its
Saturday services in December. I could not find other AA flights in this market which matched the missing Tuesday
or Saturday flights. In the flight frequency stage, it is easier to estimate a model with choices that is continuous
rather than discrete. I use marginal conditions of optimality to compute the marginal costs of flight frequencies and
do not need to use moment inequality in this stage.
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Again, in these expressions, Λ
(k)
nij = Λ

(k)
nij(f

NS
nik , f

NS
nkj ) denotes the one-stop flight frequency from

city i to city j with a connection at city k, where fNSnik and fNSnkj represent flight frequency in market

ik and market kj, respectively.

The six sub-figures in Figure 1 correspond to the four different channels. This is a unique

property of network models.

2.4.2 Computation of Counterfactual Network Structure

To estimate entry costs and the variable cost for additional flight frequency, as well as to conduct

a counterfactual experiment, I need to know how an airline’s network structure will change when

it enters/exits a market or changes its flight frequency in a market, i.e., the counterfactual network

structure. Let {FNS
n ,FOS

n } denote airline n’s network structure and F−n denote competitors’

network structures. Suppose airline n changes its nonstop flight frequency from FNS
n to FNS′

n ,

according to the technological relationship between nonstop service and one-stop service, its one-

stop flight frequency changes according to the following technological function FOS′
n = Λn(FNS′

n ).

Let FNS
n ±fNSnij (FOS

n ±fNSnij ) denote the counterfactual nonstop (one-stop) flight frequency struc-

ture of airline n if its nonstop flight frequency in market ij increases/decreases by fNSnijt. Specifically,

let FNS
n ±1NSnij (FOS

n ±1NSnij ) denote the counterfactual nonstop (one-stop) flight frequency structure

of airline n if its nonstop flight frequency in market ij increases or decreases by one.

3 Data

My sample includes the 100 busiest airports in the continental U.S., aggregated into 87 Metropolitan

Statistic Areas (or cities).14 In each quarter, every airline makes M = C×(C−1)
2 = 3741 entry

decisions.

The working dataset consolidates three databases: Data Bank 1B (DB1B), OAG databases and

Airport Gate database. DB1B is part of TranStats, the Bureau of Transportation Statistics’ (BTS)

online collection of databases, which contains a 10% sample of all US domestic ticket information.

The Official Airline Guide (OAG) database contains all domestic flight schedules in the United

States. I use all flight scheduling and flight frequency information to construct measures of one-

stop flight frequencies. I also construct an Airport Gate database which contains all airport gate

usage information. This information is collected from a flight statistics website that reports daily

14Some cities have more than one airport.
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domestic flight departure and arrival gate information.15 Since this dataset identifies which airlines

are using which gate, it can be used to determine whether a gate belongs solely to one airline or

is a common use gate.16 The unit of observation in my working dataset is year-quarter-market-

airline-product.

The working dataset ranges from the first quarter of 2007 to the fourth quarter of 2014 for a

total of 32 quarters and 341110 observations.17

3.1 Descriptive Analysis

At the beginning of the sample period, 12 major airlines operate in the United States. Virgin

America enters in 2008.18 After several major mergers, there are nine major airlines at the end of

this sample period.19

Table 1 reports the number of nonstop (one-stop) markets in which the airline operates, the

share of nonstop (one-stop) passengers, and the percentage of revenue from nonstop (one-stop)

service. Legacy carriers usually operate direct flights in 200-300 markets. Given these direct flight

offerings, they can provide one-stop services in thousands of markets.

Revenues from one-stop service tend to comprise a substantial portion of airline profit. In the

first quarter of 2014, Delta Air Lines brought in 23.7 percent of its domestic revenue from one-stop

service. Even Southwest, well-known for employing a point-to-point business model, provides one-

stop service to 15.3 percent of its consumers and brings in 12.1 percent of its revenue from one-stop

service.20 On average, airlines provide one-stop service to 25.1 percent of their domestic passengers

and bring in 17 percent of their revenue from one-stop service. One-stop service is therefore an

important portion of airline operation and competition that should not be ignored.

15Domestic flight departure and arrival gate information are collected from http://www.flightstats.com/. I use a
Python to collect the departure and arrival gates of all flights in the United States in 2014.

16A gate is considered to belong to one airline if 80% of the flights departing from this gate are provided by that
particular airline. Otherwise, it is considered a common gate.

17Standard sample selection thresholds apply. All code-sharing tickets are dropped.
18Virgin America begins its commercial service in late 2007 but enters my dataset in 2008.
19Merger and dataset construction details can be found in Appendix A. I drop small airlines such as Allegiant Air

from the estimation and focus on the major airlines for three reasons: First, small airlines tend to concentrate their
services in small markets and have negligible presence in the sample dataset. Second, most of these small airlines
employ a point-to-point business model and usually carry a negligible proportion of connecting passengers. Third,
eliminating these airlines can save substantial computational time which is proportional to the number of airlines in
the dataset. During the sample periodm, Continental merged with United Airlines, AirTran merged with Southwest,
Northwest merged with Delta Air Lines, and US Airways merged with American Airlines.

20A point-to-point business model is often employed by low-cost-carriers, who do not have major hubs. Airlines
using point-to point business models tend to provide direct service to passengers.
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3.2 Measure of Nonstop Flight Frequency

Nonstop flight frequency measures the number of daily direct flights offered by an airline between

two cities in a quarter. On average, an airline schedules 7.4 daily direct flights in a market with a

median of 5.5. Southwest operates in the busiest nonstop market, connecting Southern California

and the Bay area, with over 108 daily flights.

3.3 Hub cities

Airlines can connect one-stop passengers only at airline hubs. A list of airline hubs is given in the

Appendix. In the dataset, over 90% of the one-stop passengers travel with a stop at hub cities.21

Table 2 lists the top two hubs and the operation concentration ratio at the top four airports for

each airline. I define the hub index of airline n at city i (Hni) as the number of nonstop markets

connected to city i. The operation concentration ratio of an airline at a city is defined as its hub

index at this city divided by the number of direct markets of this airline. This ratio measures

degree of ‘hubbing’ or concentration of an airline’s operations in a given city and equals one for

pure hub-and-spoke networks. The top two hubs of legacy carriers usually connect with over 60

other cities and have high hub concentration ratios. Frontier Airlines employs a nearly perfect hub-

and-spoke network.22 Southwest Airlines has the lowest operation concentration ratio. In 2007, its

top hub (Chicago) connected with 47 other cities, its second hub (Las Vegas) connected with 45

other cities, and its CR4 was less than 40, which is consistent with the fact that the airline employs

a point-to-point business model.

Some airlines expand their hubs during the sample period. For instance, Alaska Airlines in-

creased its nonstop service in Seattle from 22 to 35. Southwest increased its nonstop markets in

Chicago from 47 (2007) to 62 (2014). There has been a reduction in hub concentration ratios from

2007 to 2014 due to several major mergers, since the merged airlines have a greater number of hubs.

21I allow airlines to connect one-stop passengers only at hub cities so as to not over-estimate one-stop flight
frequencies. To see these, suppose an airline has two hubs: A and B, both of which connect to spoke city C. I may
conclude that there are many one-stop flights between A and B with a stop at C, though in fact no passengers connect
at spoke city C.

22In a perfect hub-and-spoke network, there is a sole hub city and there are direct flights from other cities to the
hub city.
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3.4 Measure of One-stop Flight Frequency

One-stop service introduces important interconnections between airline operation decisions across

markets.23 In this paper, I propose a new measure of one-stop flight frequency based on airline

schedules, flight frequencies and the technology of connecting service.

I measure one-stop flight frequency from city A to city C with a connection at city B as follows.

Suppose an airline schedules a first flight from city A to city B, and a second flight from city B to

city C. These two direct flights are considered to create a one-stop flight if the scheduled departure

time of second flight is anywhere from 45 minutes to 4 hours after the scheduled arrival time of

the first flight.24 When there are multiple flights in market AB connecting with multiple flights in

market BC, the one-stop flight frequency is the total number of connecting possibilities available

to one-stop passengers. The detailed algorithm is described in detail in Appendix.

To the best of my knowledge, no measures of one-stop flight frequency have been proposed

in the literature. This measure introduces a clear definition of airline entry with one-stop service

(two flights with a layover of 45 minutes to 4 hours) as well as heterogeneity or quality in one-stop

service (measured by one-stop flight frequencies). This measure is important for understanding

competition and profitability in this industry. Airlines can receive more revenue from one-stop

service if they construct their networks strategically and increase one-stop flight frequency. They

also face more intensive competition if their competitors have more one-stop flight frequencies.

There are 273814 airline-market-quarter observations with positive flight frequency for one-stop

service. On average, an airline carries 6.8 one-stop passengers between two cities on a daily basis

with a median of 2.5.

4 Empirical Implementation

This section discusses the empirical specification of the network competition model. I first specify

the entry cost of the airlines, followed by the variable costs, which include the variable cost of

scheduling flights and serving passengers. Finally, I discuss the demand model and technological

relationship between nonstop and one-stop flight frequencies.

23Previous literature measures one-stop service in a relatively simple way and assumes an airline provides one-stop
service in a market if the number of one-stop passengers exceeds a threshold. However, this measure is an equilibrium
result from a 10 percent sample and ignores heterogeneity in one-stop service.

24I use the same threshold (45 minutes to 4 hours) as in Molnar (2013). The minimum time for domestic connection
is usually 45 to 75 minutes. The maximum time for domestic connection is usually 4 hours.
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4.1 Entry cost

Airline n’s entry cost into market ij in quarter t (FCnijt) depends upon many factors, such as the

number of gates or time slots of the airline at the two endpoint cities, etc.25

I specify FCnijt as follows

FCnijt = γFCG (Gnit +Gnjt)︸ ︷︷ ︸
Gate Share at the Airport

+ ηFCn︸︷︷︸
Airline FE

+ ηFCt︸︷︷︸
Quarter FE

+ ηFCi + ηFCj︸ ︷︷ ︸
City FE

+ εFCnijt, (15)

where ηFCn represents airline fixed-effect, ηFCt represents quarter fixed-effect, ηFCi and ηFCj represent

city fixed-effects at the two endpoints of the market, Gnit and Gnjt are the share of gates leased to

airline n at city i and j in quarter t, respectively. So ηFCt /100 measures how fixed cost changes if

the gate share of the airline at an airport increases by 1%.

4.2 Variable Costs

This paper distinguishes two different types of variable costs of the airlines: variable cost of schedul-

ing flights and variable cost of serving passengers.

Variable Cost of Scheduling Flights

I assume variable cost of scheduling flights is proportional to flight frequency, i.e. V Cfnijt(f
NS
nijt) =

cfnijt × fNSnijt. Marginal cost of flight frequency (cfnijt) is given by

ln cfnijt = γfH(Hnit +Hnjt)︸ ︷︷ ︸
Hub Indexes

+ γf1 dij + γf2 d
2
ij︸ ︷︷ ︸

Distance

+ ηfni + ηfnj︸ ︷︷ ︸
Airline-City FE

+ ηft︸︷︷︸
Quarter FE

+ εfnijt, (16)

where γfH measures changes in variable cost of flight frequency if hub index increases by one. Hnit

and Hnjt are the hub indexes of the airline at the two endpoints. ηfni and ηfnj are airline-city fixed

effect, ηft is time fixed-effects and γf1 and γf2 capture the effect from distance.

Variable Cost of Serving Passengers

In the empirical specification, a product g represents the following four-tuple of market and product

characteristics: (1) airline n, (2) market ij, (3) quarter t and (4) nonstop product indicator variable

25Ciliberto and Williams (2010) find that cost of entry decrease with the number of gates an airline operates in an
airport.
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x.

Marginal cost of serving passengers who travel with product g (cg) is given by

cg = δ11[x = NS]︸ ︷︷ ︸
Nonstop Dummy

+ δ2l
(
fNSg

)
× 1[x = NS] + δ3l

(
fOSg

)
× 1[x = OS]︸ ︷︷ ︸

Flight Frequency

(17)

+δ3Hnit + δ4Hnjt︸ ︷︷ ︸
Hub Indexes

+ δ5dij + δ6d
2
ij︸ ︷︷ ︸

Distance

+ ω
(1)
ni + ω

(2)
nj︸ ︷︷ ︸

Airline-City FE

+ ω
(3)
t︸︷︷︸+ω(4)

g

Quarter FE

,

where δ1 measures the cost difference between nonstop and one-stop services, l (fg) is a non-

decreasing function of fg, Hnit and Hnjt are airline hub indexes at each respective endpoint, ω
(1)
ni and

ω
(2)
nj are airline-city fixed-effects, ω

(3)
t represents quarter fixed-effects, and ω

(4)
g is product-specific

cost shock.26

4.3 Demand Model

Product quality, bg, is given by:

bg = α11[x = NS]︸ ︷︷ ︸
Nonstop Dummy

+ α2l(f
NS
g )× 1[x = NS] + α3l(f

OS
g )× 1[x = OS]︸ ︷︷ ︸

Flight Frequencies

(18)

+α4Hnit + α5Hnjt︸ ︷︷ ︸
Hub Indexes

+ α6dij + α7d
2
ij︸ ︷︷ ︸

Distance

+ ξ(1)
n︸︷︷︸

Airline FE

+ ξ
(2)
i + ξ

(3)
j︸ ︷︷ ︸

City FE

+ ξ
(4)
t︸︷︷︸

Quarter FE

+ ξ(5)
g ,

where α1 measures average passenger utility from nonstop service over the utility of one-stop service;

Hnit and Hnjt are hub indexes at the two endpoint cities; ξ
(1)
n is an airline fixed-effects which

captures between-airlines differences in quality that are constant over time and across markets; ξ
(2)
i

and ξ
(3)
j are city fixed-effects; ξ

(4)
t is quarter fixed-effects; ξ

(5)
g is product-specific demand shock for

product g.27

I consider a nested logit demand model with two nests.28 The first nest represents the consumer

decision of which airline to travel with, while the second nest is the choice between nonstop and

one-stop flights. Suppose vιg = σ1v
(1)
ιnijt + σ2v

(2)
g , where v

(1)
ιnijt and v

(2)
g are independently Type 1

extreme value distributed, and σ1 and σ2 are parameters which measure within/between group

26Empirically, I define l(fg) = ln(14× fg − 13) to ensure variable profit is a concave function with respect to flight
frequency. Since the minimum daily flight frequency in this paper is one, l(1) = 0. Suppose I choose l(fg) = ln(fg)
or l(fg) = fg, variable profit is a convex function of fg and airlines should schedule an infinite number of flights in
this market.

27These hub indexes are measured by the number of nonstop markets an airline serves to other destinations.
28The model can be extended into a random coefficient model.
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substitutions.

Let sg denote the market share of product g in market ij, i.e., sg = qg/MSij . Let s∗g be the

within group market share of product g, i.e., s∗g = sg/
∑

g′∈Gg
sg′ , where Gg is the set of products

airline n offers in the same market as product g.

The demand system can be represented using the following closed-form demand equations. For

each g

ln(sg)− ln(s0) =
bg − pg
σ1

+ (1− σ2

σ1
)ln(s∗g). (19)

4.4 Technological Relationship between One-stop and Nonstop Flight Frequen-

cies

I assume airline n’s one-stop flight frequency between city i and j with a stop at city k in quarter

t (f
OS(k)
nijt ) is a symmetric Cobb-Douglas function with respect to its nonstop flight frequencies in

market ik (fNSnikt) and market kj (fNSnkjt).

f
OS(k)
nijt = Λ

(k)
nijt

(
fNSnikt, f

NS
nkjt

)
= exp

(
h

(k)
nijt

)
×
(
fNSnikt

)λ × (fNSnkjt

)λ
, (20)

where h
(k)
nijt measures the heterogeneity in connection technologies across the one-stop markets.

Furthermore, I specify h
(k)
nijt = h + ε

h(k)
nijt , where ε

h(k)
nijt is assumed to be i.i.d distributed with mean

zero and thus obtain the following regression equation:

ln f
OS(k)
nijt = h+ λ×

(
ln fNSnikt + ln fNSnkjt

)
+ ε

h(k)
nijt . (21)

This technological model predicts counterfactual network structure given nonstop flight fre-

quency changes. Specifically, when nonstop flight frequency in market ik changes, one-stop flight

frequency in market ij with a stop at city k changes according to the following equation:

∂f
OS(k)
nijt

∂fNSnikt

= λ×
f
OS(k)
nijt

fNSnikt

. (22)

5 Identification and Estimation

This section discusses the empirical strategy and identification assumptions. The three-stage

model is estimated sequentially. I first estimate consumers’ utility functions and back out air-
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lines’ marginal cost of serving consumers according to Bertrand Nash conditions. Then, I estimate

airlines’ marginal cost of flight frequencies according to marginal conditions of optimality for flight

frequency choice. The estimation of airline entry cost suffers from high dimensionality in strategy

space and it is impossible to compute a Nash equilibrium. My empirical strategy is based on par-

tial identification: I treat the observed network structure as a Nash equilibrium outcome. Airlines’

revealed preference in entry decisions generates a set of inequality restrictions on entry cost. I infer

entry cost exploiting these inequality restrictions.

5.1 Estimation of Demand and Variable Cost of Passengers

According to the quality specification in Equation (18) and demand system in Equation (19), the

demand model can be expressed as a linear-in-parameters system of equations represented by:

ln(sg)− ln(s0) = Wgα−
pg
σ1

+ (1− σ2

σ1
)ln(s∗g) + ξ(4)

g , (23)

where Wg is a vector of regressors that includes a nonstop product dummy, functions with respect

to flight frequencies in both nonstop and one-stop services, hub indexes at the two endpoint cities,

distance between two endpoint cities, airline dummies, city dummies and quarter dummies. In

this regression equation, price pg and conditional market share ln(s∗g) are endogenous. Products

with larger demand shocks (ξ
(4)
g ) are more likely to have higher prices as well as higher conditional

market shares. Moreover, airline flight frequency may be an endogenous regressor in the current

demand system because airlines may schedule more flights in markets with higher demand.

I impose two assumptions to construct valid instrumental variables to identify demand.

Assumption 2. INDEPENDENT ξ Product-specific demand shocks {ξ(4)
g } are independently

distributed over time.

Assumption 3. TIME-TO-BUILD At the beginning of quarter t, airlines form expectations

about demand and costs before making their entry and flight frequency decisions in all markets.

These entry and flight frequency decisions are not effective until quarter t + 1 because airlines

require one quarter to set up their networks and schedule their flights.

Assumption INDEPENDENT ξ establishes that, after controlling for airline fixed-effects,

time fixed-effects and market fixed-effects, the unobserved component of product demand does not

exhibit time dependence. Assumption TIME-TO-BUILD assumes that airline network structure
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at quarter t is pre-determined in quarter t − 1, before demand shocks at quarter t are realized.29

These two assumptions imply that demand shock ξ
(4)
g is independent of airline market entry and

flight frequency decisions.30

I use GMM to estimate the differentiated products demand systems. Characteristics of other

products in the same market are used as instruments.31 In the current model, instrument variables

include average flight frequencies in both nonstop and one-stop services, hub indexes at both origin

and destination cities and nonstop product dummies of competing products. These two assumptions

establish that product characteristics of competitors in quarter t are independent of demand shock

ξ
(4)
g because they are pre-determined in quarter t−1. Moreover, competitor product characteristics

are correlated with product price through price competition, but are not correlated with product-

specific demand shocks. Thus, they can be valid instruments for both prices pg and within nested

market share ln(s∗g).

Given estimates of demand parameters and under Nash-Bertrand competition assumptions, I

back-out marginal cost of serving passengers from ĉg = pg − σ̂1(1 − s̄g)−1.32 I further decompose

variable cost of serving passengers to factors listed in Equation (17). Assuming no further issues

of endogeneity, I use OLS to estimate marginal cost of serving passengers.

5.2 Estimation of Marginal Cost of Flight Frequencies

I infer cost of flight frequency from demand estimation. After obtaining estimates of consumer

utility and airline marginal cost of serving passengers, I back out marginal cost of flight frequency

(cfnijt) according to marginal conditions of optimality for flight frequency choice. Setting the ex-

pected marginal variable profit from additional flight frequency ( ∂πnt
∂fNSnijt

) equal to the marginal cost

of scheduling additional flight frequency (cfnijt) gives:

∂πnt(F
NS
nt ,F

OS
nt )

∂fNSnijt

= cfnijt. (24)

29These two identification assumptions are in the same spirit as those in the estimation of demand in Aguirregabiria
and Ho (2012) and Sweeting (2013).

30Assumption INDEPENDENT ξ is testable. I test this assumption with estimated residuals ξ̂
(4)
g from a GMM

estimation of the demand system.
31This is in the spirit of Berry (1992) and Berry, Levinsohn, and Pakes (1995).
32s̄g = (

∑
g′∈Gnijt eg′)

σ2
σ1 [1 +

∑N
n′=1(

∑
g′∈Gn′ijt

eg′)
σ2
σ1 ]−1 where eg = Igexp{(bg − pg)/σ1} and Ig is the indicator

of the event “product g is available or not”.
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Thus, the regression equation becomes

ln
∂πnt

∂fNSnijt

= γfH(Hnit +Hnjt)︸ ︷︷ ︸
Hub Indexes

+ γf1 dij + γf2 d
2
ij︸ ︷︷ ︸

Distance

+ ηfni + ηfnj︸ ︷︷ ︸
Air-City FE

+ ηft︸︷︷︸
Qtr FE

+ εfnijt. (25)

The value of ∂πnt
∂fNSnijt

is numerically computed from

∂πnt

∂fNSnijt

=
πnt(F

NS
nt + 1NSnijt,F

OS
nt + 1NSnijt)− πnt(FNS

nt − 1NSnijt,F
OS
nt − 1NSnijt)

2
, (26)

where, as described in Section 2.4.2, πnt(F
NS
nt +1NSnijt,F

OS
nt +1NSnijt) is the variable profit of airline n if it

increases its nonstop flight frequency in market ij in quarter t by 1 while πnt(F
NS
nt −1NSnijt,F

OS
nt −1NSnijt)

is the variable profit of airline n if it reduces its nonstop flight frequency in market ij in quarter t

by 1.

5.3 Estimation of Entry Cost

Having obtained estimates for demand and marginal costs, I now turn my attention to the pa-

rameters governing fixed cost. These parameters show the heterogeneity in entry cost for airlines

with different numbers of gates at airports and heterogeneity across airlines, quarters, and cities.

Traditional estimation methods for entry models are unfeasible in my case: the total number of

cities and airlines implies too large a state space to be solved numerically. To circumvent this curse

of dimensionality, I approach the problem using a partial identification approach.

5.3.1 Two Sets of Inequality

I use two sets of moment inequality to construct bounds on the fixed cost. If airline n operates direct

flight in a market ij, its entry cost into this market is lower than the difference between variable

profit in the observed network πnt
(
FNS
nt ,F

OS
nt

)
and the counterfactual variable profit if it does not

operate direct flight in this market πnt

(
FNS
nt − fNSnijt,F

OS
nt − fNSnijt

)
minus savings in variable cost of
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flight frequency cfnijt × fNSnijt.
33 Thus,

FCnijt ≤ πnt
(
FNS
nt ,F

OS
nt

)︸ ︷︷ ︸
Observed Var Profit

− πnt
(
FNS
nt − fNSnijt,F

OS
nt − fNSnijt

)︸ ︷︷ ︸
Counterfactual Var Profit if Exit

− cfnijt × f
NS
nijt︸ ︷︷ ︸

Cost (Frequency)

(27)

≡ FCnijt,

where FNS
nt − fNSnijt (FOS

nt − fNSnijt) denotes the counterfactual nonstop (one-stop) flight frequencies

network structure if airline n exits market ij. This is an upperbound for fixed cost.

If airline n does not operate direct flights in market ij, its entry cost into market ij is higher than

the difference between counterfactual variable profit πnt

(
FNS
nt + fNS∗nijt ,F

OS
nt + fNS∗nijt

)
if it enters

with optimal flight frequency fNS∗nijt and the variable profit in the observed network πnt
(
FNS
nt ,F

OS
nt

)
minus variable cost of building flight frequencies cfnijt × fNS∗nijt .

FCnijt ≥ max
fNSnijt

πnt
(
FNS
nt + fNSnijt,F

OS
nt + fNSnijt

)︸ ︷︷ ︸
Var Profit if Optimal Frequency Entry

− πnt
(
FNS
nt ,F

OS
nt

)︸ ︷︷ ︸
Observed Var Profit

− cfnijt × f
NS
nijt︸ ︷︷ ︸

Cost (Frequency)

(28)

≡ FCnijt,

where FNS
nt + fNSnijt (FOS

nt + fNSnijt) denotes the counterfactual nonstop (one-stop) flight frequencies in

all markets if airline n exits market ij. When airline n determines its flight frequency in market

ij, it will take into account its entire network structure and maximize its total variable profit in

the network. This generates a lowerbound for fixed cost.

5.3.2 Identification Issues and Assumptions

There are two identification issues in the estimation of entry cost. First, given that an airline is

active in a market, it may own, lease or operate more gates at the two endpoints of the market.

As a result, the share of gates an airline leasing at an airport may be endogenous. The following

identification assumption is imposed to ensure the consistency of the fixed cost estimates.

Assumption 4. GATE The number of gates an airline has at an airport is exogenous. Airlines

determine their gate allocations before they determine their network structures.

Assumption GATE is reasonable because gate leasing arrangements between airlines and air-

ports are usually signed several years before the airline’s operation decisions. Thus, the entry

33FNSnt − fNSnijt is the counterfactual nonstop flight frequency if airline n exits market ij and FOSnt − fNSnijt is the
counterfactual one-stop flight frequency if airline n exits market ij.
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decision of an airline into a market will not affect the percentage of gates an airline leases at the

airport.

The second issue is selection associated with random disturbance. The random disturbance

associated with the observed choice comes from the possible values that make the observed choice

the optimal choice. As a result, even though a priori mean of the random disturbance for any fixed

choice is zero, the mean of the random disturbance may be nonzero. In other words, airlines that are

active in a market may have received a good draw, i.e. E
[
εFCnijt|Xnijt, anijt = 1

]
≥ 0. In contrast,

airlines that are inactive in a market may have receive a bad draw, i.e. E
[
εFCnijt|Xnijt, anijt = 0

]
≤ 0.

In order to deal with this selection issue and obtain consistent estimates of parameters in the entry

cost function, I impose the following identification assumption.

Assumption 5. BOUND The conditional expectation of εFCnijt is finite

Under Assumption BOUND, there is a finite bound B such that |E[εFCnijt|anijt = 1]| ≤ B and

|E[εFCnijt|anijt = 0]| ≤ B.34

When the distribution of the error term is not specified, the true value of B is unknown and

selection of B becomes an empirical question. I evaluate the fit of the model at different values of

B and select a B = B∗ such that the model estimates optimize the overall fit of the model. Details

on how I select B are in Section 5.3.5.

5.3.3 Estimation Procedure

I restrict my analysis to 2014 data for which detailed gate operation information are available.

If I observe an airline is active in a market, I have an upperbound for fixed cost. Conversely,

if I observe an airline is not active in a market, I have a lowerbound for fixed cost. There are

6934 upperbounds and 14626 lowerbounds for entry cost.35 There are one hundred parameters (or

fixed-effects) in the entry cost function. I estimate all parameters simultaneously using Inequalities

(27) and (28). However, estimation of one hundred parameters with thousands of inequality may

result in imprecise and uninformative estimates. Moreover, there may be numerical errors when I

estimate a model with one hundred parameters as the optimizing algorithm may stop at a local

34Pakes, Porter, Ho, and Ishii (2015) and Ellickson, Houghton, and Timmins (2013) assume that after controlling
for firm fixed-effects and market fixed-effect, conditional expectation of the error terms have mean zero. This is a
special case when B = 0.

35This paper focuses on observations where an airline is active in a market or active in both endpoints of the
market. For an entry cost, I can either observe an upperbound or a lowerbound, because the airline can either be
active or inactive.
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minimum rather than global minimum.36 Therefore I propose a sequential estimation procedure

and obtain estimates of different sets of fixed cost parameters sequentially.

An overview of this estimation procedure is as follows: I first estimate the effects from gate

ownership on fixed cost (γFCG ). When an airline is active in market ij but inactive in market

i′j′ and another airline is inactive in market ij but active in market i′j′ in the same quarter, the

difference in their entry decisions comes from the difference in their gate allocations at different

markets. I make use of Inequality (27) and (28), construct swapping pairs, eliminate airline fixed-

effects, quarter fixed-effects, and city fixed-effect, and focus on a set of new inequality with only

parameter γFCG involved. After obtaining estimate γ̂FCG , I replace the true γFCG with γ̂FCG in both

sets of inequality and proceed to estimate quarter fixed-effects. If an airline is active in a market in

a quarter but inactive in the same market in another quarter, I can obtain upper and lower bounds

for quarter fixed-effects differences. I construct swapping pairs, eliminate airline fixed-effects and

city fixed-effects and obtain inequality with only quarter fixed-effect γFCt , where I estimate and

obtain γ̂FCt . Then I replace the true γFCt with estimates γ̂FCt in the two sets of inequality and

estimate airline fixed-effects. If I observe an airline is active in a market and another airline is

inactive in the same market, I obtain bounds for the difference between the airlines’ fixed-effects in

fixed cost. I obtain inequality with only γFCn and obtain its estimate γ̂FCn . Finally, I estimate city

fixed-effects. I replace the γFCG , γFCn , and γFCt with their estimates in Inequality (27) and (28).

The estimates of city fixed-effects minimize these two sets of inequality.

The main advantage of this sequential estimation procedure is that I eliminate some fixed-

effects and focus on the estimation of a set of key parameters. There will be less estimation error

associated with these key parameters. However, a drawback of this estimation procedure is that

estimation error in earlier steps may propagate to later steps.

Estimation of γFCG

When estimating γFCG , I construct incumbent and potential entrant pairs at two markets to elimi-

nate time fixed-effects, airline fixed-effects and market fixed-effects. This swapping is in the spirit

of Ellickson, Houghton, and Timmins (2013) and Pakes, Porter, Ho, and Ishii (2015). Specifically,

suppose airline n operates direct flights in market ij but not in market i′j′ and airline n′ operates

direct flights in market i′j′ but not in market ij.

36The criterion function is continuous but not differentiable. To search for a global minimum I may have to start
at trillions of initial values. For instance, for 100 parameters with ten values each, I would need to evaluate 10100

different initial values.
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Airline n receives positive profit in market ij

FCnijt − γFCG (Gnit +Gnjt)− (ηFCn + ηFCt + ηFCi + ηFCj + εFCnijt) ≥ 0. (29)

Airline n receives negative profit if it enters i′j′

γFCG
(
Gni′t +Gnj′t

)
+ (ηFCn + ηFCt + ηFCi′ + ηFCj′ + εFCni′j′t)− FCni′j′t ≥ 0. (30)

Airline n′ receives negative profit if it enters ij

γFCG
(
Gn′it +Gn′jt

)
+ (ηFCn′ + ηFCt + ηFCi + ηFCj + εFCn′ijt)− FCn′ijt ≥ 0. (31)

Airline n′ receive positive profit when it operates in i′j′

FCn′i′j′t − γFCG
(
Gn′i′t +Gn′j′t

)
− (ηFCn′ + ηFCt + ηFCi′ + ηFCj′ + εFCn′i′j′t) ≥ 0. (32)

Summing up (29) to (32) gives

∆FCn
′i′j′t

nijt − γ
FC
G ∆Gn

′i′j′t
nijt − ε

FC
nijt + εFCni′j′t + εFCn′ijt − εFCn′i′j′t ≥ 0, (33)

where ∆FCn
′i′j′t

nijt ≡ FCnijt − FCni′j′t − FCn′ijt + FCn′i′j′t and ∆Gn
′i′j′t
nijt ≡ Gnit + Gnjt − Gni′t −

Gnj′t +Gn′it +Gn′jt −Gn′i′t −Gn′j′t. All airline fixed-effects ηFCn , time fixed-effects ηFCt and city

fixed-effects ηi and ηj are canceled out in Inequality (33).

I transform these inequality to conditional moment inequality

E[∆FCn
′i′j′t

nijt − γ
FC
G ∆Gn

′i′j′t
nijt − ε

FC
nijt + εFCni′j′t + εFCn′ijt − εFCn′i′j′t|Xt, At] ≥ 0, (34)

where Xt is a vector of market and airline characteristics, which include market size, distance

between endpoints and other explanatory variables for entry cost and At is a vector of airline’s

entry and exit decisions in quarter t.

Under Assumption Bound, I obtain the following inequality

E[∆FCn
′i′j′t

nijt − γ
FC
G ∆Gn

′i′j′t
nijt + 4B|Xt] ≥ 0 (35)
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where ∆FCn
′i′j′t

nijt and ∆Gn
′i′j′t
nijt are obtained in the data.37 When ∆Gn

′i′j′t
nijt is positive, I have an

upperbound for γFCG . Otherwise, I have a lowerbound for γFCG .

Andrews and Shi (2013) show that by properly choosing instruments, conditional moment in-

equalities are transformed into their unconditional counterparts without losing identification power.

So the conditional inequality can be rewritten as the following unconditional inequality

E{zG[∆FCn
′i′j′t

nijt − γ
FC
G ∆Gn

′i′j′t
nijt + 4B]} ≥ 0, (36)

where {zG} are non-negative instruments based on market characteristics.

Specifically, I separate all inequality into different groups and the instruments are dummy

variables indicating whether an inequality belongs to a group or not. All inequality representing

the upperbound of γFCG (those inequality with ∆Gn
′i′j′t
nijt > 0) are aggregated to 4, 6, 8, 10, 12

and 14 groups. Again, all inequality representing the upperbound of γFCG (those inequality with

∆Gn
′i′j′t
nijt < 0) are aggregated to 4, 6, 8, 10, 12 and 14 groups. The selection of groups are based

on the quantiles of ∆Gn
′i′j′t
nijt . For instance, when I separate all inequality into four groups (four

different quantiles), the first group includes all inequality whose ∆Gn
′i′j′t
nijt falls in its first quantile

and the last group includes those inequality whose ∆Gn
′i′j′t
nijt falls in its fourth quantile.

The criterion function follows Chernozhukov, Hong, and Tamer (2007):

Qγ =
∑
zG

min{
∑
t

∑
n

∑
n′ 6=n

∑
ij

∑
i′j′ 6=ij

zG[∆FCn
′i′j′t

nijt − γ
FC
G ∆Gn

′i′j′t
nijt + 4B], 0}2. (37)

I estimate γFCG to minimize the criterion function Qγ .

Estimation of Time Fixed-effects (ηFCt )

I estimate time fixed-effects by exploiting cross quarter entry decisions. In a given market, if an

airline n is active in this market in quarter t but not active in quarter t′, I construct inequality,

eliminate other fixed-effects and focus on the estimation of time fixed-effects ηFCt .

Airline n receives positive profit when it operates in ij in t

FCnijt − γFCG (Gnit +Gnjt)− (ηFCn + ηFCt + ηFCi + ηFCj + εFCnijt) ≥ 0. (38)

37The absolute value of all conditional expectation of error terms |E[εFCnijt|Xt, At]| ≤ B.
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Airline n receives negative profit if it enters ij in t′

γFCG
(
Gnit′ +Gnjt′

)
+ (ηFCn + ηFCt′ + ηFCi + ηFCj + εFCnijt′)− FCnijt′ ≥ 0. (39)

Summing up these two inequality and replacing γFCG with estimates γ̂FCG , I have

∆FCnijt
′

nijt − γ̂
FC
G ∆Gnijt

′

nijt − η
FC
t + ηFCt′ − εFCnijt + εFCnijt′ ≥ 0, (40)

where ∆FCnijt
′

nijt ≡ FCnijt − FCnijt′ and ∆Gnijt
′

nijt ≡ Gnit +Gnjt −Gnit′ −Gnjt′ .

Following the same steps as before, I have the following criterion function.

QT =
∑
zT

min{
∑
nij

∑
t

∑
t′ 6=t

zT [∆FCnijt
′

nijt − γ̂
FC
G ∆Gnijt

′

nijt − η
FC
t + ηFCt′ + 2B], 0}2. (41)

The η̂FCt minimizes this criterion function. I normalize the first quarter fixed effect to 0. {zT } are

dummy variables that select different combination of quarters. Since there are four quarters in the

working database, there are C4
2 = 12 different combinations.

Estimation of Airline Fixed-effects (ηFCn )

After obtaining estimates of quarter fixed-effects, I estimate airline fixed-effects by exploiting vari-

ation in airlines’ entry decisions in the same market. For any two airlines n and n′ in market ij,

if n is active in the market but n′ is not active in the same market, I construct inequalities and

eliminate market fixed-effects and time fixed-effects. Summing up (29) and (31) and replacing γFCG

with its estimates, I obtain

∆FCn
′ijt

nijt − γ̂
FC
G ∆Gn

′ijt
nijt − η

FC
n + ηFCn′ − εFCnijt + εFCn′ijt ≥ 0, (42)

where ∆FCn
′ijt

nijt ≡ FCnijt − FCn′ijt and Gn
′ijt
nijt ≡ Gnit + Gnjt − Gn′it − Gn′jt. Again, I have the

following criterion function

QN =
∑
zN

min{
∑
ijt

∑
n

∑
n′ 6=n

zN [∆FCn
′ijt

nijt − γ̂
FC
G ∆Gn

′ijt
nijt − η

FC
n + ηFCn′ + 2B], 0}2, (43)

where {zN} are indicator variables for all possible airline-pairs. I normalize the airline fixed-effect

of American Airline to 0 and estimate ηFCn to minimize this criterion function.
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Estimation of City Fixed-effects

To estimate city fixed-effects, I replace gate fixed-effects of gate (γFCG ), time fixed-effects (ηFCt )

and airline fixed-effects (ηFCn ) with their estimates and estimate city fixed-effects utilizing airline

market entry decisions. For any market ij, if airline n is active in quarter t, I obtain an upper

bound for the city fixed-effect:

anijt(FCnijt − γ̂FCG (Gnit +Gnjt)− (η̂FCn + η̂FCt + ηFCi + ηFCj + εFCnijt)) ≥ 0, (44)

whereas if airline n is not active in the same quarter, I obtain a lower bound for the city fixed-effects.

(anijt − 1)(FCnijt − γ̂FCG (Gnit +Gnjt)− (η̂FCn + η̂FCt + ηFCi + ηFCj + εFCnijt)) ≥ 0. (45)

Summing up these two inequality,

anijtFCnijt + (anijt − 1)FCnijt − (2anijt − 1)γ̂FCG (Gnit +Gnjt) (46)

−(2anijt − 1)(η̂FCn + η̂FCt + ηFCi + ηFCj + εFCnijt) ≥ 0.

Again, estimates η̂FCi minimize the following criterion function

QC =
∑

anijt={0,1}

∑
zC

min{
∑
nijt

zC [anijtFCnijt + (anijt − 1)FCnijt (47)

−(2anijt − 1)(γ̂FCG + (Gnit +Gnjt) η̂
FC
n + η̂FCt + ηFCi + ηFCj ) +B], 0}2

where {zC} are indicator variables for different quantiles of market size.

The true γ values should satisfy all the inequality if the model is correctly specified. If multiple

(sets of) estimates satisfy all inequality (when γ = γ̂, the value of criterion function = 0), then a

set estimate is obtained. If there is no estimate that satisfies all inequality (i.e. there is no γ = γ̂

such that the value of criterion function = 0), I select a γ̂ that minimizes the criterion function as

a point estimate. Thus, though a set identification approach is being employed, it may still result

in a point estimate.38

38It is very difficult to describe a set estimate when there are 100 parameters.
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5.3.4 Computation of Goodness of Fit and the Selection of B∗

To estimate the entry cost, I first determine the value of B. Since the true value of B is unknown, I

numerically search for the optimal B∗ in the empirical analysis. I try different values of B ranging

from 0 to 1000 in steps of five. For any trial of B, I estimate fixed cost according to the procedures

described in Section 5.3.3. Then, I predict airline entry decisions in all markets. According to

Inequality (27), the model predicts that an airline will enter the market if its expected variable

profit is higher than its estimated entry cost. On the other hand, according to Inequality (28),

the model predicts that the airline will not enter the market if its expected variable profit is lower

than its estimated entry cost. By comparing the predicted and observed entry decisions, I compute

overall model fit for the fixed cost estimates as the fraction of model predictions that are consistent

with airline entry/exit decisions in the data. Finally, I select B∗ to maximize the overall fit of the

model.

5.3.5 Estimation of SD of Individual Shock εFCnijt

In the counterfactual experiment, I simulate errors from the estimated distribution of individual

shocks. This subsection estimates the distribution of error terms in the fixed cost. If airline n is

active in ij, Inequality (29) imposes an upper bound for εFCnijt. If airline n is active in ij in quarter

t, I replace parameters with their estimates and obtain

εFCnijt ≤ FCnijt − γ̂FCG (Gnit +Gnjt)− η̂FCn − η̂FCt − η̂FCi − η̂FCj ≡ εFCnijt. (48)

Otherwise, Inequality (30) imposes a lower bound for εFCnijt. If airline n is inactive in ij in quarter

t,

εFCnijt ≥ FCnijt − γ̂FCG (Gnit +Gnjt)− η̂FCn − η̂FCt − η̂FCi − η̂FCj ≡ εFCnijt. (49)

To identify the distribution of individual shocks from these two sets of inequality, I impose the

following assumption on the distribution of ε.

Assumption 6. ε Distribution Suppose εFCnijt is i.i.d normally distributed with mean zero and

variance σFCε .

I estimate σFCε according to maximum likelihood estimation. The estimates σ̂FCε maximize the
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following log-likelihood function:

Qσ(σFCε ) =
∑
nijt

1[anijt = 1] ln Φ(
εFCnijt
σFCε

) +
∑
nijt

1[anijt = 0] ln(1− Φ(
εFCnijt
σFCε

)) (50)

6 Empirical Results

6.1 Technological Relationship between One-stop and Nonstop Flight Frequen-

cies

Table 3 summarizes the estimates of the technological relationship between one-stop flight frequency

and nonstop flight frequency (Equation (21)).39

As I have discussed, airline n’s one-stop flight frequency in market ij with connection city k

(f
OS(k)
nij ) is a complex function of nonstop flight frequencies for market ik and market kj. Even

without any fixed-effects, the technological relationship fits the data quite well with R2 close to

0.8. If the number of nonstop flights in market ik or kj doubles, the one-stop flight frequency in

market ij with a stop at k will increase by 74.6 percent. If the number of flights in both market ik

and kj double, the one-stop flight frequency in this market will increase by 149.2 percent, which

is increasing returns to scale. These results are quite robust when airline-fixed-effects and market-

fixed-effects are included in the estimation. Not all nonstop flights can be used to create one-stop

flights. On average only exp (−2.949) = 5.2% of the nonstop flights can be used to create one-stop

flights in a market. However, scheduling an additional flight in a market may induce the airline to

also schedule new one-stop flight frequencies in many other markets.

6.2 Stage 1 (a): Demand Estimation

Table 4 reports estimates of demand systems. Columns (1) and (2) display estimates with both

flight frequency and hub indexes as explanatory variables. Columns (3) and (4) display estimates

with only hub indexes as explanatory variables. Columns (5) and (6) display estimates are esti-

mates with only flight frequencies as explanatory variables. Columns (1), (3), and (5) report OLS

estimates and Columns (2), (4), and (6) report IV estimates. Since the coefficient of the price

variable measures indirect utility from one hundred dollars, I obtain dollar denominated estimates

of consumer willingness to pay towards different product characteristics.

I find that, on average, consumers are willing to pay $150 more for nonstop service than one-stop

39Standard errors are clustered at the airline-market level.
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service.40 Consumers are willing to pay for greater flight frequencies in both nonstop and one-stop

services. Given that the average nonstop flight frequency is 7.7 daily flights, if airline n increases

one daily direct flight in a market, consumer willingness-to-pay for airline n’s nonstop service in

this market increases by $11.20. On the other hand, given average one-stop flight frequency is

10.5 daily flights, if airline n increases its one-stop flight frequency by one daily flight, consumers’

willingness-to-pay for airline n’s one-stop service in this market increases by $4.80. One percent

increase in hub-size implies an increase in consumer willingness-to-pay by 0.37 percent to 0.44

percent.41 When travel distance is greater, consumers are more willing to travel by air. These

demand estimates are consistent with estimates in the literature.

Airlines generally provide more frequent flights in markets connected to hub cities so hub indexes

and airline flight frequencies are correlated. While both affect consumer willingness-to-pay, they are

different, as discussed above. Comparing estimates in columns (2) and (4), consumer willingness-

to-pay for airline hubs are over-estimated if flight frequency variables in demand estimation are not

included in the regression.

6.3 Stage 1 (b): Variable Cost of Serving Passengers

Given estimates of demand parameters and using Nash-Bertrand equilibrium prices, I estimate

the marginal cost of serving passengers as ĉg = pg − σ̂1(1 − s̄g)
−1.42 I further decompose this

marginal cost of serving passengers into different factors. I assume that shocks to the cost of

serving passengers are not correlated with airline hub indexes or flight frequencies because these

are pre-determined in the price competition stage. Thus, I use OLS to estimate the variable cost

of serving passengers.

Table 5 reports the estimated marginal cost of serving consumers. Column (1) reports estimates,

accounting for both hub indexes and flight frequencies. Column (2) and (3) report estimates,

accounting for only hub indexes and flight frequencies, respectively. Though consumers value

nonstop service more than one-stop service, the marginal cost of serving a nonstop passenger is

$37.40 lower than the marginal cost of serving an one-stop passenger, since one-stop passengers

occupy seats on two different flights. If an airline increases its nonstop flight frequency by one,

its marginal cost of serving nonstop passengers decreases by $0.80. On the other hand, increasing

40150=1.472/0.981*100
410.37 = 0.36/0.981 and 0.44= 0.433/0.981
42s̄g = (

∑
g′∈Gnijt eg′)

σ2
σ1 [1 +

∑N
n′=1(

∑
g′∈Gn′ijt

eg′)
σ2
σ1 ]−1.

35



flight frequency by one reduces marginal cost of serving one-stop passengers by $0.60. Cost of

serving passengers is also lower if any endpoint is a hub airport.

6.4 Stage 2: Estimation of Marginal Cost of Building Frequencies

I use estimates in Table 4 and Table 5 to calculate the marginal variable profit associated with an

additional nonstop flight frequency in all markets.

Figure 2 decomposes and summarizes the marginal variable profit from an extra flight. The first

row reports marginal variable profit from additional nonstop service. The second row reports its

cannibalization effect on existing one-stop services. The third row reports marginal variable profit

from additional one-stop service. The forth row reports its cannibalization effect on existing nonstop

service. The last row reports the total marginal variable profit associated with an additional flight,

which sums up the first four rows. According to marginal cost optimality for flight frequency, this

total marginal variable profit should equal the marginal cost of scheduling an additional flight.

On average, if an airline schedules an extra flight, it can bring in marginal variable profit of $6747

from nonstop service and $1130 from one-stop service. The average marginal cost of scheduling

flight frequency is equal to $7554. This value is consistent with the industry measure of flight

operation cost. So if ignoring airline network structure would underestimate the costs and benefits

of an additional flight frequency by 11%.

Table 7 reports the estimates of the marginal cost of flight frequency. The relationship between

distance and marginal cost resembles an inverted U-shape. The marginal cost of flight frequency

in a market is higher when an endpoint of this market has a higher hub index. According to the

estimates of demand and the marginal cost of serving passengers, higher hub indexes in a market

result in higher demand and lower cost of serving passengers. Airlines that schedule more flights

in their hub city suffer from higher cost of scheduling an additional flight due to congestion or

capacity constraints.43

6.5 Stage 3: Estimation of Entry Cost

Empirically, I find that B∗ = 170 optimizes model fit in fixed cost estimation. Table 8 reports

entry cost estimates for the year 2014 when B = B∗ = 170. Section 6.6 further discusses model

goodness of fit.

43In this paper, I assume that the marginal cost of scheduling flight frequency is not a function of flight frequency.
This assumption may be relaxed later.
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When gate share at the two endpoints increases by 1 percent, entry cost decreases by $0.22

million a quarter. So an airline that dominates an airport faces lower entry cost into markets

connected to this airport. Legacy carriers control a greater proportion of gates compared to low

cost carriers, which reduces their entry cost and facilitates their entry decisions and operations. I

conclude that gate ownership at airports is an important element of airline operations and compe-

tition. There is heterogeneity in entry cost across airlines. The difference in entry cost among the

legacy carriers: Delta Air Lines, American Airlines and United Airlines are not significant. On the

other hand, Southwest Airline’s entry cost is $3.67 million higher than that of American Airlines,

conditional on airport gate allocation. This is consistent with the fact that although Southwest

is more profitable than legacy carriers, the number of markets it operates in (364 markets) is not

significantly more than the other legacy carriers such as Delta Air Lines (322 markets). Variance

estimates of error term in the fixed cost is σ̂FCε = 2986.

6.6 Goodness of Fit

In this subsection, I discuss the goodness of fit of the model in the entry stage. I compare model

predictions with data in Table 9. Out of the 13850 stay-out predictions, 11292 of them (78%) are

consistent with data. Out of 7609 entry predictions, 4376 of them (63%) are consistent with data

. Overall, the model prediction is consistent with 73% of the observations.

7 Merger Simulation

In 2016, the U.S. Department of Justice approved a merger deal between Alaska Air Group (AS) and

Virgin America (VX).44 The post-merger airline network structure is not merely a combination of

the two pre-merged airlines and there has been considerable discussion over how the merged airline

will behave. For instance, which new markets will the new post-merger airline enter? How will

this post-merger airline re-allocate its flights? How will other airlines respond? How will prices

and consumer surplus change in the markets previously served by Alaska or Virgin American or

even markets that were not served by the two airlines pre-merger? These interesting questions

cannot be answered with existing models which treat network structures as exogenously given.

In this counterfactual study, I investigate the consequences of an exogenous merger between the

two airlines. This paper focuses on examining the extent to which the merger affects the network

44Alaska Airlines won a bidding war to acquire Virgin American in April 2016.
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structures of all airlines; airline merger incentives are not explored.

7.1 Merger Simulation Set-up

Pre-Merger Network Set-up

To simulate a pre-merger network structure, I assume the values of primitives of the model are the

same as their estimates.45 Airlines will maintain their gate allocations at each airport. Specifically,

I draw fixed cost from a normal distribution, using the fitted fixed cost estimate and its standard

error as the mean and standard deviation, respectively, i.e., FCsimunijt ∼ N(γ̂FCG (Gnit+Gnjt)+ η̂FCn +

η̂FCt + η̂FCi + η̂FCj , σ̂FCε ).

Post-Merger Network Set-up

To simulate the post-merger network structure, I assume that non-merging airlines maintain their

gate allocations and unobserved product quality in consumer demand, marginal cost, and flight

frequency. Merging airlines are eliminated post-merger and replaced with a new airline. The post-

merger airline owns all gates from the merging airlines.46 Post-merger unobserved product quality

in demand and cost are calculated as the weighted average of the merging airlines. For markets in

which both Alaska Airlines and Virgin America were active pre-merger, I determine these weights

based on the merging companies’ relative flight frequencies. For markets in which neither Alaska

Airlines nor Virgin America were active pre-merger, I calculate weights based on their gates shares

at the two endpoints.

7.2 Algorithm to Simulate An Equilibrium

Sequence of Moves

Since it is computationally infeasible to obtain a Nash equilibrium of this simultaneous-move net-

work competition game, I reconstruct this simultaneous game as a sequential-move game. I propose

a sequence by which all airline-market pairs move. Airlines first move in larger markets, then move

in smaller markets. Within each market, airlines move sequentially by profitability.47 For instance,

45The primitives of the model include consumer utility functions, variable costs of serving passengers and of
increasing flight frequency, and fixed cost.

46In reality, there may be some gate or slot reallocation post-merger; for simplicity, I assume there is no change in
gate allocations.

47Berry (1992) estimates a model of sequential market entry of the airlines. He orders airlines according to
profitability and incumbency status of the airlines.
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New York - Los Angeles is the largest market, in which JetBlue is the most profitable airline and

American Airline is the second most profitable airline. My proposed sequence would therefore

assign JetBlue and American Airline as the first and second movers, respectively, in the NY-LA

market, followed by other airlines in descending market profitability order. After these airlines in

the largest market have moved, the sequence moves on to airlines in the second largest market New

York - Chicago. Again, airlines with higher profitability move first, followed by airlines with lower

profitability. In this way, I obtain a sequence of all airline-market pairs.

For this massive sequential move game, I should ideally solve for the sub-game perfect Nash

equilibrium using backward induction. However, since it is impossible to compute the profit of

the airlines at all branches of the game tree, I use a forward induction algorithm to search for an

equilibrium.

Starting with an empty network where no airlines are active in any market, I evaluate airline

best response, airline-market pair by airline-market pair according to the sequence defined above.

Specifically, starting with the first airline-market pair in the sequence, I evaluate the best response

of this airline in that specific market.48 I update airline network structures each time an airline

enters, exits, or changes flight frequency in a market. Then, I proceed to the second airline-market

pair in the sequence, evaluate the best response of this airline in the market and update its network

structure. After all airline-market pairs are visited, I go back to the first airline-market pair and re-

evaluate the best responses of the entire airline-market sequence. If there is no incentive to deviate,

this convergence of best responses in the network serves as an approximation of the subgame perfect

Nash equilibrium of the sequential-move game.49

Airline Best Response

This subsection describes how I derive the best responses of the airlines. When airline n determines

its optimal entry decision and flight frequency for a given market, it treats as given not only its

own entry and flight frequency decisions in other markets but also other airlines’ entry and flight

frequency decisions in all markets. Since there is no explicit solution for the optimal entry decision

and flight frequency, I numerically calculate the profit of each airline associated with all possible

flight frequencies in this market. For any possible flight frequency of an airline in a market, I

first simulate the counterfactual network structure of this airline to determine the Bertrand Nash

48I will discuss how to compute the best response of the airline in the next subsection.
49In the robustness check, I consider other sequences of airline-market where the order of all airline-market pairs

is randomized.

39



equilibrium in prices for all markets, which I use to calculate the overall profit of the airline

associated with the given flight frequency. The airline will schedule its flights to maximize its

overall profit. To reduce computation burden, I also restrict the choice set of the airlines. In any

market, an airline has 6 possible options: it can out of the market, or it can enter this market and

offer (2,4,6,8,10) daily flights.

7.3 Counterfactual Results

For this policy experiment, I draw 10 different sets of fixed costs, simulate both benchmark network

structure and counterfactual network structures, and report the average of the 10 simulations.50

Table 10 and Table 11 compare the market structures of benchmark networks versus counterfac-

tual networks. In both tables, the first three rows summarize airlines’ nonstop networks (number

of nonstop markets, number of nonstop flight frequencies, and revenue from nonstop services), the

fourth to the sixth rows summarize airlines’ one-stop networks (number of one-stop markets, num-

ber of one-stop flight frequencies, and revenue from one-stop services) and the last row summarizes

the variable profit of the airlines.

In Table 10, the first two columns report the simulated benchmark networks of Alaska Airline

and Virgin America, respectively. Averaged across all simulations, Alaska Airline operates nonstop

service in 258 markets, which are six times the nonstop markets of Virgin America pre-merger.

Virgin America does not operate one-stop service while Alaska operates one-stop flights in 52

markets. The third column reports the counterfactual network of the new post-merger airline. The

post-merger airline will operate nonstop service in 291 markets and offer increased flight frequency

(2302 daily flights) greater than the pre-merger offerings (1722+188=1910 daily flights). The post-

merger airline will operate in more one-stop markets because it now has a larger network, which

can facilitate its one-stop operations. In terms of revenue, the post-merger airline will bring in

more variable profit compared to the two pre-merger airlines. On average, the post-merger airline

will enter 32 nonstop markets and 1 one-stop markets but exit 13 nonstop markets.

Table 11 summarizes the network structures of all the other airlines before and after the AS-

VX merger.51 The first column reports the simulated benchmark network. Other airlines operate

nonstop service in 8953 markets with 78064 daily flights and earn $253 billion dollars in a quarter.

50It takes approximately one day for one iteration to converge using an Intel i7 8-core, 16G RAM computer. The
network converges in 3-6 iterations. The detailed network structure of each set of fixed costs can be found in the
online appendix.

51Other airlines refer to all airlines except Alaska and Virgin America.
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They also operate one-stop service in 6012 markets. Revenues from nonstop service are about three

times that of one-stop service. The second column summarizes counterfactual networks of the other

airlines and the third and fourth columns report entries and exits of the other airlines, respectively.

Following the AS-VX merger, the other airlines are projected to slightly expand their operations,

entering into 3 nonstop markets and exiting from 1 nonstop market.

Table 12 reports change in consumer surplus and number of entries and exits by market size.

The first two columns report entries and exits of the airlines and the last three columns report

change in welfare. The first four rows report different quantiles of markets and the last row reports

the sum. In larger markets, there are more entries than exits, resulting in net entries.52 In contrast,

there are no entries in smaller markets and consumer welfare may slightly reduce in these markets.

Overall, consumer surplus increases by 1.28% with consumer surplus in larger markets increasing

more compared to the consumer surplus in smaller markets.

8 Conclusion

This paper proposes and estimates one of the first models of airline network competition to endo-

genize network structure, flight frequencies, prices and quantities for every nonstop and one-stop

market. Since solving for an equilibrium is computationally infeasible, I estimate cost of increasing

flight frequencies by making use of the marginal condition of optimality and infer entry cost by

exploiting inequality restrictions implied by airlines’ revealed preferences.

I use this model to study the effect of marginal costs, entry costs, variable profits and strategic

interactions in both nonstop and one-stop services in airline network competition. I find that

synergies across markets are crucial to determining airline entry decisions. Airlines construct their

network structures and schedule their flights strategically to provide one-stop service to consumers.

Ignoring one-stop products could therefore result in underestimating the marginal cost of flight

frequency by up to 11%. The paper further applies the proposed methodology to predict the

consequences of a hypothetical merger between Alaska Airlines and Virgin America in the first

quarter of 2014. This counterfactual simulation predicts that the new post-merger airline would

re-optimize its network structure, enter 32 nonstop markets, and exit 13 nonstop markets. The

merger is expected to improve consumer welfare overall through increased airline entry, with welfare

increasing in larger markets and decreasing in smaller markets.

52The identity of the airlines that operate in these markets may be different.
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Figure 1: Four Channels of Variable Profit Change

(a) Additional Nonstop
(b) Cannibalization on One-
stop

(c) Additional One-stop

(d) Cannibalization on Non-
stop

Table 12: Counterfactual Results: Welfare Analysis

Market Size Market Entries and Exits Change in Welfare (Million $)

Quartile Entry Exit Benchmark CT Change(%)

1 29 12 542857 555450 2.320

2 4 2 284280 285338 0.372

3 2 0 165476 165824 0.210

4 0 0 99883 99882 -0.001

Total 35 14 1092495 1106494 1.281

Note: Consumer surplus is measured by million dollars in a quarter.
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Table 1: Summary Statistics: Nonstop Service versus One-stop Service

2007Q1

Nonstop Service One-stop Service
Airline Code (Name) # Markets % of Pass % of Rev # Markets % of Pass % of Rev

WN (Southwest Airlines) 364 84.7% 87.9% 1215 15.3% 12.1%
DL (Delta Air Lines) 322 60.5% 76.3% 3529 39.5% 23.7%
US (US Airway) 287 73.2% 82.3% 2318 26.8% 17.7%
AA (American Airlines) 265 67.8% 78.3% 3009 32.2% 21.7%
NW (Northwest Airlines) 207 65.9% 79.9% 3038 34.1% 20.1%
UA (United Airlines) 202 73.1% 82.2% 2615 26.9% 17.8%
CO (Continental Airlines) 186 78.5% 86.8% 2471 21.5% 13.2%
FL (AirTran Airways) 95 67.7% 78.9% 681 32.3% 21.1%
B6 (JetBlue Airways) 67 87.0% 92.1% 614 13.0% 7.9%
F9 (Frontier Airlines) 46 69.7% 77.6% 900 30.3% 22.4%
AS (Alaska Airlines) 45 96.4% 97.6% 209 3.6% 2.4%
NK (Spirit Airlines) 22 100.0% 100.0% 53 0.0% 0.0%
VX (Virgin America) - - - - - -

Total 2108 74.9% 83.0% 20652 25.1% 17.0%

2014Q1

Nonstop Service One-stop Service
Airline Code (Name) # Markets % of Pass % of Rev # Markets % of Pass % of Rev

WN (Southwest Airlines) 521 78.6% 84.6% 2274 21.4% 15.4%
DL (Delta Air Lines) 421 58.6% 74.3% 3473 41.4% 25.7%
US (US Airway) - - - - - -
AA (American Airlines) 431 62.5% 75.8% 3347 37.5% 24.2%
UA (United Airlines) 347 80.8% 89.7% 2675 19.2% 10.3%
NW (Northwest Airlines) - - - - - -
CO (Continental Airlines) - - - - - -
FL (AirTran Airways) - - - - - -
B6 (JetBlue Airways) 91 95.4% 97.3% 662 4.6% 2.7%
F9 (Frontier Airlines) 43 58.4% 70.5% 567 41.6% 29.5%
AS (Alaska Airlines) 62 98.4% 98.8% 370 1.6% 1.2%
NK (Spirit Airlines) 65 97.2% 97.8% 136 2.8% 2.2%
VX (Virgin America) 26 95.7% 97.1% 101 4.3% 2.9%

Total 2007 71.9% 81.3% 13605 28.1% 18.7%

Note: Pass is abbreviation of passengers and Rev is abbreviation of revenue.
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Table 2: Summary Statistics: Hub City

2007Q1

Airline Code (Name) Top Hub #Mkts Second Hub #Mkts CR1 CR2 CR3 CR4

WN (Southwest Airlines) Chicago 47 Las Vegas 45 12.9 25.0 35.4 44.8
DL (Delta Air Lines) Atlanta 83 Cincinnati 73 26.3 49.1 63.6 77.5
US (US Airway) Charlotte 61 Philadelphia 54 22.3 41.8 57.9 70.0
AA (American Airlines) Dallas 75 Chicago 71 28.8 55.8 68.8 81.5
UA (United Airlines) Chicago 55 Denver 44 33.1 59.0 78.9 89.8
NW (Northwest Airlines) Detroit 56 Minneapolis 55 36.1 71.0 91.0 96.8
CO (Continental Airlines) Houston 46 New York 37 47.4 84.5 96.9 100.0
FL (AirTran Airways) Atlanta 37 Orlando 18 38.9 56.8 67.4 74.7
B6 (JetBlue Airways) New York 36 Boston 19 53.7 80.6 91.0 97.0
F9 (Frontier Airlines) Denver 44 - 3 95.7 100.0 100.0 100.0
AS (Alaska Airlines) Seattle 22 Portland 14 48.9 77.8 91.1 97.8
NK (Spirit Airlines) - - - - 45.5 77.3 90.9 90.9
VX (Virgin America) - - - - - - - -

2014Q2

Airline Code (Name) Top Hub #Mkts Second Hub #Mkts CR1 CR2 CR3 CR4

WN (Southwest Airlines) Chicago 62 Las Vegas 51 11.7 21.2 30.2 39.1
DL (Delta Air Lines) Atlanta 82 Detroit 69 19.7 36.0 51.3 65.5
US (US Airway) - - - - - - - -
AA (American Airlines) Dallas 72 Charlotte 69 16.3 31.7 45.5 58.6
UA (United Airlines) Chicago 58 Houston 43 22.5 38.8 53.9 68.2
NW (Northwest Airlines) - - - - - - - -
CO (Continental Airlines) - - - - - - - -
FL (AirTran Airways) - - - - - - - -
B6 (JetBlue Airways) New York 33 Boston 32 34.4 66.7 76.0 84.4
F9 (Frontier Airlines) Denver 40 - 9 76.9 92.3 94.2 98.1
AS (Alaska Airlines) Seattle 35 Portland 20 50.0 77.1 85.7 91.4
NK (Spirit Airlines) - - - - 26.0 45.5 59.7 72.7
VX (Virgin America) San Francisco 14 Los Angeles 12 53.8 96.2 100.0 100.0
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Table 3: Estimation of Tech Relationship between One-stop and Nonstop Flight Frequencies

ln(# of one-stop flights) (1) (2) (3)
OLS OLS OLS

ln(# of flights in first leg) .746*** .729*** .746***
+ ln(# of flights in second leg) (.002) (.002) (.002)
Airline FE Yes Yes
City-pair FE Yes
Constant –2.949*** –2.827*** –2.813***

(.021) (.030) (.027)

Pseudo. R2 .764 .774 .796
Obs 2,487,262 2,487,262 2,487,262

Notes: Standard errors are clustered at the airline-market level and displayed
in parentheses. An observation is an origin-connectcity-destination in a quar-
ter for an airline.
***1% significance level.
**5% significance level.
*10% significance level.

A Bankruptcies and Mergers

Some airline bankruptcies and mergers take place during the sample period. I consider four major

mergers: Delta announced a merger with Northwest on Apr. 14th, 2008, completing the transaction

on Dec. 31st, 2009; United Airlines merged with Continental on May. 3rd, 2010, with a closing day

of Oct. 1st, 2010; Southwest controlled AirTran’s assets after AirTran’s bankruptcy on Sep. 27th,

2010. AMR Corporation, the former parent company of American Airlines, completed the merger

with US Airways Group on December 9, 2013. For the analysis, two merging airlines are treated as

the same airline after closing day but as different airlines before closing day. Given this, Northwest

disappears in 2010 Q1; Continental flights are considered United Airlines flights after 2010 Q4; very

few AirTran tickets in 2008 Q2 are considered to be Southwest tickets and US Airway tickets and

operations are considered to be a part of American Airlines after 2014Q1.

B Computation of Consumer Welfare

Consumer welfare is computed according to the following formula

W = σ1ln[
∑
G

(
∑
g

exp(Vg,G))
σ2
σ1 ], (51)

where Vi is the deterministic component of the indirect utility function.
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Table 4: Demand Estimation

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Nonstop-Dummy 1.718*** 1.472*** 2.132*** 1.813*** 2.191*** 2.164***
(.028) (.042) (.010) (.049) (.029) (.029)

ln-Nonstop-Flight-Frequency .752*** .744*** .877*** .871***
(.006) (.010) (.006) (.007)

ln-Onestop-Flight-Frequency .475*** .452*** .568*** .585***
(.004) (.005) (.004) (.005)

ln-Hub-Index-Origin .278*** .360*** .444*** .585***
(.004) (.019) (.004) (.019)

ln-Hub-Index-Dest .354*** .433*** .530*** .661***
(.004) (.018) (.005) (.018)

Distance 2.448*** 2.642*** 1.825*** 2.139*** 2.563*** 2.667***
(.022) (.028) (.022) (.031) (.022) (.028)

Distance-squared –.564*** –.543*** –.486*** –.462*** –.571*** –.563***
(.008) (.008) (.008) (.009) (.008) (.008)

Fare –.394*** –.981*** –.405*** –1.282*** –.352*** –.699***
(.005) (.064) (.005) (.067) (.005) (.061)

Nest .422*** .443*** .480*** .548*** .316*** .425***
(.002) (.019) (.002) (.020) (.002) (.022)

Pseudo. R2 .631 .605 .594 .534 .619 .604
Obs 329448 329448 329448 329448 329448 329448

Notes: All specifications include airline fixed-effects, market fixed-effects and quarter fixed-effects. Standard
errors are clustered at the airline-market-quarter level and displayed in parentheses.
***1% significance level.
**5% significance level.
*10% significance level.
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Table 5: Marginal Cost Estimation

(1) OLS (2) OLS (3) OLS

Nonstop-Dummy –.374*** –.313*** –.375***
(.032) (.009) (.032)

ln-Nonstop-Flight-Frequency –.058*** –.058***
(.007) (.007)

ln-Onestop-Flight-Frequency –.055*** –.055***
(.005) (.005)

ln-Hub-Index-Origin .012 .007
(.022) (.022)

ln-Hub-Index-Dest –.031* –.031*
(.018) (.018)

Distance .164*** .212*** .164***
(.024) (.024) (.024)

Distance-squared .104*** .101*** .104***
(.009) (.009) (.009)

Pseudo. R2 .428 .426 .428
Obs 37,777 37,777 37,777

Notes: All specifications include airline fixed-effects, market fixed-
effects and quarter fixed-effects. Standard errors are clustered at the
airline-market-quarter level and displayed in parentheses.
***1% significance level.
**5% significance level.
*10% significance level.

Table 6: Decomposition of Marginal Variable Profits for an Additional Flight (in $100’s)

Variable Mean Std. Dev.

∆π from Additional Nonstop Service 67.476 99.737
Cannibalization from One-stop Services -2.562 10.472
∆π from Additional One-stop 11.304 22.346
Cannibalization from Nonstop Services -0.682 2.067
Total ∆π 75.536 105.099

Obs. 6934
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Figure 2: Decomposition of Marginal Variable Profit

Table 7: Estimation Result: Marginal Cost of Building Flight Frequency

(1)
MCFF

ln-Hub-Index-Origin .248***
(.020)

ln-Hub-Index-Dest .169***
(.015)

Distance 2.335***
(.017)

Distance-squared –.514***
(.007)

Pseudo. R2 .984
Obs 6934

Notes: All specifications include
airline-city fixed-effects and quar-
ter fixed-effects. Standard errors
are clustered at the airline-market-
quarter level and displayed in paren-
theses.
***1% significance level.
**5% significance level.
*10% significance level.
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Table 8: Entry Cost (in Millions $ a Quarter)

Characteristics Estimates

Gate -22.83
[-23.28,-22.32]

Quarter Estimates

Q1 (Omitted)
-

Q2 1.84
[0.66,2.49]

Q3 -0.75
[-1.62,-0.36]

Q4 -1.06
[-1.33,0.23]

Airline Estimates

WN (Southwest Airlines) 3.67
[2.16,5.06]

DL (Delta Air Lines) -0.05
[-0.85,5.62]

AA (American Airlines) (Omitted)
-

UA (United Airlines) 0.90
[-2.07,1.38]

B6 (JetBlue Airways) 0.20
[-5.17,3.16]

F9 (Frontier Airlines) -1.13
[-6.07,-0.32]

AS (Alaska Airlines) -1.26
[-2.99,0.18]

NK (Spirit Airlines) -0.68
[-2.82,5.38]

VX (Virgin America) -1.64
[-3.49,-0.23]

Obs 21459

Notes: 95% confidence intervals are displayed
in parentheses. Confidence intervals are con-
structed from 500 group samplings.
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Table 9: Goodness of Fit of the Entry Model

Model Prediction

Stay Out Entry Total

Data: Stay Out 11292 3233 14525
Data: Entry 2558 4376 6934

Data: Total 13850 7609 21459

Table 10: Counterfactual Results: Network Structures of AS and VX

Benchmark CT Change

AS VX AS + VX Entry Exit

Nonstop
aNS 258 42 291 32 13
fNS 1722 188 2302 294 50
RevNS 9999 2680 19325 7497 10

One-stop
aOS 52 0 53 1 0
fOS 105 0 132 0 0
RevOS 2080 0 1248 0 0

Variable Profit
π 11371 2066 18580

Note: revenue and profit are measured by million dollars in a quarter.

Table 11: Counterfactual Results: Network Structures of other airlines

Benchmark CT Change

Other Air Other Air Entry Exit

Nonstop
aNS 8953 8955 3 1
fNS 78064 78064 110 20
RevNS 253098 281878 131 28

One-stop
aOS 6012 6012 0 0
fOS 26980 26963 0 0
RevOS 109596 132410 0 0

Variable Profit
π 346273 397955

Note: Revenue and profit are measured by million dollars in a quarter.
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