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1 Total variation
Let a < b. A partition of [a, b] is a sequence tg, t1, ..., t, such that
a=ty <ty <---<t,=0

The total variation of a function f : [a,b] — C is

n

Varya, b] = sup {Z |f(t:) — f(tiz1)] : to, t1, ..., b, is a partition of [a,b]} )

i=1
If Vary[a, b] < oo then we say that f has bounded variation.
Lemma 1. Ifa<c<e<d<b, then
Var¢[c,d] = Varg|c, e] + Varg[e, d].

The following theorem establishes properties of functions of bounded varia-

tion[T]
Theorem 2. Suppose that f : [a,b] = R is of bounded variation and define
F(z) = Vary[a, 2], x € [a,b].
Then:
1o [f(y) = f(@)] < F(y) — F(x) foralla <z <y <b.
2. F is a nondecreasing function.

8. F — f and F + f are nondecreasing functions.

LCharalambos D. Aliprantis and Owen Burkinshaw, Principles of Real Analysis, third ed.,
p. 377, Theorem 39.10.



4. For xg € [a,b], f is continuous at xq if and only if F is continuous at xg.

Proof. If tg,...,t, is a partition of [a, ] then tg,...,t,,y is a partition of [a, y],
S0

DO = Ft) + 1 (w) = f(2)] < F(y).
i=1
Since this is true for any partition ¢, ...,t, of [a,x],

F(x)+[f(y) — f(x)| < F(y).

This shows in particular that F(z) < F(y), and thus that F' is nondecreasing.
Fora<z<y<b,

fy) = f(2) <1f(y) = f(@)] < F(y) = F(),

thus
F(z) — f(z) < F(y) — f(y),

showing that « — F(z) — f(x) is nondecreasing. Likewise,

fx) = fly) < |f(y) = f(z)| < F(y) — F(x),

thus
flz)+ F(z) < f(y) + F(y),

showing that  — F(z) 4+ f(x) is nondecreasing.
Suppose that F' is continuous at xg and let € > 0. There is some § > 0 such
that |x — zg| < 0 implies that |F(z) — F(xzg)| < e. If |z — 20| < §, then

[f (@) = fzo)| < [F(z) — F(zo)| <,

showing that f is continuous at xg.

Suppose that f is continuous at xg and let € > 0. Then there is some § > 0
such that |x — z¢| < 0 implies that |f(z) — f(z0)| < €, and such that 29 — ¢ > a.
Let zg — 0 < s < xg, and let tg,...,t, be a partition of [s,b] such that

Var[s, b] < Z |f(ti) = f(tic1)| + €

i=1

and such that none of tg,...,t, is equal to xg. Say that ¢, < z¢ < tx4+1. Then

to, -tk oy L1, -5 tn



is a partition of [s,b]. For ¢, < x < x¢ we have |z — x¢| < § and therefore

Vary(s, z] + Vars[z, b] = Varg[s, b]

< Z |f(ti) — f(tiz1)| + €

k
SZ|f(ti)7f(ti71)|+|f($)*f(tk)‘
+ | f(z0) = f(@)]
+ 1 f(tkrn) = Fl@o) + Y If () = f(tia)| + e

i=k+2

< Varg[s,z] + | f(z) — f(xo)| + Vars[zo, b] + €

< Varg[s, z] + Vars[xo, b] + 2,
giving

Varg[x, b] — Varf[zo, b] < 2e.
As Varyla, b] = Vary[a, x]+Vars|z, b] and also Var¢[a, b] = Vary[a, o]+ Var [z, b],
we have F(z) + Vary[z,b] = F(zo) + Varg[zo, b], and therefore
F(zo) — F(z) < 2e.

Thus, if ¢, < & < g then |F(z¢) — F(x)| < 2¢, showing that F is left-continuous
at xg. It is straightforward to show in the same way that F' is right-continuous
at xg, and thus continuous at xg. O

If f:[a,b] - R is of bounded variation, then Theorem [2] tells us that F
and F' + f are nondecreasing functions. A monotone function is differentiable
almost everywhereﬂ and it follows that f = (F + f) — F is differentiable almost
everywhere.

2 Absolute continuity

Let a < b and let I = [a,b]. A function f : I — C is said to be absolutely
continuous if for any € > 0 there is some § > 0 such that for any n and any

collection of pairwise disjoint intervals (a1, 1), ..., (an, Bn) satisfying
n
> (B — ) <6,
i=1
we have

STIFB) — flad)] <e.
=1

It is immediate that if f is absolutely continuous then f is uniformly continuous.

2Charalambos D. Aliprantis and Owen Burkinshaw, Principles of Real Analysis, third ed.,
p. 375, Theorem 39.9.



Lemma 3. If f : [a,b] = C is absolutely continuous then f has bounded varia-
tion.

Proof. Because f is absolutely continuous, there is some § > 0 such that if
(a1,81), .-, (ap, Bn) are pairwise disjoint and

n

Z(ﬂi —a;) <6,

=1

then

n

D OIFB) = flaa)] < 1.

i=1
Let N be an integer that is > I’_T“ and let a = 29 < --- < xny = b such that
T — T < I’_T“ for each7=1,...,N. Then

N
Vary[a, b = ZVarf[xi,l,xi] <N,
i=1
showing that f has bounded variation. O

Let A be Lebesgue measure on R and let 91 be the collection of Lebesgue
measurable subsets of R.

The following theorem establishes connections between absolute continuity
of a function and Lebesgue measureﬂ In the following theorem, we extend
f:a,b] = R to R — R by defining f(z) = f(b) for z > b and f(x) = f(a) for
x < a. In particular, for any « > b, f'(x) exists and is equal to 0, and for any
x < a, f'(x) exists and is equal to 0.

Theorem 4. Suppose that I = [a,b] and that f : I — R is continuous and
nondecreasing. Then the following statements are equivalent.

1. f is absolutely continuous.

2. If E C I and \(E) = 0 then \(f(E)) = 0. (In words: [ has the Luzin
property.)

3. f is differentiable \-almost everywhere on I, f' € L*()\), and

@)1= [ Foae,  ass<

Proof. Assume that f is absolutely continuous and let F C I with A(E) = 0. Let
Ey = E\{a,b}; to prove that A(f(E)) = 0 it suffices to prove that A(f(Ep)) = 0.

3Walter Rudin, Real and Complex Analysis, third ed., p. 146, Theorem 7.18.



Let € > 0. As f is absolutely continuous, there is some § > 0 such that for any n
and any collection of pairwise disjoint intervals (aq, 81),. .., (an, 8,) satisfying

we have

Zlfﬁz flaw)| <e.

There is an open set V such that Ey C V' C I and such that A\(V) < §. (Lebesgue
measure is outer regular.) There are countably many pairwise disjoint intervals
(0, ;) such that V = J,(as, B;). Then

Z(5i —a;) = A(V) <6,

g

so for any n,
n

> (B —ai) <6,

=1

and because f is absolutely continuous it follows that

Z |f 62 az | <€
This is true for all n, so

Z|fﬁz O‘2|<6

Because f is continuous and nondecreasing, f(«;, 5;) = (f(«;), f(5;)) for each
i. Therefore

f(V) f(U O‘z;ﬂz) Uf O‘zaﬂz _U<f( z)7f(ﬂz))7

3

which gives

AFV)) =D (f(B) Z 1£(B:) = flaw)] < e.

i

This is true for all € > 0, so A(f(V)) = 0. Because f(Ep) C f(V), it follows
that f(Ep) € M (Lebesgue measure is complete) and that A(f(Ep)) = 0.
Assume that for all E C I with A\(E) = 0, A(f(E)) =0. Defineg:I - R
by
g(x) =z + f(z), zel



Because f is continuous and nondecreasing, g is continuous and strictly increas-
ing. Thus if (o, 8) C I then g(«, 8) = (g(), g(8)) and so

Agla, B)) = g(B) = g(a) = B+ f(B) = (a+ fla)) = B —a+ f(B) - fla),

showing that if J C I is an interval then A(g(J)) = A(J)+A(f(J)). Suppose that
E C I and M\(E) =0, and let € > 0. There are countably many pairwise disjoint
intervals (o, 8;) such that E C |J,(cu,8;) and >, (8; — ;) < €, and because
A f(E)) = 0, there are countably many pairwise disjoint intervals (v;, d;) such
that f(E) C U,;(7i,d:) and Y. (6; — ;) < e. Let

N=f" <U(%‘,5i)> N, 8:) = JF 1 (33,60 0 (e, Bi)) € 9

K2

We check that
AMg(N)) = AN) + A(f(N)),

and because

AN) + A(f(N)) < Z(ﬁi — )+ Z(&- — ) < 2€

we have
A(g(N)) < 2e.

Finally, E C N so g(E) C g(N). Therefore, for every € > 0 there is some N € 9t
with g(E) C g(N) and A(g(N)) < ¢, from which it follows that A(g(E)) = 0.
Suppose that E C I belongs to 9. Because E € 9, there are Fy, E1 € M
such that F = Ey U Eq, AM(Eg) = 0, and F; is a countable union of closed sets
(namely, an F,-set). On the one hand, as F; C I, F; is a countable union of
compact sets, and because g is continuous, g(F1) is a countable union of compact
sets, and in particular belongs to 2. On the other hand, because A(Fy) = 0,
g(Ep) € M. Therefore g(E) = g(Ep) U g(E1) € M. Define p : M — [0,00) by

WE)=\g(ENI), Eem

If E; are countably many pairwise disjoint elements of 9, then g(E; N I) are
pairwise disjoint elements of 9%, hence

() b))

= A (U g(E; N I))

7

= Z Mg(EiN 1))
= Z#(Ei%



showing that p is a measure. If A(E) = 0, then A(ENI) =0so0 A(g(ENI)) =0,
ie. pu(F) = 0. This shows that u is absolutely continuous with respect to A.
Therefore by the Radon-Nikodym theorenﬂ there is a unique A € L'()\) such
that

M(E):/ hd\, EeMm
E

h(z) > 0 for A-almost all z € R.
Suppose that € R and let E = [a,z]. Then g(E) = [g(a), g(x)], and

w(E) = /Eh(t)d)\(t) = /I h(t)dA(t).
On the other hand,

H(E) = Mg(E)) = Mg(a), g(@)]) = g(x) — g(a) = =+ f(z) — (a + f(a)).
Hence =
£@) = fla) = [ hOdrD) - @~ a),

f@) - 1@ = [ " (h(t) — 1)a@).

By the Lebesgue differentiation theoremﬂ f'(x) = h(x) — 1 for A-almost all
r € R, and it follows that f’ € L'()\) and

f@) - 1@ = [ Cpay,  wel

Assume that f is differentiable A-almost everywhere in I, f’ € L()\), and

@)~ sl = | Cpway,  cel

Let € > 0 and let (a1, 51), ..., (an, Brn) be pairwise disjoint intervals satisfying
Z(Bl — Oéi) < 0.
i=1

Because f is nondecreasing, for A-almost all z € I, f/(z) > 0, and hence the
measure p defined by dyp = f’d) is absolutely continuous with respect to A. It
followﬂ that there is some § > 0 such that for £ € 9, A(E) < ¢ implies that

p(E) < e. This gives us
M (U(al7/8’b)> <€,

i=1

4Walter Rudin, Real and Complex Analysis, third ed., p. 121, Theorem 6.10.
5Walter Rudin, Real and Complex Analysis, third ed., p. 141, Theorem 7.11.
SWalter Rudin, Real and Complex Analysis, third ed., p. 124, Theorem 6.11.



and as

nlai, Bi) = jl F(@)dA®) = £(8;) — flew),
we get . 1
S F(8) — flaw) < e
i=1
This shows that f is absolutely continuous, completing the proof. O

The following lemma establishes properties of the total variation of abso-
lutely continuous functionsm

Lemma 5. Suppose that I = [a,b] and that f : I — R is absolutely continuous.
Then the function F : I — R defined by

F(z) = Vary[a, z], xel
s absolutely continuous.

Proof. Let € > 0. Because f is absolutely continuous, there is some § > 0 such
that if (a1,b1), ..., (am,bn) are disjoint intervals with >°7" | (by, — ax) < 6, then

D 1f(bk) = flaw)| <.

k=1

Suppose that (a1, B1), ..., (an, B,) are disjoint intervals with > | (8;—a;) < 6.
If o = t1'70 < -0 < ti,mi = 51 for ¢ = 1,...,n, then (ti,j—lati,j)7 1 <i < n,
1 < j < m;, are disjoint intervals whose total length is < §, hence

> Z |f(tig) — f(tij—1)| <e

i=1 j=1

It follows that

n

S IF(B:) = Flag)| =Y Varglai, Bi] < e,

i=1 i=1
which shows that F' is absolutely continuous. O

We now prove the fundamental theorem of calculus for absolutely con-
tinuous functions

Theorem 6. Suppose that I = [a,b] and that f : I — R is absolutely continuous.
Then f is differentiable at almost all x in I, f' € L*()\), and

@) - 1@ = [ FON0.  aer

"Walter Rudin, Real and Complex Analysis, third ed., p. 147, Theorem 7.19.
8Walter Rudin, Real and Complex Analysis, third ed., p. 148, Theorem 7.20.



Proof. Define F' : I — R by
F(z) = Vary[a, 2], r el

By Lemma 3| f has bounded variation, and then using Theorem [2| F — f and
F+ f are nondecreasing. Furthermore, by Lemmal[p] F is absolutely continuous,
so F'— f and F + f are absolutely continuous. Let

leF;—fa fQZF;fa

which are thus nondecreasing and absolutely continuous. Applying Theorem [4]
we get that fi, fo are differentiable at almost all = € I, f1, f € L*()\), and

fl(:v)—fl(a):/mf{(t)dk(t), a<a<h

and

o)~ fola) = [ CRMAG,  a<z<b

Because f = f1 — fa, f is differentiable at almost all x € I, f' = f{ — f} € L*()\),
and

f(x) = f(a) = /L F(t)dx(t), a<xz<b,

proving the claim. O

3 Borel sets

Let I = [a,b]. Denote by C(I) the set of continuous functions I — C, which
with the norm

Ifller Zzlglf(ﬂf)l, fec),

is a Banach space. Denote by AC(I) the set of absolutely continuous functions
I — C. Let B¢y be the Borel o-algebra of C(I). We have AC(I) C C(I), and
in the following theorem we prove that AC(I) is a Borel set in C'(I).

Theorem 7. AC(I) € Bo(1y-

Proof. It X, Y are Polish spaces, f : X — Y is continuous, A € Bx, and f|A is
injective, then f(A) € %yﬂ Let X = C x L'(I), which is a Banach space with
the norm

b
I g)lx =141+ [ lgldr  (Ag) € X,
a

9 Alexander Kechris, Classical Descriptive Set Theory, p. 89, Theorem 15.1.



Furthermore, C and L'(I) are separable and thus so is X, so X is indeed a
Polish space. The Banach space C(I) is separable and thus is a Polish space.
Define ® : X — C(I) by

x

B(A, g)(z) = A+/ g(t)dA(t),  (A,g)eX, axel

a

For (Alagl)a (A27g2> S X7

[9(41.91) = 8z, g2) ey = (41 = 42) + [ (a0 = an)x)

)

[ - 92(t))d>\(t)’

= |A; — As| +sup
xel

b
<Ay — As| + / 91(t) — ga(B)|dA(2)
= ||(A1,91) — (A2,92) || x »

which shows that ® : X — C(I) is continuous.
Let (A,g) € X and € > 0. Because g € L'(I), there is some § > 0 such that
if A(E) < 0 then [, |g|ldA < Em If (o1,51), ..., (an, Bn) are disjoint intervals

whose total length is < ¢, then, with E = [J_, (o, 5:),

n

D104 9)(8) — B(A,g)(e)] = >

i=1

n Bi
3 / OO0

— / lgldA
B
< €,

showing that ®(A,g) is absolutely continuous. On the other hand, let f €
AC(I). From Theorem@7 [ is differentiable at almost all z € I, f' € L'(I), and

Bi
/ a()dA(t)

(27

@) - 1@ = [ Foae,  wer
Then (f(a), f’) € X, and the above gives us, for all x € I,
®(f(a), f')(z) = f(a) + /x F(H)ax) = f(z),

thus ®(f(a), f) = f. Therefore
o(X) =AC().

10Walter Rudin, Real and Complex Analysis, third ed., p. 32, exercise 1.12.
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If (A1, 1) = ®(A2,92), then ®(A1,g1)(a) = P(A2,92)(a) gives Ay = As.
Using this, and defining G : I — C by G = ff(gl(t) — g2(t))dA(t), we have
G(x) =0 for all z € I. Then G'(z) = 0 for all x € I, and by the Lebesgue
differentiation theorenﬂ we have G'(z) = ¢g1(z) — g2(x) for almost all z € I.
That is, g1(x) = ga(z) for almost all z € I, and thus in L*(I) we have g; = go.
Therefore ® : X — C(I) is injective.

Therefore ®(X) € ZBe(r). O

H'Walter Rudin, Real and Complex Analysis, third ed., p. 141, Theorem 7.11.
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