Name  Lecture  Office hours  Contact  
Instructor  Marcin Pęski  Monday, 1012pm, SS1087  Tuesday 24pm, Max Gluskin 207  mpeski@gmail.com 
TA  Kevin Fawcett  Tutorial: 121pm, SS1087  ??? 
Date  Topic  Readings  Theory topics  Important games/Extras 
0801  Lecture 1. Games. Dominant strategies↓  1,2.12.5, 2.9 
Key problem of game theory.
Definition of a game. Examples. Strictly (weakly) dominated strategies (SD). Dominant strategies. 
Plurality voting↓. 
1501  Lecture 2. Iterated elimination and rationalizability↓  12.24* (see comment below) 
Rationality, knowledge of rationality.
Iterated elimination of strictly dominated strategies (IESD). Best responses. Best responses against beliefs. Relation between dominated strategies and never best responses. 

2201  Lecture 3. Nash equilibrium↓  2.62.8, 3.1 
Nash equilibrium. Relation between Nash equilibrium and SD or IESD.
Multiplicity of Nash equilibria. Equilibrium selection. 
Cournot duopoly.

2901  Lecture 4. Nash equilibrium – examples↓  3.2, 3.5 
Cournot oligopoly.
Bertrand duopoly.
Bertrand with differentiated products. 

0502  Lecture 5. Mixed strategies↓  4.14.5, 4.9  Mixed strategies. Nash equilibrium in mixed strategies. 
Penalty shot.
Traffic game. 
1202  Midterm↓ (in class, during the regular class hours)  
2602  Lecture 6. Extensive form games. Subgame perfection↓  5.15.5, 6.16.2 
Extensiveform game. Strategies.
Nash equilibrium. Subgame Perfect equilibrium. 

503  Lecture 7. Extensive form games – examples↓  7.17.2, 7.67.7 
Ultimatum game.
Alternating offer bargaining. Holdup model. Entry game. 

1203  Lecture 8. Repeated games↓  14.114.2, 14.414.6, 14.7.1., 14.10.1  Repeated games. 
Prisoner’s Dilemma followed by Coordinated Investment.
Finitely repeated Prisoner’s Dilemma. 
1903  Lecture 9. Games with incomplete information↓  9.19.3  Games with incomplete informarion. Bayesian Nash equilibrium  Infinitely repeated Prisoner’s Dilemma. 
2603  Lecture 10. Games with incomplete information II↓  9.49.5, 7.6  Battle of Sexes with uncertain preferences.  
0204  Lecture 11. Auctions↓  3.5, 9.6 
Cournot oligopoly with uncertain costs.


TBA  Final exam↓  First, secondprice and allpay auctions. 
Kicker \ Goalie  L  C  R 
L  0.6  0.9  0.9 
C  1  0.4  1 
R  0.9  0.9  0.6 
Pl.1\Pl.2  L  C  R 
U  4,5  1,2  3,0 
M  3,1  2,3  3,6 
D  0,4  3,3  4,3 
Outcome if vote for c  Case  Outcome if vote for a 
A, (n’_{a} = n_{a} > n’_{b} = n_{b}, n’_{c} = n_{c} + 1)  n_{a} > n_{c} + 1, n_{b}  A (n’_{a} = n_{a} + 1 > n’_{b} = n_{b}, n’_{c} = n_{c}) 
AB  n_{a} = n_{b} > n_{c} + 1  A 
ABC  n_{a} = n_{b} = n_{c} + 1  A 
AC  n_{a} = n_{c} + 1 > n_{b}  A 
B  n_{b} > n_{a}, n_{c} + 1  AB or B 
BC  n_{b} = n_{c} + 1 > n_{a}  AB or B 
C  n_{c} + 1 > n_{a}, n_{b}  does not matter 
q_{2} = 0  q_{2} > 0, q_{2} = (1)/(2)(α − c − q_{1})  
q_{1} = 0  Strategies: q_{1} = 0, q_{2} = 0 Pl.1 EC (1)/(4)(α − c − q_{2})^{2} ≤ f⟹(1)/(4)(α − c)^{2} ≤ f Pl.2 EC (1)/(4)(α − c − q_{1})^{2} ≤ f⟹(1)/(4)(α − c)^{2} ≤ f  \strikeout off\uuline off\uwave off Strategies: q_{1} = 0, q_{2} = (1)/(2)(α − c) Pl.1 EC (1)/(4)(α − c − q_{2})^{2} ≤ f⟹(1)/(16)(α − c)^{2} ≤ f Pl.2 EC (1)/(4)(α − c − q_{1})^{2} ≥ f⟹(1)/(4)(α − c)^{2} ≥ f 
q_{1} > 0, q_{1} = (1)/(2)(α − c − q_{2})  Strategies: q_{1} = (1)/(2)(α − c), q_{2} = 0 Pl.1 EC (1)/(4)(α − c − q_{2})^{2} ≥ f⟹(1)/(4)(α − c)^{2} ≥ f Pl.2 EC (1)/(4)(α − c − q_{1})^{2} ≤ f⟹(1)/(16)(α − c)^{2} ≤ f  Strategies: q_{1} = (1)/(3)(α − c), q_{2} = (1)/(3)(α − c) Pl.1 EC (1)/(4)(α − c − q_{2})^{2} ≥ f⟹(1)/(9)(α − c)^{2} ≥ f Pl.2 EC (1)/(4)(α − c − q_{1})^{2} ≥ f⟹(1)/(9)(α − c)^{2} ≥ f 