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Online high utility itemset mining over data streams has been studied recently. However,
the existing methods are not designed for producing top-k patterns. Since there could be a
large number of high utility patterns, finding only top-k patterns is more attractive than
producing all the patterns whose utility is above a threshold. A challenge with finding
top-k high utility itemsets over data streams is that it is not easy for users to determine
a proper minimum utility threshold in order for the method to work efficiently. In this
paper, we propose a new method (named T-HUDS) for finding top-k high utility patterns
over sliding windows of a data stream. The method is based on a compressed tree struc-
ture, called HUDS-tree, that can be used to efficiently find potential top-k high utility item-
sets over sliding windows. T-HUDS uses a new utility estimation model to more effectively
prune the search space. We also propose several strategies for initializing and dynamically
adjusting the minimum utility threshold. We prove that no top-k high utility itemset is
missed by the proposed method. Our experimental results on real and synthetic datasets
show that our strategies and new utility estimation model work very effectively and that
T-HUDS outperforms two state-of-the-art high utility itemset algorithms substantially in
terms of execution time and memory storage.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Frequent pattern mining is an important task in data mining and has been extensively studied by many researchers
[1,14,13]. Given a data set of transactions, each containing a set of items, frequent pattern mining is to find a set of itemsets
whose support (i.e., the number of transactions containing the itemset) is no less than a minimum support count. However,
in frequent pattern mining, the number of occurrences of an item inside a transaction is ignored in the problem setting, so is
the importance (such as price or weight) of an item in the data set. In practice, some items or itemsets with low support in
the data set may bring high profits due to their high prices or high frequencies inside transactions. Obviously, identifying
such itemsets with high profits is important for business planning and operation. However, such itemsets may be missed
by frequent pattern mining.

In view of this, high utility itemset mining has been studied recently [3,6,31,23]. An itemset is a high utility itemset (HUI) if
its utility (such as the total profit that the itemset brings) in a data set is no less than a minimum utility threshold. Finding
high utility itemsets has been considered to be important in various applications, such as retail marketing, web click analysis,
and biological gene analysis [21,20,2]. However, mining HUIs is not as easy as mining frequent itemsets. This is due to the
fact that the utility of an itemset does not have the downward closure property, which would allow effective pruning of
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search space during the HUI mining process. To deal with such a challenge, most of the HUI mining methods use an over-
estimate utility, called transaction weighted utility (TWU) (to be defined in Section 2), to first find itemsets whose TWU is no
less than the minimum utility threshold (called high TWU itemsets) and then compute the exact utilities of high TWU item-
sets to identify those whose utility satisfies the minimum utility threshold. The benefit of using TWU is that TWU has the
downward closure property, which allows the use of Apriori-like or FP-growth-like algorithms in the first phase of HUI
mining to efficiently find high TWU itemsets.

Since data streams have become widespread in many fields, such as sensor network monitoring, trade management, and
medical data analysis, methods for mining HUIs from data streams have been proposed [2,21,20,30]. In comparison to static
data, data streams have some unique properties, such as very fast data arrival rate, unknown or unbounded size of data and
inability to backtrack over previously arriving transactions. To deal with such challenges, a HUI mining method in [2] (named
HUPMS) uses a compact data structure similar to FP-tree [14] to compress the transactions in the data set and uses a pattern
growth method (similar to FP-growth) to efficiently identify all the high TWU itemsets with respect to a minimum utility
threshold. HUIs are then identified from the set of high TWU itemsets after scanning the recent data in a sliding window
for the second time to compute the exact utility of these itemsets. Although the use of TWU allows effective pruning of
the search space due to its downward closure property, it is a very loose estimate of the true utility of an itemset. As a result,
the number of high TWU itemsets found in the first phase of the method can be high and many of them do not satisfy the
minimum utility threshold. Thus, the overall time for finding HUIs can be too long to satisfy the fast data processing require-
ment for data streams.

Another problem with the method in [2] and many other HUI mining methods is that the user needs to supply a mini-
mum utility threshold. However, it is often difficult for the user to specify a minimum utility threshold, especially if the user
has no background knowledge in the application domain. If the threshold is set too low, a large number of HUIs can be found,
which is not only time and space consuming [33], but also makes it hard to analyze the mining results. On the other hand, if
the threshold is set too high, there may be very few or even no HUIs being found, which means that some interesting
patterns are missed.

A solution to this threshold setting problem is to mine top-k high utility itemsets, in which the user supplies k, the num-
ber of HUIs to be returned. A benefit of mining top-k patterns is that it is easier and more intuitive for the user to indicate
how many patterns they would like to see than specifying a utility threshold. In addition, the number of returned patterns
will be under control and the results will not overwhelm the user. A method for top-k HUI mining was proposed very re-
cently in [33]. The method is designed for static data, not for data stream mining. A major challenge in top-k HUI mining
is that the number of itemsets is exponential and it is infeasible to compute the utilities of all the itemsets and identify
the top-k ones. A minimum utility threshold is thus needed in the mining process to prune the search space. The method
proposed in [33] initializes the threshold to 0 or the kth highest value of the lower bounds for the utility of certain 2-item-
sets, and then gradually raise the threshold during the mining process to prune the search space. The authors proposed a few
strategies for raising the threshold. However, their initial threshold is too low and can lead to generation of a large number of
potential HUIs in the first phase of the method. In addition, their method is not designed for data streams.

In this paper, we propose more effective strategies for automatically initializing and dynamically adjusting the minimum
utility threshold for mining top-k high utility itemsets over data streams. Three of our strategies can be applied to both static
and streaming data, and one of them is specially designed for data streams. We use a sliding window based data stream min-
ing method, in which a set of recent data (called a sliding window) is the target of mining. A sliding window consists of a fixed
number of most recent batches, each batch containing a set of transactions. When a new batch arrives, the sliding window
moves forward to include the new batch and at the same time remove the oldest batch if the maximum number of batches in
the window has been reached before the new batch comes. In addition to the new strategies for setting and adjusting the
threshold, we also propose to use another over-estimate utility as the search heuristic for finding HUIs in the first phase
of the top-k HUI mining process. This over-estimate (called prefix utility) is more effective than the most commonly used
TWU in pruning the search space because it is a closer estimate of the true utility than TWU. The contributions of the paper
are as follows:

� We are the first to propose a method for mining top-k high utility itemsets from data streams. To the best of our knowl-
edge, existing methods for mining HUIs over data streams do not address the issue of mining top-k HUIs, and previous
top-k HUI mining methods do not work on data streams.
� We propose several strategies for initializing and dynamically adjusting the minimum utility threshold during the top-k

HUI mining process. We prove that using these strategies will not miss any top-k HUIs.
� We propose an over-estimate of the itemset utility, which is closer to the true utility than TWU. We prove that this esti-

mate (i.e., prefix utility) has a special type of downward closure property, which allows it to be used in the pattern growth
method to effectively prune the search space. Using a closer over-estimate results in fewer candidates being generated in
the first phase of the method.
� We propose an FP-tree-like compact data structure (called HUDS-tree) to store the information about the transactions in a

sliding window. The tree is used to compute the prefix utility and to initialize and adjust the minimum utility threshold.
� We conduct an extensive experimental evaluation of the proposed method on both real and synthetic data sets, which

shows that our proposed method is faster and less memory consuming than the state-of-the-art methods.
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The paper is organized as follows. Preliminary definitions and a problem statement are given in Section 2. In Section 3, we
describe the challenges in solving our problem and define some concepts used in our methods. In Section 4, we present the
HUDS-tree structure and our algorithms for finding top-k HUIs. The experimental results are presented in Section 5. Related
work is discussed in Section 6. In Section 7 we conclude the paper.

2. Preliminaries and problem statement

Let I ¼ fi1; i2; . . . ; img be a set of items and each item ij 2 I is associated with a positive number pðijÞ, called its external util-
ity (which can be the price or profit) of item ij. Let D be a set of N transactions: D ¼ fT1; T2; . . . ; TNg such that for
8Tj 2 D; Tj ¼ fði; qði; TjÞÞji 2 I; qði; TjÞ is the quantity of item i in transaction Tjg. Fig. 1 shows an example of a data set with
six transactions.

Definition 1. Utility of an item i in a transaction Tj is defined as: uði; TjÞ ¼ qði; TjÞ � pðiÞwhere qði; TjÞ is the quantity of item
i in transaction Tj and pðiÞ is external utility of item i.
Definition 2. Utility of an itemset X in a transaction Tj is defined by: uðX; TjÞ ¼
P

i2Xuði; TjÞ.
For example, uðfbcg; T3Þ ¼ 2� 6þ 3� 5 ¼ 27 in Fig. 1.

Definition 3. Utility of an itemset X in a data set D of transactions is defined as: uDðXÞ ¼
P

X # Tj^Tj2D
P

i2Xuði; TjÞ.
We use uðXÞ to denote uDðXÞ when data set D is clear in the context.

Definition 4. Utility of a transaction Tj is denoted as TUðTjÞ and computed as uðTj; TjÞ.

Definition 5. (High Utility Itemset (HUI)) An itemset X is called a high utility itemset (HUI) on a data set D if and only if
uDðXÞP min util where min_util is called a minimum utility threshold.

A challenge in mining high utility itemsets is that the utility of an itemset does not have the downward closure (i.e., anti-
monotone) property. That is, the utility of an itemset does not decrease monotonically when adding items to the itemset and
it changes irregularly. Thus, unlike in frequent itemset mining, we cannot use the utility of an itemset to prune the search
space in high utility itemset mining because a superset of a low utility itemset may be a high utility itemset.

To solve this problem, an over-estimate utility of an itemset (instead of the exact utility) is commonly used in the HUI
mining process to prune the search space. Most of the recent methods use transaction-weighted utility (TWU) as the over-esti-
mate utility.

Definition 6. Transaction-Weighted Utility (TWU) of an itemset X over a data set D is defined as: TWUDðXÞ ¼P
X # Tj

V
Tj2DTUðTjÞ.

Clearly, TWUDðXÞP uDðXÞ. In addition, TWU satisfies the downward closure property, that is, for all Y # X,
TWUDðYÞP TWUDðXÞ. Thus, most of the HUI mining methods (e.g., [21,2]) use the TWU values of the itemsets to prune
the search space. That is, they find all the itemsets whose TWU is no less than the minimum utility threshold. Since
TWUDðXÞ is an overestimate of uDðXÞ, the procedure does not miss any high utility itemset. But the true utility of a generated
itemset may be lower than the minimum utility threshold. Thus, these methods use a second phase to compute the exact
utility of the generated itemsets and remove those whose utility is lower than the threshold.
TID Transaction

T1 (a,1)(c,1)(d,2)

T2 (a,2)(c,6)(e,2)(f,5)

T3 (a,1)(b,2)(c,3)(d,3)(e,1)

T4 (b,4)(c,3)(d,3)(e,2)

T5 (b,2)(c,2)(e,1)(f,2)

T6 (a,2)(f,5)

Item Name a b c d e f

External utility 3 6 5 8 4 3

B1

B2

B3

SW1

SW2

Fig. 1. Example of transaction data base and external utility of items.
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We are interested in mining top-k HUIs in data streams. In a data stream environment, transactions come continually
over time, and they are usually processed in batches. A batch Bi consists of transactions arriving continuously in a time per-
iod, i.e., Bi ¼ fTj; Tjþ1; . . . ; Tmg. For example, assuming that the dataset in Fig. 1 is a data stream and that each batch contains 2
transactions, there are three batches in the stream: B1 ¼ fT1; T2g; B2 ¼ fT3; T4g, and B3 ¼ fT5; T6g.

A sliding window consists of m most recent batches, where m is called the size of window, denoted as winSize. If the first
batch in a sliding window is Bi, the window can be represented as SWi ¼ fBi;Biþ1; . . . ;BiþwinSize�1g. As a new batch forms up in
a data stream, the sliding window removes its oldest batch and adds the new batch to the window. For example, consider the
data stream in Fig. 1. Assume that the winSize is 2. The first two batches form the first sliding window: SW1 ¼ fB1;B2g. When
the third batch B3 is filled up with transactions, the second sliding window is formed: SW2 ¼ fB2;B3g. Data stream mining
over sliding windows is to mine patterns from each new window once a new batch is added into the new window and the
oldest batch is removed from the window. The problem tackled in the paper is defined as follows.

Problem 1. For each sliding window SWi in a data stream, the problem is to find the top-k high utility itemsets in SWi, ranked in
descending order of their utility, where k is a positive integer given by the user.
3. Challenges and new definitions

There are inherent challenges in mining top-k HUIs in data streams. First, since streaming data can come continuously in a
high speed, they need to be processed as fast as possible. As mentioned earlier, the utility of an itemset does not have the
downward closure property, and thus most of the existing HUI mining methods use TWU (an over-estimate of the itemset
utility) as the search heuristic to prune itemsets whose TWU is below the minimum utility threshold. To further speed up the
HUI mining process, we define another over-estimate utility of an itemset, which provides a closer estimation of the true
utility of an itemset than TWU. This over-estimate utility, called Prefix Utility,1 is used in our HUI mining to more effectively
prune the search space.

Definition 7. Prefix Utility of an itemset X in a transaction T. Assume the items in T are ranked in an order (such as the
lexicographic order) and that X # T . The prefix set of X in T, denoted as PrefixSetðX; TÞ, consists of all the items in T that are not
ranked after any item in X. The prefix utility of X in T is defined as:
1 In [
given it
is the s
PrefixUtilðX; TÞ ¼
X

i2PrefixSetðX;TÞ
uði; TÞ
Example 1. In Fig. 1, the prefix set of itemset facg in transaction T3 is fabcg. Thus,
PrefixUtilðfacg; T3Þ ¼ uða; T3Þ þ uðb; T3Þ þ uðc; T3Þ ¼ 3þ 12þ 15 ¼ 30
Definition 8. Prefix Utility of an itemset X in a dataset D is defined as:
PrefixUtilDðXÞ ¼
X

X # Tj

V
Tj2D

PrefixUtilðX; TjÞ
Here we assume that items in all the transactions are ranked in the same order.
Example 2. Let D be the dataset in Fig. 1. Since only T1; T2 and T3 in D contain itemset facg, we have
PrefixUtilDðfacgÞ ¼ PrefixUtilðfacg; T1Þ þ PrefixUtilðfacg; T2Þ þ PrefixUtilðfacg; T3Þ ¼ 8þ 36þ 30 ¼ 74
Property 1. For any itemset X in a dataset D, the following relationship holds:
TWUDðXÞP PrefixUtilDðXÞP uDðXÞ
Lemma 1. Assume that items in all the transactions in a dataset D are ranked in an order. Let X be an itemset and X ¼ Y [ fig
where i is the last item in X in the ranked order. For all Z # Y,
PrefixUtilDðZ [ figÞP PrefixUtilDðXÞ:
17], an over-estimate utility with a similar name, called utility of full prefix extension (Ufpe), was proposed. But it is different from our Prefix Utility. Briefly,
emset X, the Prefix Utility of X in a transaction T is the sum of the utilities of those items in T that occur either before or between the items in X while ufpe

um of the utilities of only the items before X. More discussion on their differences can be found in the related work section.
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Proof 1. Let SX be the set of transactions containing X in a data set D. According to Definition 8, we have
PrefixUtilDðZ [ figÞ ¼ PrefixUtilSX
ðZ [ figÞ þ PrefixUtilD�SX

ðZ [ figÞ:
Since itemset Z [ fig contains the last item in X and Z [ fig# X, we have
PrefixUtilSX
ðZ [ figÞ ¼ PrefixUtilSX

ðXÞ:
Clearly, PrefixUtilSX
ðXÞ ¼ PrefixUtilDðXÞ. Thus,
PrefixUtilDðZ [ figÞ ¼ PrefixUtilDðXÞ þ PrefixUtilD�SX
ðZ [ figÞ:
Since PrefixUtilD�SX
ðZ [ figÞP 0,
PrefixUtilDðZ [ figÞP PrefixUtilDðXÞ: �
This lemma means that the prefix utility of an itemset X has the downward closure property if we only concern the subsets
of X that contain the last item in X in the ranked order. Such a special kind of the downward closure property allows us to use
PrefixUtil to prune search space in our HUI mining algorithm to be described later.
Example 3. Assume that a; b and c are items in a data set and that the items in the data set are ranked in the lexicographic
order. According to Lemma 1, PrefixUtilðfacgÞP PrefixUtilðfabcgÞ and PrefixUtilðfbcgÞP PrefixUtilðfabcgÞ. Thus, if
PrefixUtilðfacgÞ or PrefixUtilðfbcgÞ is less than a minimum utility threshold, PrefixUtilðfabcgÞmust be less than the threshold.
Since PrefixUtilðfabcgÞP uðfabcgÞ;uðfabcgÞ must be less than the threshold.

The second challenge of our problem is in finding top-k patterns. An efficient method for finding top-k patterns is to first
find potential patterns whose (estimated) utility is above a threshold and then identify the top-k patterns from the potential
ones [33]. Since the minimum utility threshold is not given in the top-k problem, a challenge in top-k pattern mining is how
to set up the threshold so that the process generates fewer number of potential patterns that include all the top-k patterns.
To meet this challenge, we propose some strategies for initializing and dynamically raising the minimum utility threshold
during the stream mining process. Below we define minimum transaction utility, which will be used in our strategy for
initializing the threshold.

Definition 9. Minimum Transaction Utility (mtu) of a transaction T is defined as: mtuðTÞ ¼mini2Tðuði; TÞÞ.
For example, in Fig. 1:
mtuðT4Þ ¼minðuðb; T4Þ; uðc; T4Þ;uðd; T4Þ;uðe; T4ÞÞ ¼minð24;15;24;8Þ ¼ 8
Based on the mtu values of the transactions, we define an underestimate utility of an itemset in a data set as follows.

Definition 10. Minimum Transaction Utility (MTU) of an itemset X over a data set D is defined as:
MTUDðXÞ ¼

P
X # T

V
T2DmtuðTÞ.

We use MTUðXÞ to denote MTUDðXÞ when the data set D is clear in the context. For example, for the data set in Fig. 1:
MTUðfbcgÞ ¼ mtuðT3Þ þmtuðT4Þ þmtuðT5Þ ¼ 3þ 8þ 4 ¼ 15
Lemma 2. For any itemset X in a data set D, the following relationship holds: MTUDðXÞ 6 uDðXÞ.
Proof 2. Given itemset X, let SX be the set of transactions in D that contain X. For a transaction T 2 SX , according to
Definitions 9 and 2, we have:
mtuðTÞ ¼ mini2Tðuði; TÞÞ and uðX; TÞ ¼
X

i2X

uði; TÞ
Hence, mtuðTÞ 6 uðX; TÞ. According to Definitions 10 and 3,
MTUSX ðXÞ ¼
X

X # T
V

T2SX

mtuðTÞ 6
X

X # T
V

T2SX

uðX; TÞ ¼ uSX ðXÞ
Since transactions not in SX do not contain X, we have MTUDðXÞ 6 uDðXÞ. h
Lemma 3. The minimum transaction utility of an itemset satisfies the downward closure property. That is, for all
Y # X;MTUðYÞP MTUðXÞ.
Proof 3. Since all the transactions containing an itemset X also contains any subset Y of X;MTUðYÞP MTUðXÞ. h
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The third challenge for mining top-k HUI in streaming data is that there can be a huge amount of data in a data stream.
Thus, use of compact memory data structures is necessary in the mining process. To meet this challenge, a compressed data
structure, called HUDS-tree, is used in our method which can be built with one scan of data. Finding potential patterns is
done based on the information in HUDS-tree. HUDS-tree and our method for finding top-k HUIs are described in the next
section. For convenience, Table 1 summarizes the concepts and notations we define in this paper.

4. T-HUDS: top-k high utility itemset mining over data stream

In this section, we propose an efficient method (called T-HUDS) to find top-k HUIs in data streams without specifying a
minimum utility threshold. T-HUDS works based on a prefix tree, called HUDS-tree (High Utility Data Stream Tree), and
two auxiliary lists of utility values. HUDS-tree dynamically maintains a compressed version of the transactions in a sliding
window. The two auxiliary lists each maintain a utility list of length log2ðkþ 1Þ or k, where k is the number of top-k itemsets
to be returned, and are used to dynamically adjust the minimum utility threshold during the mining process.

4.1. An Overview of T-HUDS Method

The T-HUDS method includes three main steps: (1) HUDS-tree construction: construct a HUDS-tree and two auxiliary lists;
(2) HUDS-tree mining: discover top-k HUIs from the current sliding window; and (3) HUDS-tree update: once a new batch
arrives, inserts the transactions in the new batch into the tree, remove transactions in the oldest batch from the tree if
the sliding window had been filled up, and updates the two auxiliary lists.

Algorithm 1 presents an overview of the proposed method. We assume that the data stream comes in batches. Given a
batch Bi of transactions, k and the sliding window size (winSize), if a HUDS-tree does not exist yet (i.e., the batch is the very
first one), a HUDS-tree is constructed based on the transactions in Bi, and two auxiliary lists, maxUtilList and MIUList, are also
computed or initialized. If a HUDS-tree already exists, the tree and the two auxiliary lists are updated to reflect the addition
or changes of transactions in the sliding window. Once a new window is formed, T-HUDS calls Algorithm 3 to find top-k HUIs
for the new sliding window.

Algorithm 1. T-HUDS
Input: Bi; k;winSize, HUDS-tree
Output: Top-k HUIs
1: if HUDS-tree is empty (i.e., Bi is the very first batch B1) then
2: minTopKUtil0  0
3: Construct a HUDS-tree based on Bi (i.e., B1)
4: Construct the auxiliary list maxUtilList based on the information in the HUDS-tree
5: Initialize the auxiliary list MIUList using the top-k miu values of the items (to be defined in later)
6: else
7: Call Algorithm 5 to update HUDS-tree, maxUtilList and MIUList using Bi and winSize
8: if batch ID i P winSize then
9: Call Algorithm 3 to compute top-k HUIs on the current sliding window with the HUDS-tree, maxUtilList;MIUList and

minTopKUtili�1
10: return Top-k HUIs

Below we first describe how the HUDS-tree is structured and constructed. Then we present our methods for estimating
the minimum utility threshold, our top-k HUI mining algorithm and finally our procedure for updating the HUDS-tree.
4.2. HUDS-tree structure and construction

The structure of HUDS-tree is similar to that of FP-tree [14], UP-tree [31] or HUS-tree [2]. These trees are used to compress a
transaction database into a tree. A non-root node in the trees represents an item in the transaction database, and a path from
the root to a node compresses the transactions that contains the items on the path. Since the FP-tree is used to find frequent
itemsets, a node in an FP-tree mainly stores the frequency of an itemset represented by the path from the root to the node.
The UP-tree is for finding high utility itemsets, and thus its node contains not only frequency but also an estimated utility of
the itemset. The HUS-tree is used for mining high utility patterns over data streams. Thus, its node stores the TWU value of
the itemset for each batch in a sliding window to facilitate the update process. Since we are dealing with data streams as
well, our HUDS-tree is similar to a HUS-tree. But instead of storing TWU values, a node in a HUDS-tree stores the PrefixUtil
of the represented itemset for each batch, which is, as discussed earlier, a closer estimate of the true utility of the itemset
than TWU. In addition, to effectively estimate the minimum utility threshold, a node in HUDS-tree also stores the MTU value
of the itemset for each batch. The node structure of the HUDS-tree is described below.



Table 1
Summary of notations.

Concept Description

uði; TÞ Utility of item i in transaction T
uðXÞ Utility of itemset X in a data set
TWUðXÞ Transaction-Weighted Utility (an over-estimate utility)
HUI High Utility Itemsets
PrefixUtilðXÞ Prefix Utility of itemset X
mtuðTÞ Minimum Transaction Utility of transaction T
MTUðXÞ Minimum Transaction Utility of Itemset X (an underestimated utility)
LPIðXÞ Lowest Profit Item Utility of Itemset X (an underestimated utility)
miuðiÞ Minimum Item Utility of item i in any transaction of a data set
MIUðXÞ Minimum Itemset Utility of Itemset X (an underestimated utility)
maxUtilList List of maximum values of MTUs and LPIs for each level of HUDS-tree
MIUList List of top-k MIU values in potential HUIs
minTopKUtili Minimum Top-k Utility of the ith sliding window
PTKHUI Potential Top-k High Utility Itemset
PTKSet Set of Potential Top-k High Utility Itemsets
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A non-root node in a HUDS-tree contains the following fields: nodeName, nodeCounts, nodePUtils, nodeMTUs and succ. node-
Name is the name of the item represented by the node. The nodeCounts field is an array with winSize elements, where winSize
is the number of batches in the sliding window. Each element in nodeCounts corresponds to a batch in the current sliding
window and registers the number of the transactions in the batch falling onto the path from the root to the node. Let X
be the itemset represented by the path. The nodePUtils field is an array of winSize elements, each corresponding to a batch
and storing the prefix utility of X in the transactions of the batch falling onto the path. Similarly, nodeMTUs is an array of the
minimum transaction utilities (MTU) of X in the transactions falling onto the path for all the batches of the sliding window.
Keeping separate information for each batch facilitates the update process, that is, when a new batch Bi arrives, if the oldest
batch needs to be removed, it is easy to remove the information of the oldest batch and include the information for the new
batch. Finally, succ points to the next node of the tree having the same nodeName.

Example 4. A HUDS-tree, built from the transactions in sliding window SW1 ¼ fB1;B2g in Fig. 1, is illustrated in Fig. 2, where
the winSize is 2 and thus nodeCounts;nodePUtils and nodeMTUs each contains two values. For example, in node
hb : ½0;1�; ½0;15�; ½0;3�i, nodeName is b;nodeCounts holds [0,1], meaning the number of transactions matching path a! b is
0 in B1 and 1 in B2, respectively, and [0,15] and [0,3] are the contents of nodePUtils and nodeMTUs, respectively. Since b
appears only in the second batch, its values for nodeCounts;nodePUtils and nodeMTUs in the first batch are 0. The field succ is
not illustrated for the clarity reason.
Link Item PrefixUtil

a 12

b 39

c 113

d 141

e 173

f 59

root

a:[2,1],[9,3],[9,3]

b:[0,1],[0,15],[0,3]

c:[0,1],[0,30],[0,3]

c:[2,0],[44,0],[9,0]

d:[1,0],[24,0],[3,0]

e:[1,0],[44,0],[6,0]

f:[1,0],[59,0],[6,0]

Level maxUtil

1 12

2 9

3 8

maxUtilList:

d:[0,1],[0,54],[0,3]

e:[0,1],[0,58],[0,3]

b:[0,1],[0,24],[0,8]

c:[0,1],[0,39],[0,8]

d:[0,1],[0,63],[0,8]

e:[0,1],[0,71],[0,8]

Fig. 2. HUDS-tree after inserting transaction in SW1 in Fig. 1.
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Each item has an entry in the header table of the HUDS-tree. An entry in the header table contains the name of the item,
the PrefixUtil value of the item in the transactions represented by the tree and a link pointing to the first node in the HUDS-
tree carrying the item. The PrefixUtil value of an item is computed by adding up all the nodePUtils values of the nodes labeled
with the item in the tree.

Algorithm 2. Insert Transaction into HUDS-tree
Input: Transaction T; rootNode; idx; batchNumber
Output: Updated HUDS-tree, maxUtilList
1: let itemidx be the idxth item in T
2: if 9 node 2 the children of the rootNode & nodeNameðnodeÞ ¼ itemidx then

3: node:nodePUtils½batchNumber�þ ¼
Pidx

j¼1uðitemj; TÞ
4: node:nodeCounts½batchNumber� þ þ
5: node:nodeMTUs½batchNumber�þ ¼ MTUðTÞ
6: else
7: node:nodeName itemidx

8: node:nodePUtils½batchNumber�  
Pidx

j¼1uðitemj; TÞ
9: node:nodeCounts½batchNumber�  1
10: node:nodeMTUs½batchNumber�  MTUðTÞ
11: add node as a child node of rootNode
12: update the idxth element, maxUtilidx, in the maxUtilList
13: if idx – the length of T then
14: Algorithm 2ðT;node; idxþ 1; batchNumberÞ
15: HUDS�Tree rootNode
16: return HUDS�Tree;maxUtilList

Given the first batch B1 of transactions, a HUDS-tree is constructed as follows. For each transaction in B1, we first order the
items in the transaction in an order (such as the lexicographic order or the descending external item utility order),2 and then
insert the items into the HUDS-tree in the way similar to building an FP-tree [14]. For example, for the first item item1 in a trans-
action T in B1, if a node with the same item name is not found under the root, a new child is created and its fields are initialized
as follows: nodeName ¼ item1, nodePUtils½1� ¼ uðitem1; TÞ;nodeCounts½1� ¼ 1;nodeMTUs½1� ¼ MTUðTÞ. If the node with the item
name already exists under the root, its fields for the current batch are updated. Details of the procedure for inserting one trans-
action T in batch Bi into the HUDS-tree are presented in Algorithm 2.3 In the algorithm, the input parameter batchNumber should
be given a value of i%winSizeþ 1, where i is the ID of the current batch Bi in the data stream and % is the modulo operator which
returns the remainder of dividing i by winSize. For example, if i ¼ 2 or winSizeþ 2; batchNumber is 2. The algorithm is a recursive
algorithm. Each call to the algorithm ‘‘inserts’’ one item of the input transaction T into the tree. The input parameter idx indi-
cates which item in T is being ‘‘inserted’’. idx is initialized to 1 for each transaction. Clearly, the tree can be built with one scan of
the data in Bi.

Before we describe how to mine HUIs from a HUDS-tree and how to update the tree with new batches, we first present our
method for estimating the minimum utility threshold.

4.3. Estimation of minimum utility threshold

Our objective is to find top-k high utility itemsets. Since the number of itemsets is exponential with respect to the number
of items in the data, it is infeasible to enumerate all the itemsets, find their utilities in the sliding window and outputs the
top-k highest utility itemsets. An efficient procedure for finding top-k itemsets is to first use an efficient method to find po-
tential itemsets whose utility is above a threshold and then identify the top-k itemsets from the potential ones [33]. To do
this, a proper minimum utility threshold is needed in the first phase of the procedure. If the threshold is set too low, many
unwanted HUIs are produced, which is time-consuming. If it is set too high, we may not be able to produce k itemsets. A good
2 In our experiments we sort the items in each transaction lexicographically. According to [16], sorting items based on their frequency in the database may
give the most compact tree structure. But they also showed that using the other orders (i.e., the alphabetical order) does not affect the size of the FP-tree
significantly. Since sorting the items based on either frequency or TWU needs to scan the database one more time to determine frequencies or TWU of each item
in the database, we use the alphabetical order to avoid this additional scan. Given an order, items in each transaction can be sorted efficiently using one of the
fastest and commonly-used sorting algorithms such as the quick sort algorithm. The average time complexity of sorting a transaction with quick sort is
O(m logðmÞ), where m is the average length of the transactions. In terms of memory usage, the extra space needed for sorting a transaction with quick sort is
O(logðmÞ) on average.

3 In this algorithm, the way we calculate nodePUtils is similar to the strategy DNU in [29,31].
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strategy for setting the threshold should satisfy the following conditions: (1) it should not miss any top-k HUIs and (2) the
estimated threshold should be as close as possible to the utility of the kth highest utility itemset.

In our method, we use four strategies to initialize and dynamically adjust the threshold during the mining process. These
strategies lead to significant pruning of search space. Below we describe three strategies, which will be used in the first phase
of our mining method.4 The fourth strategy (to be used in the second phase) will be described in Section 4.4.2.

4.3.1. Initializing the threshold using maxUtilList
In a HUDS-tree, the nodeMTUs field of a node n stores the MTU values of the itemset represented by the path from the root

to n in the set of transactions falling onto the path in each batch separately. The MTU value of the itemset in the transactions
on the path in the sliding window can be easily calculated by summing up all the values in nodeMTUs of node n. We use
nodeMTUðnÞ to denote this sum. Similarly, nodeCountðnÞ is used to denote the count of the itemset in the set of the transac-
tions falling on the path in the whole sliding window. Now we are ready to define the maxUtilList.

Definition 11. (Maximum Utility List (maxUtilList)) of a HUDS-tree is a list of length d:
4 Not
respect
maxUtilList ¼ fmaxUtil1; . . . ;maxUtildg
where d is the depth of the HUDS-tree and maxUtili is computed based on the nodes on the ith level of the tree as follows:
maxUtili ¼ max
j
fmaxðminProfitðnodei;jÞ � nodeCountðnodei;jÞ;nodeMTUðnodei;jÞÞg
where nodei;j is the jth node in level i of the tree, minProfitðnodei;jÞ ¼ minfpðitemÞjitem 2 Xgwhere pðitemÞ is the external util-
ity of the item and itemset X is formed by the path from the root to nodei;j in the tree, nodeCountðnodei;jÞ is the sum of the
counts in the nodeCounts field of nodei;j (i.e., the total number of transactions in the sliding window that have prefix X),
and nodeMTUðnodei;jÞ is sum of the values in the nodeMTUs field of nodei;j (i.e., the total MTU value of itemset X in all the
transactions of the sliding window that have prefix X).

For example, assume that the root is at level 0 in Fig. 2. The level 2 has one b node and two c nodes. maxUtil2 is thus
computed as:
maxUtil2 ¼ maxfmaxð3� nodeCountðbÞ; nodeMTUðbÞÞ;maxð3� nodeCountðcÞ;nodeMTUðcÞÞ;maxð5� nodeCountðcÞ;nodeMTUðcÞÞg
¼ maxfmaxð3� 1;3Þ;maxð3� 2;9Þ;maxð5� 1;8Þg ¼ 9:
Lemma 4. Let utilk be the utility of the kth itemset in the top-k high utility itemset list. utilk is no less than maxUtilL where
L ¼ dlog2ðkþ 1Þe.
Proof 4. Let’s call nodeCountðnodei;jÞ �minProfitðnodei;jÞ Lowest Profit Item utility (LPI) of the itemset X formed by the path
from the root to nodei;j in the set S of transactions represented by the path. Clearly, LPIðXÞ is another underestimate of the
utility of X in S, i.e., LPIðXÞ 6 uðXÞ on S. Also, for all Y # X; LPIðYÞP LPIðXÞ on S.

Let nodeL;j be a node on level L of the tree, XL;j denote the itemset formed by the path from the root to nodeL;j, and SL;j

denote the set of transactions falling onto the path. Assume that nodeL;j is the node with maxUtilL, that is, maxUtilL is either
nodeMTUðnodeL;jÞ (i.e., MTUðXL;jÞ on SL;j) or LPIðXL;jÞ on SL;j.

Assume that Y is a subset XL;j. According to Lemma 3, MTUðYÞP MTUðXL;jÞ on set SL;j. According to Property 2,
uðYÞP MTUðYÞ on SL;j. Similarly, uðYÞP LPIðYÞP LPIðXL;jÞ on SL;j. Thus,
uðYÞP maxðnodeMTUðnodeL;jÞ; LPIðXL;jÞÞ ¼ maxUtilL:
Since uðYÞ on the entire data set represented by the tree is no less than uðYÞ on SL;j. Thus, uðYÞ on the entire data set is no less
than maxUtilL.

Since nodeL;j is at level L of the tree, XL;j contains L items (assuming the root is at level 0). Thus, XL;j has 2L � 1 subsets.
Thus, there are at least 2L � 1 itemsets whose utility is no less than maxUtilL.

If L ¼ dlog2ðkþ 1Þe, we have
L P log2ðkþ 1Þ ) 2L P kþ 1) 2L � 1 P k
Thus, there are at least k itemsets with utility higher than or equal to maxUtilL. Thus, utilk is no less than maxUtilL. h

Lemma 4 declares that maxUtilL can be used to set the minimum utility threshold for finding top-k HUIs, where
L ¼ dlog2ðkþ 1Þe. No top-k HUIs can be missed with such a threshold. Intuitively, maxUtilL is the maximum value among
the nodeMTU values and LPI values of the nodes on level L of the tree.
e that two of the three strategies, namely the use of maxUtilList and the use of minTopKUtil of the last window to be described in Sections 4.3.1 and 4.3.3
ively, are completely novel, while the other one (i.e., the use of MIUList to be described in Section 4.3.2) is inspired by a strategy used in [33].
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The maxUtilList can be computed while constructing and updating the HUDS-tree. If k is fixed, only maxUtilL needs to be
computed in the list; otherwise, the values of maxUtili for all the levels are maintained.

4.3.2. Adjusting the threshold using MIUList
MIUList is another list that we maintain to dynamically adjust the minimum utility threshold. It keeps the top-k minimum

itemset utility (MIU) values of current potential high utility itemsets. Below we first define the concept of MIU [33]:

Definition 12. Minimum Item Utility of an item a in any transaction of a dataset D is defined as: miuDðaÞ ¼ uða; TqÞwhere
Tq 2 D and – 9 Tp 2 D such that uða; TpÞ < uða; TqÞ.
Definition 13. Minimum Itemset Utility of an itemset X in a dataset D is defined as:
MIUDðXÞ ¼
X

ai2X

miuDðaiÞ � SCDðXÞ where SCDðXÞ is support count of X in D:
We use MIUðXÞ to denote MIUDðXÞ when the data set D is clear in the context.
Property 2. For any itemset X in dataset D;MIUDðXÞ 6 uDðXÞ.
The miu value of an item can be computed during the HUDS-tree construction and update. It can be stored in the global

header table of the HUDS-tree. The MIU value of an itemset can be computed based on the miu values of its elements and the
support count of the itemset (maintained in the nodeCounts fields). In [33], the MIU values of itemsets are used to raise the
minimum support threshold during the HUI mining process. But they may not be used properly. We use them to adjust the
minimum utility threshold by maintaining a minimum itemset utility list defined as follows.

Definition 14. Minimum Itemset Utility List (MIUList) Given a set of already-generated HUIs, MIUList contains the top-k
list of the MIU values of these HUIs, ranked in MIU-descending order, denoted as MIUList ¼ fMIU1;MIU2; . . . ;MIUkg, where
MIU1 P MIU2 . . . P MIUk.
Lemma 5. Let MIUk be the kth member of MIUList and utilk be the utility of the kth highest utility itemset in the top-k HUI list. utilk

is no less than MIUk.
Proof 5. Assume that the MIUi values in MIUList are the MIU values of itemsets X1;X2; . . . Xk, respectively. According to
Property 2, we have:
8Xi 2 fX1;X2; . . . Xkg; MIUðXiÞ 6 uðXiÞ
According to the Definition 14, MIUk is the smallest value in the MIUlist. Thus, there are at least k itemsets whose utility is no
less than MIUk. h

According to this lemma, if the minimum utility threshold is set to MIUk, no top-k HUI will be missed. Thus, we have the
following strategy for adjusting the threshold. Once the HUDS-tree is built or updated for a sliding window SWi; MIUList is
initialized to the top-k highest miu values of single items. During the process of mining HUIs for window SWi, once a new
potential HUI is generated, its MIU is compared with the current MIUk. If it is greater than the current MIUk, the new MIU
value is inserted into the MIUList. If the new MIUk is greater than the current minimum utility threshold, then the threshold
can be raised to the new MIUk.

4.3.3. Adjusting the threshold with minTopKUtil of last window
Our third strategy for adjusting the minimum utility threshold is to make use of the utility values of the top-k HUIs in the

last sliding window. For this, we define the minimum top-k utility (minTopKUtil) of a sliding window as follows.

Definition 15. Let SWi ¼ fBi;Biþ1; . . . ;BiþwinSize�1g be the ith sliding window and let TopkHUISeti denote the set of top-k HUIs
in window SWi. The minimum top-k utility of a sliding window SWi is defined as:
minTopKUtili ¼ min
itemset2TopkHUISeti

XiþwinSize�1

j¼iþ1

uBj
ðitemsetÞ
In other words, the minTopKUtil of sliding window SWi is the minimum of the utilities of the itemsets in TopkHUISeti in
the last winSize� 1 batches of SWi.
Lemma 6. Let utilk be the utility of the kth highest utility itemset over sliding window SWiþ1, and minTopKUtili be the minimum
top-k utility of window SWi. We have utilk P minTopKUtili.
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Proof 6. Let B be the union of last winSize� 1 batches in window SWi. Then the next sliding window SWiþ1 ¼ B [ Bnew where
Bnew is the new batch in SWiþ1. Since B � SWiþ1, for each itemset X in TopkHUISeti;uBðXÞ 6 uSWiþ1 ðXÞ. Since
minTopKUtili 6 uBðXÞ for all X 2 TopkHUISeti and there are k itemsets in TopkHUISeti, there are at least k itemsets whose util-
ity in SWiþ1 is at least minTopKUtili. h

According to this lemma, if the minimum utility threshold in window SWiþ1 is set to minTopKUtili, no top-k high utility
itemsets will be missed.

The minTopKUtili value is computed during the second phase of our procedure for mining top-k HUIs from sliding window
SWi, which is to be described in Section 4.4.2.

4.4. Mining top-k high utility itemsets

After a HUDS-tree is built or updated for a sliding window SWi, we use a 2-phase procedure to find top-k HUIs in SWi. In
the first phase, the HUDS-tree is mined to generate a set of potential top-k high utility itemsets (i.e., PTKHUIs) that satisfy a
dynamically-changing minimum utility threshold. In the second phase, the exact utilities of the PTKHUIs are computed and
the top-k high utility itemsets are returned.

Algorithm 3. Top-k HUI Mining
Input: HUDS-Tree;maxUtilList;MIUList, minTopKUtili�1; k; SWi

Output: TopkHUISet, minTopKUtili
1: L dlogðkþ 1Þe
2: min util maxfmaxUtilL;MIUk;minTopKUtili�1g
3: Generate a set of potential top-k HUIs (PTKSet) by calling Algorithm 4 with min util. The min util is also dynamically

updated in Algorithm 4
4: Scan the transactions in the current sliding window SWi to obtain uSWi

ðitemsetÞ and uSWi�Bi
ðitemsetÞ for each itemset

in PTKSet, where Bi is the first batch in SWi.
5: TopkHUISet ;
6: for each itemSet 2 PTKSet do
7: if uSWi

ðitemSetÞP min util then
8: Insert hitemSet;uSWi

ðitemSetÞi into TopkHUISet so that the elements in TopkHUISet are ranked in the utility-
descending order

9: if the size of TopkHUISet > k then
10: Remove the last element from TopkHUISet
11: if uSWi

ðlastItemSetÞ > min util where lastItemSet is the current last itemset in TopkHUISet then
12: min util uSWi

ðlastItemSetÞ
13: minTopKUtili  minfuSWi�Bi

ðitemsetÞjitemset 2 TopkHUISetg
14: return TopkHUISet; minTopKUtili

This 2-phase procedure is shown in Algorithm 3. At the beginning of the procedure, we initialize the minimum utility
threshold, min util, according to the strategies proposed in Section 4.3 as follows:
min util ¼ maxfmaxUtilL;MIUk;minTopKUitli�1g:
where minTopKUitli�1 is the minimum top-k utility of the last sliding window (initialized to 0 in Algorithm 1 if the new batch
is the first one), maxUtilL is the Lth element in maxUtilList (where L is computed in Line 1), and MIUk is the kth element of the
MIUList that initially contains the list of the top-k minimum item utilities (miu) of single items.

With this initial min util threshold, Algorithm 4 is called to find PTKHUIs from the HUDS-tree (Line 3). This is the first
phase of the top-k procedure. The second phase (from Line 4 to the end) finds exact top-k HUIs from the set of PTKHUIs.
Below we describe each phase in detail.

4.4.1. Phase I: Discover PTKHUIs from HUDS-tree
In Phase I, a set of potential top-k HUIs (PTKHUIs) is found from the HUDS-tree. Our objective in this phase is to find as few

PTKHUIs as possible (so that the second phase will be faster) while not missing any top-k HUIs. Our procedure for this phase
follows a pattern growth approach, similar to FP-growth [14] and HUPMS [2]. The major differences between our Phase I pro-
cedure and the others are as follows. First, we use both PrefixUtil and local TWUs to prune the search space, while others for
HUI mining mainly use TWU. Second, we use effective strategies for initializing and dynamically adjusting the min util
threshold during the mining process.
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Algorithm 4. HUDS-tree mining to generate PTKHUIs (Phase I)

Input: HUDS-Tree, itemset X;min util, MIUList; k
Output: PTKSet;min util;MIUList
1: for each item t in the header table of HUDS-tree do
2: if PrefixUtilðtÞP min util then
3: Generate a potential top-k itemset: IS ftg [ X
4: Add IS into the PTKSet set
5: if MIUSWi

ðISÞP min util then
6: Insert MIUSWi

ðISÞ into the MIUList
7: min util MIUk

8: Pattern baseIS  all prefix paths of the nodes for item t with their utilities
9: Prune all items in the Pattern baseIS whose TWU in Pattern baseIS is less than min util.
10: Construct conditional HUDS�TreeIS and its header table
11: if HUDS-TreeIS is not empty then
12: call Algorithm 4(HUDS-TreeIS; IS;min util, MIUList; k)
13: return PTKSet; min util; MIUList

The pseudocode of the HUDS-tree mining procedure is described in Algorithm 4. Like FP-growth, the algorithm is a recur-
sive algorithm. In the first call to the procedure, the input HUDS-tree is the global tree, and the itemset X in the input list is
empty. In a recursive call, the input tree is the X-conditional HUDS-tree where X is a non-empty itemset. The algorithm works
as follows. For each item t in the (conditional) header table, the algorithm checks if the PrefixUtil of t satisfies the min util
threshold (Line 2). If yes, a potential top-k HUI IS is generated by extending X with item t. IS is then added into the potential
top-k HUI set (i.e., PTKSet). Then, the min util threshold is adjusted in lines 5–7. If MIU (IS) is more than the current min util,
the MIU value is inserted into MIUList and min util is raised by the minimum value of MIUList. MIUðISÞ can be computed easily
because SCSWi

ðISÞ can be computed using the nodeCounts fields of the t nodes and the miu values of all the items have already
been computed when building the global HUDS-tree.

After IS is generated, to find longer PTKHUIs containing IS, IS-conditional pattern base (Pattern baseIS) is built by enumer-
ating all the prefix paths of the t nodes in the tree. The utility of each prefix path is the sum of the values in the nodePUtils
field of the t node in that path. Each item’s local TWU value can then be computed by adding up the utilities of the prefix
paths it is in. In Line 9, we eliminate items in the conditional pattern base whose local TWU is less than the min util threshold.
After that, the IS-conditional HUDS-tree is constructed based on the conditional pattern base with the remaining items. At the
end of tree construction, all the nodePUtils values of nodes with the same nodeName in the conditional tree are added and the
result is added to local header table as the PrefixUtil value of the item. Once a conditional tree is built, Algorithm 4 is called
recursively to discover longer PTKHUIs ending with IS.

In the performance evaluation section, we will show that this pattern-growth procedure generates fewer potential top-k
HUIs and has less overall run time than the state-of-the-art algorithms for high utility itemset mining. This is due to the use
of the prefix utility in pruning the search space and also the dynamical increase of min util during the mining process.

4.4.2. Phase II: Identifying top-k HUIs from PTKHUIs
HUDS-tree is a compact representation of the transactions in a sliding window. It allows the use of the pattern growth

method to efficiently find the potential top-k HUIs. However, since the quantity of an item inside a transaction may vary
among transactions, the exact utility of an itemset cannot be obtained from the HUDS-tree. Thus, in this second phase, we
scan the transactions in the current sliding window to obtain the exact utility of each potential top-k HUI, and then identify
the top-k HUIs based on the true utility of the PTKHUIs.

The second phase procedure is shown in Lines 4–12 of Algorithm 3. In Line 4, it scans the transactions in the current
sliding window SWi to obtain the exact utility of each itemset in PTKSet in SWi and also the exact utility of each itemset
in the last winSize� 1 batches of SWi. From Line 6 to Line 12, top-k HUIs are identified using a selected insertion sort, in which
only the itemsets whose utility is no less than min utility are inserted to the top-k list (denoted as TopkHUISet). TopkHUISet is
maintained to have no more than k elements, ranked in utility-descending order. In addition, if TopkHUISet contains k
elements, min util is adjusted dynamically to be the utility of the kth itemset in TopkHUISet (Lines 11 and 12). We call this
adjustment our fourth strategy for increasing the min util threshold.

Finally, in Line 13 of the algorithm, the minimum top-k utility of the current sliding window (SWi) is set to minimum
utility value of the itemset in TopkHUISet in the last winSize� 1 batches of SWi. This is for adjusting the min util threshold
for mining tip-k HUIs in the next sliding window SWiþ1.

Theorem 1. Given a sliding window SWi, if X is among the top-k high utility itemsets, it is returned by Algorithm 1.
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Proof 7. We prove the theorem by showing that the min util in our algorithm is never over the exact utility of the kth highest
utility itemset in the current sliding window, and also that our HUDS-tree mining procedure does not prune out any itemset
whose true utility is greater than min util.

Let utilk be the exact utility of the kth highest utility itemset for sliding window SWi. In our algorithms, the min util is set
or adjusted in the following three places:
� In Line 2 of Algorithm 3:
min util ¼ maxfmaxUtilL;MIUk;minTopKUtili�1g
where L ¼ dlog2ðkþ 1Þe. According to Lemmas 4–6, maxUtilL 6 utilk;MIUk 6 utilk and minTopKUtili�1 6 utilk. Thus,
min util is no larger than utilk.
� In Lines 5–7 of Algorithm 4, min util is dynamically adjusted to MIUk, which is the kth highest MIU value of the

already generated potential top-k HUIs. According to Lemma 5, MIUk 6 utilk. Thus, min util 6 utilk.
� In Lines 11–12 in Algorithm 3, min util is dynamically adjusted to the lowest utility of the current top-k HUI set. Thus,

min util is no larger than utilk.

Below we show that our HUDS-tree mining procedure for generating potential top-k HUIs (i.e., Algorithm 4) does not miss
any top-k HUIs. There are two places where we prune the search space in Algorithm 4.
� In Line 2, if the PrefixUtil of an item t is less than min util, item t will not be added to itemset X to form longer HUI
containing ftg [ X. The PrefixUtil of t in the (conditional) header table is actually PrefixUtilðftg [ XÞ (according to how
it is computed). Assume X ¼ Y [ fig where i is the last item in X in the item order for building the HUDS-tree. Then
ftg [ X ¼ ftg [ Y [ fig. According to Lemma 1, PrefixUtilðftg [ Y [ figÞP PrefixUtilðS [ ftg [ Y [ figÞwhere S is a set of
items containing the items ranked before t in the item order for building the tree. Thus, if
PrefixUtilðftg [ Y [ figÞ < min util, PrefixUtilðS [ ftg [ Y [ figÞ < min util. This means that if the PrefixUtil of t in the
header table is less than min util, there is no need to check any itemsets whose ‘‘suffix’’ is ftg [ X.

� In Line 9 of the algorithm, we prune out all the items whose local TWU is less than min util. Since TWU has the down-
ward closure property, the pruning does not miss any itemsets whose TWU is no less than min util.

Both PrefixUtil and TWU are over-estimates of the true utility of an itemset. If an over-estimate is less than min util, the
true utility must be less than min util. Thus, if an itemset is pruned by PrefixUtil or TWU, its true utility must be less than
min util. Thus, no itemsets whose utility P min util is pruned by the algorithm. Since min util is never over utilk, no top-k HUI
is missed by our algorithms. h

The following example illustrates how the proposed strategies are applied during the mining process.

Example 5. Given the transactions in Fig. 1, let winSize ¼ 2 and k ¼ 5. Once the first window arrives, a complete HUDS-
Tree is constructed (Fig. 2). Since no candidate is generated before learning from the first window, MIUList is initialized
by the five most largest miu values of the items. Therefore, MIUList ¼ f16;15;12;5;4g. Also, maxUtilList is built during
the tree construction and updating: maxUtilList ¼ f12;9;8g, where the length of maxUtilList is dlog2ðkþ 1Þe ¼ 3. Since this
window is the first window, minTopKUtil0 ¼ 0. Thus, the initial minimum utility threshold (minUtil) is computed as
follows:
minUtil ¼maxðmaxUtil3;MIU5;minTopKUtil0Þ ¼maxð8;4;0Þ ¼ 8
During the candidate generation in Algorithm 3, MIUList is updated based on the miu values of each new candidate. At the
end of candidate generation, MIUList ¼ f48;40;38;37;36g. minUtil is then updated to 36 (minUtil ¼ maxð8;36;0Þ). After the
second phase the first set of top-5 high utility itemsets are discovered as follows:
fðbcd;114Þ; ðcd;99Þ; ðbcde;126Þ; ðcde;90Þ; ðbde;96Þg
Next, we compute the minimum Top-k utility of the 1st sliding window (minTopKUtil1) as follows. The exact utilities of
top-5 high utility itemsets in the first sliding window are:
fðbcd;114Þ; ðcd;78Þ; ðbcde;126Þ; ðcde;90Þ; ðbde;95Þg
Hence, minTopKUtil1 ¼ 78. This value is used to help initialize the minimum utility threshold (minUtil) for the next sliding
window. The process of initializing and updating minUtil for the second and later sliding windows is the same as the one
for the first window.
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Algorithm 5. HUDS-tree-Update
Input: HUDS-Tree, new batch Bi; k
Output: HUDS-Tree;maxUtilList;MIUList
1: batchNumber i%winSizeþ 1
2: for each node in HUDS-tree do
3: nodeCounts½batchNumber�  0
4: nodePUtils½batchNumber�  0
5: nodeMTUs½batchNumber�  0
6: if 8i (1 6 i 6 winSize) nodePUtils½i� ¼ 0 then
7: remove the node and its subtree from the tree
8: for every T 2 Bi do
9: fHUDS-Tree;maxUtilListg  Algorithm 2(T, HUDS-Tree, root of HUDS-Tree, 1; batchNumber)
10: update the miu value of each item in T
11: Update the PrefixUtil value of each item in the header table by summing up all the values in the nodePUtils fields of

all the nodes for the item in the tree.
12: Update MIUList by (1) computing the MIU value of each item in the header table using the miu value of the item and

the nodeCounts values in all the nodes for the item and (2) select the top-k MIU values.
13: return HUDS-Tree;maxUtilList;MIUList

When a new batch of transactions arrives, the HUDS-tree needs to be updated to represent the transactions in the new
sliding window. This involves removing from the tree the information of the oldest batch in the last window (if the last
window was full) and adding to the tree the transactions in the new batch. Algorithm 5 describes this update process.

In Line 1, the index of the batch in the tree node fields is computed as batchNumber ¼ i%winSizeþ 1, where i is the new
batch ID (assuming the very first batch in the data stream is B1), and winSize is the maximum number of batches in a sliding
window. The information about the new batch will be put into the batchNumberth slots in the nodeCounts;nodePUtils and
nodeMTUs fields of the tree nodes. In Lines 2–8, if the new batch ID (i.e., i in Bi) is greater than the size of the sliding window
(which means that the last sliding window was full), then the information about the oldest batch is removed by changing
nodeCounts½batchNumber�, nodePUtils½batchNumber� and nodeMTUs½batchNumber� in each node to zero. If the sum of the val-
ues in nodePUtils for all the remaining batches is zero in a node, the node and the subtree rooted at the node are removed
(Line 7). Then, the transactions in the new batch are inserted into the tree one by calling Algorithm 2. batchNumber is passed
to Algorithm 2 so that the information about the new batch will be stored the batchNumberth slots in the node fields. In Algo-
rithm 2, maxUtilList is also updated. After all the transactions are inserted into the tree, the prefix utilities of each item is
updated in Line 12. Finally, the MIUList is updated as described in Line 13.

5. Performance evaluation

In this section, the proposed method for finding top-k high utility itemsets over data stream is evaluated. All the algo-
rithms are implemented in Java. The experiments are conducted on an Intel (R) Core (TM) i7 2.80 GHz computer with
4 GB of RAM.

5.1. Datasets and performance measures

Four datasets are used in our experiments. The first one is Connect-4 from the UC-Irvine Machine Learning Database
Repository [5]. It is compiled from the Connect-4 game state information. The total number of transactions is 67,557, while
each transaction is with 43 items. It is a dense dataset with a lot of long itemsets. The second dataset is the IBM synthetic
dataset T10I4D100K [11], where the numbers after T; I, and D represent the average transaction size, average size of maximal
potentially frequent patterns, and the number of transactions, respectively. The other two datasets are BMS-POS and Chain-
Store. BMS-POS contains several years worth of point-of-sale data from a large electronics retailer [11]. ChainStore is a dataset
with over a million transactions, obtained from [28]. Table 2 shows details of the datasets. The ChainStore dataset already
contains external utilities of the items and the frequency of each item in a transaction. But the three other datasets do
not provide external utility or the quantity of each item in each transaction. Hence, we randomly generated these numbers
using a method described in [2] as follows. The external utility of each item is generated between 1 and 10 by using a log-
normal distribution and the quantity of each item in a transaction is generated randomly between 1 and 10. batchSize in
Table 2 shows how many transactions are in a batch. It is set in the same way as in [2] so that each data set has around
10 batches. The last column, winSize, shows the number of batches in a sliding window. We will later change the winSize
setting to show the effect of winSize on performance measures.



Table 2
Details of the datasets.

Dataset # Trans. # Items Avg.Length batchSize winSize

Connect-4 67,557 132 43 10,000 3
IBM 100,000 870 10.1 10,000 5
BMS-POS 515,597 1,657 6.53 50,000 4
ChainStore 1,112,949 46,086 7.2 100,000 6
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We use the following performance measures in our experiments: (1) number of generated candidates: the total number of
generated PTKHUIs at the end of phase I among all the sliding windows, (2) Threshold, the threshold value obtained at the
end of execution, (3) Run Time: the total execution time of a method over all the sliding windows, (4) First Phase Time: the
total run time of a method for phase I (generating PTKHUIs) over all the windows, (5) Second Phase Time: the total run time of
a method for phase II (finding Top-HUI set) over all the windows, (6) Memory Usage: the memory consumption of a method,
average over all the sliding windows.

5.2. Methods in comparison

To the best of our knowledge, there does not exist a top-k high utility itemset mining method over data streams. Hence,
two modified approaches are implemented as comparison methods. The first one is the method proposed in [33] which dis-
covers top-k high utility itemsets from a static data set based on the UP-Growth method [31]. Since this method is not appli-
cable to data streams, we run this method on each sliding window individually, and collect the aggregated values for the
performance measures. This method is named TKU. TKU has different versions, each employing a different set of thresh-
old-raising strategies [33]. Here we use TKU by employing all of the proposed strategies for raising the threshold. TKU is able
to set up its initial threshold to either 0 or the kth highest value of the lower bounds for the utility of certain 2-itemsets. Note
that we need to scan the data set twice to compute them before mining starts, which is not suitable for data stream mining.
As will be observed, the obtained threshold using this method is better sometimes.

The second method that we compare our method with is the HUPMS algorithm [2], which discovers all the high utility
itemsets over data streams given a user-input minimum utility threshold. To compare with the top-k mining methods,
we run the HUPMS algorithm with a minimum utility threshold being the threshold raised at the end of the Phase I execution
of the basic version of TKU [33]. This is a fair choice of the threshold because a too low threshold would certainly make
HUPMS very time-consuming, and a too high threshold would unfairly favor HUPMS in terms of run time. We denote this
HUPMS method that uses a threshold from TKU as HUPMST in our results.

In order to see the effect of using PrefixUtil to prune the search space in comparison to other over-estimate utility mea-
sures, we compare our performance of PrefixUTil with TWU and the model proposed by [31] in terms of HUI mining with
different user-specified minimum utility thresholds. In such a comparison, we do not use any threshold-raising strategies
in T-HUDS, but let it return all the HUIs satisfying the input utility threshold.

To see how effective our threshold-setting/raising strategies is in the first phase of the method, we use two versions of our
T-HUDS method to compare with TKU and HUPMS. The first one, denoted as T-HUDSI , uses only the 3 strategies that apply to
the first phase of our method. The second one, denoted as T-HUDS is the full version of our method that uses all the 4
strategies, including the one in the second phase.

5.3. Effectiveness of the obtained threshold

Fig. 3 shows the threshold values obtained from different methods on the four datasets for differen k values, where k is
the number of output HUIs specifed by the user (i.e., k in top-k). Since HUPMS does not raise the threshold during the mining
process, we just compare the results of TKU with the proposed methods. The results of TKU are the average threshold values
through all of the windows. This figure shows that T-HUDSI and T-HUDS have similar performance and their final thresholds
are higher than TKU especially on the large datasets. Since none of these three methods miss any top-k HUIs, the higher the
final threshold, the better the method. Although TKU could get better or similar results on some experiments, both T-HUDSI

and T-HUDS outperform TKU in general. Note that, as it is presented later, not only TKU is time-consuming to find top-k HUIs,
but also some of its strategies for raising the threshold requires a large amount of memory. Between T-HUDSI and T-HUDS, T-
HUDS is bit better, but not significantly. This means that the 3 strategies used in Phase I of T-HUDS are very effective, raising
the threshold close to the exact utility of the kth highest utility itemset. Recall that the threshold value at the end of Phase II
is the exact utility of the kth itemset in the top-k list.

The figure also shows that the threshold value decreases when k increases. It is because the larger the k value is, the lower
the threshold value needs to be to return more itemsets.

5.4. Number of generated candidates

In addition to the obtained threshold, the number of generated candidates (i.e., PTKHUIs) at the end of the first phase is
another metric to assess the effectiveness of HUI mining methods. Table 3 presents the numbers of generated candidates on
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Fig. 3. Reached threshold on (a) Connect-4, (b) IBM, (c) BMS-POS, and (d) ChainStore datasets.

Table 3
Number of candidates generated in phase I.

Dataset k TKU T-HUDS HUPMST

Connec-4 100 2,280,595 1,189,624 657,934
300 2,587,463 1,258,241 717,934
600 2,865,490 1,315,869 857,934
900 3,069,445 1,472,473 1,007,934

IBM 100 103,485 69,959 22,038
300 135,998 84,898 26,668
600 198,671 94,850 54,969
900 276,668 100,875 217,874

BMS-POS 100 45,054 35,697 31,407
300 59,357 37,251 35,682
600 119,479 47,215 42,112
900 177,725 50,189 51,463

ChainStore 100 40,419 19,751 101,435
300 140,236 32,213 152,451
600 258,318 102,385 211,627
900 371,408 227,826 282,074
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different datasets from different methods for different k values. The numbers show that T-HUDS significantly outperforms
TKU. Although TKU could achieve better threshold on some experiments in the previous section, since for each window, it
starts from a small threshold value (initial value), it generates much more candidates in comparison to T-HUDS. The results
for T-HUDSI are not shown here because they are the same as the ones for T-HUDS. The table also shows that HUPMSTmethod
generates fewer candidates in smaller datasets than T-HUDS, but much more candidates on larger data sets. The number of
candidates generated by HUPMST is determined by the minimum utility threshold given to the method, which is the thresh-
old reached at the end of Phase I of TKU. Even though the final Phase I threshold of T-HUDS is higher than that of TKU, the
number of candidates generated by HUPMST can still be smaller than that from T-HUDS. This is because the initial threshold
of T-HUDS can be lower than the final Phase I threshold of TKU. But on very large data set (such as ChainStore), the initial
threshold of T-HUDS can be higher than or close to the final Phase I threshold of TKU since the number of candidates
generated by HUPMST is much higher than the one by T-HUDS.
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5.5. Efficiency of T-HUDS: run time

Fig. 4 shows the total run time of each method, including the run time for both Phase I and Phase II. On the IBM and BMS-
POS datasets, the execution time of TKU is much worse than others, and HUPMST is a bit worse than T-HUDSI and T-HUDS. On
Connect-4 and ChainStore, T-HUDSI and T-HUDS are significantly faster than both HUPMST and TKU. On the largest data set
(ChainStore) and the most densest data set (Connect-4), HUPMST is the worst, even much worse than TKU. The run time
for T-HUDSI and T-HUDS are very similar, although T-HUDS is slightly faster due to its raising min util dynamically for pruning
out unpromising itemsets in Phase II. Also, it can be observed that the run time of the proposed methods are not affected
significantly by the k values, and it increase slightly and slowly when k increases. It is also worth mentioning that T-HUDS
significantly outperforms other methods in both large and dense datasets.

To see how each method works in different phases, Figs. 5 and 6 present the execution time for Phases I and II, respec-
tively. It can be observed that in both phases the proposed methods outperform TKU and HUMPT . In Phase I, the two pro-
posed methods have the same performance. But in the second phase, T-HUDS is more efficient. This is because it
dynamically increases the min util threshold in Phase II and consequently the number of candidates compared with the
running top-k list is fewer than that in T-HUDSI.

5.6. Memory usage

In this section, we report the memory usage taken by the trees, their header tables, auxiliary data structures and one win-
dow of transactions. Table 4 reports the memory consumption on the four datasets. TKU consumes the most memory, even
though the structure of its tree node is the smallest among the three methods. This is due to the large amount of memory
that it needs to initialize the threshold and also the larger number of conditional UP-trees recursively generated during the
mining process. It is caused by the fact that TKU starts by a low threshold value at the beginning of each window and its
strategies for raising the threshold are not very effective in the data stream environment. Also, as TKU is not designed for
mining over data streams, it cannot utilize the information from the past windows to raise the threshold. In all cases, the
proposed method T-HUDS consumes less memory than both TKU and HUPMST. Note that the node structure in HUPMST is also
smaller than that in T-HUDS. But again the effective pruning strategies used in T-HUDS lead to generation of a smaller stack of
trees in the recursive execution of the tree mining algorithm.

5.7. Effectiveness of the individual strategies

In this section we investigate the impact of each of the three threshold-setting strategies used in Phase I of our method.
Table 5 describes three different versions of the proposed method. The first method does not use maxUtillist values to set the
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threshold but uses MIUList and the minimum top-k utility from the last window (i.e., minTopKUtil). T-HUDS2 increases the
threshold by means of maxUtilList and minTopKUtil, but not by MIUList. T-HUDS3 applies the first and second strategies only.

Table 6 and Fig. 7 show the number of generated candidates and run time of these three methods on the IBM, BMS-POS
and ChianStore datasets, respectively. In general,T-HUDS3 (the method without the third strategy) is the worst among the



Table 4
Memory comparison (MB), k = 600.

Dataset TKU T-HUDS HUPMST

Connect-4 368 31.27 72.7
IBM 287 5.18 7.58
BMS-POS 301 15.2 33.5
ChainStore 4287 102 305
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three methods. It means that third strategy (i.e., using the last window’s minTopKUtil) is the most effective strategy. T-HUDS2

has better performance than T-HUDS1, meaning that the first strategy (i.e., the use of maxUtilList) works better than the sec-
ond one (i.e., using MIUList). Since in our implementation of TKU, MIUList is used as one of the threshold-raising strategies,
this results explain in part why T-HUDS outperforms TKU.
5.8. Effectiveness of PrefixUtil

Below we evaluate the use of PrefixUtil (in comparison to the use of other over-estimate utility models) for pruning the
search space during the recursive tree mining process. For such a purpose, we run T-HUDS in the problem setting of HUPMS.
That is, we do not use any of the threshold raising strategies in T-HUDS and use it as a method for finding all the high utility
itemsets that satisfy an input min util threshold. TKU mines top-k HUIs based on the UPGrowth method [31]. Hence TKU with-
out threshold raising strategies is UPGrowth method that finds all high utility itemsets given an input minimum utility
threshold. Since UPGrowth is not applicable to data streams directly and we would like to evaluate the performance of its
over-estimate utility model not the method, we use its proposed over-estimate utility model as the over-estimated utility
in T-HUDS to replace prefixUtil. This method is called T-HUDSU. This is to make T-HUDS and T-HUDSU the same as HUPMS ex-
cept that T-HUDS uses PrefixUtil while T-HUDSU uses the proposed over-estimate model in [31] and HUPMS uses TWU to
prune the search space. Hence, a comparison between these methods will illustrate the impact of PrefixUtil.

Figs. 8 and 9 present the number of generated candidates in Phase one of the three methods and their total run time with
respect to different minimum utility threshold values. The minimum utility threshold is given by the percentage of total
transaction utility values of the database. The reason why we chose a different range of the threshold value for the ChainStore
dataset is that it is a sparse data set and the number of potential candidates for large threshold values is too low.

These figures show that our algorithm outperforms HUPMS and T-HUDSU methods in terms of both the number of gen-
erated candidates and the run time. Moreover, these figures also demonstrate that the number of candidates and runtime
differences increase in general when the minimum utility threshold decreases. As discussed earlier, the reason for PrefixUtil
to be more effective in pruning the search space is that it is a closer over-estimate of the true utility.
Table 5
Methods with different strategies.

Method maxUtilList MIUList minTopKUtil

T-HUDS1 � U U

T-HUDS2 U � U

T-HUDS3 U U �

Table 6
Number of candidates at the end of first phase for different versions of T-HUDS.

Dataset k T-HUDS1 T-HUDS2 T-HUDS3

IBM 100 89,804 77,968 224,262
300 110,487 87,108 365,500
600 95,988 394,716
900 116,889 107,163 408,102

BMS-POS 100 44,117 39,075 111,172
300 51,201 49,870 104,019
600 63,544 61,962 120,607
900 80,827 80,469 149,012

ChainStore 100 24,409 21,620 61,511
300 44,276 43,125 89,950
600 137,794 134,363 261,534
900 366,902 365,277 676,419
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5.9. T-HUDS performance with different window sizes

Because T-HUDS dynamically updates the tree and the set of top-k patterns once the window slides, its performance may
vary depending on the window size parameter, winSize. In general, for a sliding window-based data stream mining algo-
rithm, winSize is an important factor on efficiency. Therefore, in order to determine the effect of changes in winSize on
the run time of T-HUDS, we analyze its performance by changing the value of this parameter. Below we present the results
on the IBM, BMS-POS and ChainStore datasets, keeping the k value fixed, but changing the number of batches in the sliding
window. We compare the performance of our algorithms with the HUPMST in this experiment. Fig. 10 shows the results for
k = 300. The y-axes in the graphs represent the overall run time (including tree construction time, update time, and mining
time) for all the windows. The x-axes represent the window size in the number of batches. Each graph shows the trend in
execution time with the variation of the window size on a dataset. On all the winSize values, the proposed method is much
faster than HUPMST, and its run time increases slowly as the window size increases.
5.10. Scalability

To evaluate the scalability of the proposed algorithms, we generate a number of subsets of the IBM;BMS� POS and Chain-
Store datasets The size of a subset ranges from 50% to 100% transactions of the dataset it is generated from. Fig. 11 illustrates
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how the run time of the algorithms for producing top-600 HUIs varies with different dataset sizes. We observe that the run
time increases (almost) linearly when the number of transactions increases. This indicates that T-HUDS scales well with the
size of dataset.
6. Related work

6.1. High utility pattern mining

The traditional frequent pattern mining considers equal profit/weight for all items and binary occurrences (0/1) of items
in transactions. To address these limitations, HUI mining methods were proposed to address these limitations. The MEU
(Mining with Expected Utility) model [36] is the first high utility itemset mining method. MEU cannot use the downward
closure property, hence a heuristic approach was proposed to predict if an itemset should be added to the candidate set.
MEU checks the candidate itemsets using a prediction method with a high computational cost. Later, the UMining algorithm
[35] improved its performance. They defined an upper bound utility for each itemset. Using this upper bound low utility
itemsets are pruned during the mining process. However, these methods still do not use any downward closure property,
and therefore, they suffer from excessive candidate generations and high computational costs.

The Two-Phase method presented in [25,26] used an over-estimate utility (i.e., TWU) model for mining high utility item-
sets. The main advantage of TWU is its downward closure property. In the first phase, Two-Phase discovers all of the high
TWU itemsets (HTWU). Then in the second phase, it scans the database one more time to extract the true high utility itemsets
from the HTWU itemsets. Based on the TWU model, CTU-Mine [10] was proposed that is more efficient than Two-phase in
dense databases when the minimum utility threshold is very low. This method constructs a memory-based CUP-tree for min-
ing HUIs. To reduce the number of candidates in each data base scan, the isolated item discarding strategy (IIDS) was pro-
posed in [22]. Applying IIDS, the authors proposed two efficient algorithms FUM and DCG+. In [3], efficient tree structures
were proposed to discover high utility itemsets in incremental databases. They first construct a tree based on transactions
and then apply a pattern growth approach to generate potential candidates. Each node in the tree consists of an item and
TWU value. After candidate generation in the second scan, all HUIs are discovered. The authors in [18] proposed tighter upper
bounds of utility values than TWU values. The proposed method uses the projection technique to reduce the TWU value of an
itemset. This method works based on TWU. But its difference from the original TWU estimate is that in the recursive mining
process the alphabetical order is applied to the processing order of HTWU itemsets. That is, when itemset X is processed, only
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the items appearing in the set of itemsets with X as their prefix can be kept in the projected transactions for X. The over-esti-
mated utility of itemset X is the TWU value of itemset X computed on the projected transactions for X. This leads to a lower
over-estimate utility than the TWU value on the whole dataset. However, this method needs several scans of data, which is
not suitable for mining data streams.

In [31] a pattern growth approach (i.e., UP-Growth) was proposed to discover high utility patterns in two scans. UP-
Growth defines a tree structure and four effective strategies DGU, DGN, DLU and DLN for mining HUIs. The strategies help
the method to prune more candidates during the mining process. Similar to the other two-phase approaches in the first
phase it generates candidates and in the second phase it discovers HUIs. Experiments showed that the number of candidates
generated by UP-Growth in phase I can be much smaller than that from the other methods. The improved version of [31] was
presented in [29]. The proposed framework consists of three main steps. First of all, it scans database twice to construct UP-
Tree applying two proposed strategies: DGU and DGN. In the second step, Up-Growth or another proposed method, called UP-
Growth+ is applied to generate candidates recursively. At the end, by computing the exact utility of each candidate, all HUIs
are discovered. Up-Growth works based on two proposed strategies DLN and DLU. These strategies are the same as the strat-
egies in [31]. But the second method, Up-Growth+ works based on two new strategies DNU and DNN. However, these algo-
rithms are neither applicable to high utility itemset mining over data streams nor are able to discover top-k high utility
itemsets directly.

Recently, some works have focused on mining HUIs in one scan of data base. HUI-Miner (High Utility Itemset Miner) pro-
posed by [24] is able to discover HUIs in one scan of database. HUI-Miner uses a new data storage, called Utility-list, to main-
tain utility information about the itemsets. Once Utility-list is constructed, HUI-Miner does not need the database and can
discover the HUIs and their exact utilities directly. The mining process is similar to Apriori-based algorithms but instead
of scanning data set several times, HUI-Miner scans the data once and after that it just scans Utility-list several times. In
[17] a high utility itemset approach is proposed that works in a single phase without generating candidates. They propose
a novel data structure to maintain original utility information during mining process and then enumerate itemsets by prefix
extensions. Based on the proposed data structure they could compute a tighter bound than TWU to prune low utility itemsets
and to directly identify high utility itemsets. It is worth pointing out the proposed upper bound (the utility of full prefix exten-
sion (ufpe)) in [17] is different from PrefixUtil proposed in this paper. ufpe of an itemset X in a transaction T is the sum of the
utilities of the items in the fpe of itemset X. Considering the fpe definition in [17], an itemset Y is fpe of X in a transaction T
containing X, if Y is a prefix extension of X derived by adding exactly all the items in T that are listed before X, while PrefixUtil
considers all items in transaction T that are not ranked after any item in X. Although these approaches are able to discover
HUIs using one scan of the data set, not only are their data structures not efficient for mining data streams, but also they are
not designed to discover top-k HUIs.
6.2. High utility mining in data streams

Although several algorithms have been proposed for mining frequent patterns over data streams [7,19,37], these
algorithms are not applicable to HUI mining. Recently, high utility itemset mining from data stream has become an active
research topic in data mining [30,25,2].

THUI-Mine [30] was the first algorithm for mining temporal high utility itemsets from data streams. It is based on a
non-stream HUI mining algorithm proposed in [25]. THUI-Mine first finds the length-1 and length- 2 candidate patterns,
and then all the candidate patterns from the length-2 candidate patterns are generated in order to reduce the overall
database scans. However, this algorithm generates a huge number of candidates. Later, two algorithms, called MHUI-
BIT and MHUI-TID, were proposed in [20] for mining high utility itemsets from data streams. This paper proposed
two effective representations of item information (Bitvector and TIDlist representations) and an extended lexicographical
tree-based summary data structure. The authors showed that MHUI-TID outperforms MHUI-BIT. However, the proposed
representations become very inefficient when the number of distinct items become large in a window. During the min-
ing process, they have used a tree structure to store length-1 and length-2 candidates. Then, other candidates whose
length is more than two are generated using an Apriori-like level-wise candidate generation algorithm. Hence it needs
to scan database several times. GUIDE is a framework proposed in [4] that mines a compact form of high utility patterns
from data streams with different models (i.e. the landmark, sliding and time fading window models). It works based on
a tree structure, called MUI-Tree, which is constructed during one scan of the database. Depending on the type of the
window model, the node structure in MUI-Tree is different. Once transactions are loaded into the memory, a process
named transaction-projection is applied to produce the subsets of the transactions, called projections. This process may
result in some pattern loss. After that, the projections are maintained into the tree. Then, the proposed pruning strate-
gies are applied onto the tree to decrease the memory usage of the tree. Finally, the high utility patterns are discovered.
However, GUIDE discovers temporal maximal high utility itemsets and is also not able to find top-k HUIs. HUPMS [2] is the
recent method for HUI mining from data streams, which is based on the TWU model. Similar to other works, they pro-
pose a novel tree structure, called HUS-Tree (high utility stream tree) to keep information about itemsets and their TWU
values. The candidates are generated in regard to the input threshold. During the second scan of the database, the exact
utility of each candidate is calculated and HUIs are discovered. However, the above mentioned methods were not
designed for finding top-k high utility itemsets over data streams.
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6.3. Top-k pattern mining

The top-k high utility itemset mining was first introduced in [6]. However, its high utility itemset definition differs from
the ones used in the recently proposed methods and in ours. Recently, the TKU method was proposed in [33] to find top-k
high utility itemsets over a static data set. The proposed approach mines top-k high utility itemsets without setting the min-
imum utility threshold. It works based on Up-Growth [31]. Although it can find top-k HUIs effectively, it is not designed for
data streams. Not only is it not able to adapt itself dynamically over different windows, but also the proposed strategies for
raising the threshold have much room to be improved so that it could generate few candidates and run faster in a data
stream environment. In this paper, we designed better strategies for initializing and dynamically adjusting the minimum
utility threshold over data streams.

In frequent itemsets mining, several methods were proposed to find top-k frequent itemsets in static data sets [8,9,15,27].
Although these algorithms are efficient, it is difficult (if not impossible) to simply adapt them to HUI mining. There are sev-
eral methods for finding top-k frequent itemsets over data streams. Golab et al. [12] proposed an algorithm, called FRE-
QUENT, for the top-k frequent item discovery in sliding windows. It performs well with bursty TPC/IP streams containing
a small set of popular item types. Wong and Fu [32] proposed two algorithms to address the problem of top-k frequent l-
itemsets (1 6 l 6 L) mining over data streams. TOPSIL-Miner [34] is another recent algorithm for mining top-k significant
itemsets over data streams, which works based on a prefix tree structure. This method is an approximation method and does
not guarantee that the exact set of top-k frequent itemsets is found. A major difficulty in top-k HUI mining is that the utility
of an itemset does not have the downward closure property. Thus, HUI mining has to work with estimated utilities. The strat-
egies proposed for raising the frequency threshold in top-k frequent itemset mining cannot be applied to estimated utilities.

7. Conclusion

In this paper, we proposed an efficient algorithm, T-HUDS, for mining top-k high utility itemsets in sliding windows over
streaming data. T-HUDS uses a novel over-estimate utility model, i.e., the PrefixUtil model, to effectively prune the search
space for finding top-k HUIs. We prove that PrefixUtil satisfies a special type of the downward closure property, which allows
it to be effectively used to prune the search space in a pattern growth process. We also addressed a major challenge in top-k
pattern mining by devising several strategies for initializing and raising the minimum utility threshold during the mining
process. A FP-tree-like data structure, HUDS-tree, and two auxiliary lists, maxUtilList and MIUList, are designed to store the
information that is needed for computing PrefixUtil and for initializing and dynamically adjusting the threshold. We also de-
signed a strategy that uses the information from the top-k patterns in the previous window to help initialize the threshold
for the new window. In addition, in the second phase of top-k HUI mining, the min util threshold is also raised to help fast
find the top-k patterns from the candidates. We proved that using these strategies to raise the threshold and using PrefixUtil
to prune the search space do not miss any top-k HUIs. These strategies not only help find top-k high utility itemsets effec-
tively, they also reduce the run time and memory consumption of the algorithm significantly. Extensive experiments were
conducted to confirm the effectiveness and the high efficiency of the algorithm in finding top-k HUIs over data streams.

While our method proves to be efficient in both run time and memory consumption, there is room for further research
and improvement. Similar to the tree structures used in HUPMS [2] and TKU [33], the HUDS-tree is a lossy compression of the
transactions in the sliding window. The consequence of this is that a second scan of data in the sliding window is needed in
the second phase of the method to obtain the exact utilities of the potential top-k HUIs. Although a sliding window is gen-
erally small enough to fit into the main memory, reducing the number of data scans can further improve the run time per-
formance of HUI mining. We will look into two directions: one is to design a lossless compression data structure to store the
information needed to compute the exact utility, and the other is to design an approximation method that returns an approx-
imated list of top-k patterns from a lossy compression of the data.
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